

CLAUDIO DE SIO CESARI

LEARN JAVA FROM SCRATCH
AND BECOME A PRO

Exercises and Solutions

Java for Aliens - Exercises and Solutions
Copyright © 2019 by Claudio De Sio Cesari

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by

any means, without the prior written permission of the author, except in the case of brief quotations permitted

by copyright law. For permission requests, write to the author at the address: claudio@claudiodesio.com

Editor: Emanuele Giuliani (emanuele@giuliani.mi.it)

First Edition (November, 2019)

Font licenses
Libre Baskerville (https://fonts.google.com/specimen/Libre+Baskerville, Impallari Type): OFL
Libre Franklin (https://fonts.google.com/specimen/Libre+Franklin, Impallari Type): OFL
Cousine (https://fonts.google.com/specimen/Cousine, Steve Matteson): AL
Inconsolata (https://fonts.google.com/specimen/Inconsolata, Raph Levien): OFL
Roboto (https://fonts.google.com/specimen/Roboto, Christian Robertson): AL
Digits (https://www.1001fonts.com/digits-font.html, Dieter Steffmann): FFC
Journal Dingbats 3 (https://www.1001fonts.com/journal-dingbats-3-font.html, Dieter Steffmann): FFC
Musicals (https://www.1001fonts.com/musicals-font.html, Brain Eaters): FFC

Image licenses
Curiosity icon (https://www.flaticon.com/free-icon/toyger-cat_107975, www.freepik.com): FBL
Alien icon (http://www.iconarchive.com/show/free-space-icons-by-goodstuff-no-nonsense/alien-4-icon.html, goodstuffnononsense.com): CC
Trick icon (https://www.flaticon.com/free-icon/magic-wand_1275106, www.flaticon.com/authors/pause08): FBL

License specifications
Open Free License (OFL): https://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=OFL_web
Apache License, Version 2.0 (AL): http://www.apache.org/licenses/LICENSE-2.0
1001Fonts Free For Commercial Use License (FFC): https://www.1001fonts.com/licenses/ffc.html
Flaticon Basic License (FBL): https://file000.flaticon.com/downloads/license/license.pdf
CC Attribution 4.0 (CC): https://creativecommons.org/licenses/by/4.0/legalcode

Any other trademarks, service marks, product names or named features are assumed to be the
property of their respective owners, and are used only for reference. There is no implied
endorsement if we use one of these terms.

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Table of Contents

Introduction to Exercises� IX

Chapter 1 Exercises� 1

Chapter 1 Exercise Solutions� 9

Chapter 2 Exercises� 21

Chapter 2 Exercise Solutions� 33

Chapter 3 Exercises� 51

Chapter 3 Exercise Solutions� 65

Chapter 4 Exercises� 79

Chapter 4 Exercise Solutions� 89

Chapter 5 Exercises� 111

Chapter 5 Exercise Solutions� 121

Table of Contents

VI
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises� 137

Chapter 6 Exercise Solutions� 151

Chapter 7 Exercises� 185

Chapter 7 Exercise Solutions� 199

Chapter 8 Exercises� 221

Chapter 8 Exercise Solutions� 233

Chapter 9 Exercises� 257

Chapter 9 Exercise Solutions� 267

Chapter 