
CLAUDIO DE SIO CESARI

LEARN JAVA FROM SCRATCH
AND BECOME A PRO

Volume 2

The Indispensable Library: The java.lang Package

37

But we must be aware that this is just an example, and therefore these numbers will not always
be in favor of compact strings. There are also situations in which disabling compact strings will
cause performance improvements.

13.5.5 Text Blocks (feature preview)
Java 13 introduced a new feature called text block. It allows string literals to
be defined on multiple lines, using a new syntax. In this way the indenting of
strings is managed in a more natural way than in the past, avoiding the use
of escape characters such as \n, and favouring readability and ease of writing.

However, this is a feature preview (see section 13.5.5.2).

13.5.5.1 Introduction
Since Java is a language that often interfaces with other languages and technologies (as we will
see in Part 6 of this book), it is often necessary to indent instructions written in other languages
such as JavaScript, JSON, SQL, XML, HTML, etc., within string literals. As we know indenting
is essential for language readability.
For example, suppose we want to import the following HTML file (a language introduced in
Appendix I), into a Java program:

<HTML>
 <BODY>
 <H1>Hello World!</H1>
 </BODY>
</HTML>

Before Java 13 came along, to format HTML code like this inside a string, we were forced to use
escape characters to represent line terminators:

String html = "<HTML>\n <BODY>\n <H1>Hello World!</H1>\n </BODY>\n</
HTML>";

To make it readable, we also needed to concatenate multiple strings with the + operator:

String htmlFile = "<HTML>\n" +
 " <BODY>\n" +
 " <H1>Hello World!</H1>\n" +
 " </BODY>\n" +
 "</HTML>"

With Java 13 we can instead equivalently use a text block, which is similar to an ordinary string
literal, but naturally spans several lines and is delimited by sequences of three quotes:

String htmlFile = """
 <HTML>

Part IV: Java API Fundamentals - Chapter 13

38

 <BODY>
 <H1>Hello World!</H1>
 </BODY>
 </HTML>""";

We can see how the readability of the HTML code has been improved, and how it is now easier
- with a copy-paste - to migrate this code from another file to a Java file and vice versa. There
are, however, several clarifications to be made, as we shall see in the following sections.

13.5.5.2 Feature Preview
First, we must emphasize that it is a feature preview. As we have already read in section 4.4
when we talked about switch expressions, Oracle is accelerating the Java development proc-
ess through the six-monthly release of new versions, making several improvements to Java
programming. From Version 12 on, a new type of approach has been introduced with switch
expressions, to introduce new features using so-called feature previews. In practice, the new
feature is introduced with the aim of being usable as a preview for experimental purposes. In
this way, developers can test it and return feedback to Oracle which, in turn, can improve the
feature in future versions.

Note that, in order to use feature preview, you must specify command-line options
during compilation and execution. In particular, to compile files containing feature
previews, it is necessary to specify the --enable-preview option to enable the pre-
view features, and the -source option to specify the Java version for which we want

to enable them. For example (the options are highlighted in bold):

javac --enable-preview -source 13 TextBlockDemo.java

Instead of the -source option, we can specify in an equivalent manner the -release option:

javac --enable-preview -release 13 TextBlockDemo.java

Instead, to run an application that uses a feature preview, you will only need to enable the pre-
view features:

java --enable-preview TextBlockDemo

If you use EJE with a JDK Version 12 (or higher), these options will be
enabled by default.

The Indispensable Library: The java.lang Package

39

13.5.5.3 Syntax
As we saw in the previous example, a text block was defined within an opening delimiter and a
closing delimiter, represented by a sequence of three double quotes """. However, the situation
is a bit more complex.
The opening delimiter is defined by three quotation marks, followed by zero or more spaces
and a line terminator. The content of the text block starts from the first character after the line
termination. Therefore, any blank spaces between the three double quotes and the line termi-
nation are not taken into account.
The closing delimiter, on the other hand, is defined only by three double quotes. The con-
tent of the text block ends with the character preceding the first double quotes of the closing
delimiter.
As for the content of the text block, at runtime, it is equivalent to defining an ordinary string
literal, there is no difference. Once compiled, a text block then becomes a string literal for all pur-
poses, and is stored in the pool of strings discussed in section 13.5.1. At runtime the JVM won’t be
able to distinguish the ordinary string literals from those that were created through a text block.
As for the compilation of a text block, there are three phases that are executed:

 Normalization of line terminators.

 Removal of the incidental white spaces that were introduced to align the text block to
the Java code.

 Interpretation of escape sequences.

As already mentioned in section 13.5.3.2, we mean by “white
space”, the characters that represent spaces, defined by the
boolean isWhitespace(int codepoint) static method of the Character
class.

13.5.5.4 Normalization of Line Terminators
Before talking about normalization, let’s make a short but fundamental point. The
content of the text block is usually made up of several lines formatted with a
certain criterion. This involves handling both horizontal and vertical alignment.
Horizontal alignment is usually supported by the use of the space character and

the horizontal tab character. The latter, is obtained by pressing the TAB key on the keyboard,
and can be represented by the \t escape character, and by the Unicode encoding (code point)

E

E

E

Part IV: Java API Fundamentals - Chapter 13

40

\u0009. To support vertical alignment, on the other hand, we need the so-called line termi-
nator characters. These, however, are no longer explicit with an escape character as is usually

done in an ordinary string literal, but are implicitly defined spanning several lines. But Unix-

based platforms (for example Linux and MAC systems), within text files, use the Line Feed

character (which we shorten to LF) as a line terminator, which can be represented in Java with

the escape character \n, and with code point \u000A. On the other hand, Windows systems use

the Carriage Return and Line Feed sequence as line terminators. In particular, the Carriage

Return (which we shorten to CR) can be represented in Java with the escape character \r, and

with the code point \u000D. We can therefore say that, on Windows systems the line terminator

is made up of the combination CRLF (that is, \u000D\u000A).

The normalization for text blocks, always transforms all the line terminations into LF. This

process is essential because the number of characters may change when switching from one

platform to another. In fact, suppose we have two Java source files that define an identical

text block. Suppose also that one of the two classes has been edited on a Linux system (where

the line terminator corresponds to LF), and the other on a Windows system (where the line

terminator is CRLF). A check using the equals() method between the two text blocks, will re-

turn false, even if - to the naked eye - they might seem identical! In fact, in the file edited on

Windows, there will be one more character for each line (\r).

13.5.5.5 Removal of Incidental White Spaces

After the normalization process, our text block will be clearly composed of one or

more lines. The algorithm for removing incidental white spaces (i.e. the white spaces

introduced to align the text block code with the Java source code) includes:

 The removal of all the trailing white spaces of each line.

 The removal of all the leading white spaces of each line, which are common to all lines.

Regarding the first point, it is quite clear that the trailing white spaces that are at the end of a

line are useless for aligning purposes, and therefore are rightly removed.

As for the second point, if all the non-blank lines start with one or more white spaces, they are

all examined by the compiler, which selects the smallest number of leading white spaces com-

mon to all rows. Then it removes that many white spaces from each line, being the smallest

number. This is because these white spaces are assumed to have been introduced to match the

indentation of Java source code. For example, let’s consider the following code:

E

E

The Indispensable Library: The java.lang Package

41

public class TextBlockDemo {
 public static void main(String args[]) {
 String htmlFile = """
 <HTML>
 <BODY>
 <H1>Hello World!</H1>
 </BODY>
 </HTML> """;
 System.out.println(htmlFile);
 }
}

In this case, the HTML code defined in the text box has clearly been defined with several initial
white spaces for each line, only for the purpose of aligning the content of the text block (the
HTML code) with its opening delimiter.

Figure 13.3 - Unnecessary white spaces are highlighted.

The white spaces, that precede the closing delimiter of the text box in
the last line, are also removed by the compiler.

For this reason, all the white spaces that are common to each line will be removed by the com-
piler, and the output of the previous class will be:

<HTML>
 <BODY>
 <H1>Hello World!</H1>
 </BODY>
</HTML>

Part IV: Java API Fundamentals - Chapter 13

42

instead of:

 <HTML>
 <BODY>
 <H1>Hello World!</H1>
 </BODY>
 </HTML>

If the text box closing delimiter was found on the next line, we would have had a further line in
the output. For example, the following text box:

String htmlFile = """
 <HTML>
 <BODY>
 <H1>Hello World!</H1>
 </BODY>
 </HTML>
 """;

would have been printed with an extra blank line, due to the line terminator that was moved
to the next line:

<HTML>
 <BODY>
 <H1>Hello World!</H1>
 </BODY>
</HTML>

while the following text box:

 String htmlFile = """
 <HTML>
 <BODY>
 <H1>Hello World!</H1>
 </BODY>
 </HTML>
""";

would have produced the following output:

 <HTML>
 <BODY>
 <H1>Hello World!</H1>
 </BODY>
 </HTML>

In fact, the last line would have had zero initial white spaces, and this number would have been
considered by the compiler as the smallest number of white spaces to be removed for all rows.

The Indispensable Library: The java.lang Package

43

The algorithm described in this section is implemented by using the
stripIndent() method, introduced with Java 13, which we will discuss
in section 13.5.5.8.

13.5.5.6 Interpretation of Escape Characters
In the whole text block, we can also use escape characters (see section 3.3.5.3). Technically it
is also possible to use the escape characters \n, and \", but actually, it is useless and therefore
not recommended. In fact, \n is a line terminator used in the string literals, but the text blocks
span several lines. Furthermore, we can use the “ character instead of the escape character \",
since the delimiter of a text block is not represented by a single character ". In practice, in a text
block, it’s not possible to confuse the characters “ that belong to the string, as being delimiters
of the string literal itself.

There is only one case in which it is necessary to use the escape char-
acter: when the last character of the content of a text block must be
the " character, which would then be linked to the closing delimiter,
compromising its definition. In this case we need to use the escape
character.

However, there are other escape characters that can be used.
It is important that the interpretation of the escape characters takes place after the first two
phases of normalization of the line terminators, and the removal of incidental white spaces. So,
in fact, the escape characters like \n, \r and \f will not be removed during the first phase, while
\b (backspace) and \t (tab) will definitely not be removed in the second phase.

13.5.5.7 Text Block Concatenation
Within text blocks, it is technically possible to link text blocks with other text boxes, string liter-
als, variables or method calls. In short, we can use text blocks in all cases where we can use string
literals. However, with concatenation, readability could get worse. For example, consider the
following snippet that defines and prints a text block that represents a JavaScript function:

String functionName = "alert";
String jsFunction = "function dynamicFunction() {\n"+
 "\t"+functionName+"(msg);\n" +
 "}";
System.out.println(jsFunction);

Part IV: Java API Fundamentals - Chapter 13

44

Notice how we used concatenation to parameterize the function name.

The output will be:

function dynamicFunction() {
 alert(msg);
}

but the readability of the code is not very good, so let’s try using a text block in order to im-
prove readability:

String functionName = "alert";
String jsFunction = """
 function dynamicFunction() {
 \t""" + functionName + """
 (msg);
 }""";
System.out.println(jsFunction);

The output will be identical to the previous one, but the readability is even worse! In fact, each
text block expands at least on two lines, taking into account the definition of the opening de-
limiter.
In cases like this, it is better to use a single text block, on which you can call the
replace() method, for example as in the following snippet:

String functionName = "alert";
String jsFunction = """
 function dynamicFunction() {
 \t$functionParameter(msg);
 }""".replace("$functionParameter", functionName);
System.out.println(jsFunction);

13.5.5.8 New Methods of the String Class

More simply, we can use the new String formatted() method introduced
with Java 13, in the following way:

String jsFunction = """
 function dynamicFunction() {
 \t%s(msg);
 }""".formatted("alert");
System.out.println(jsFunction);

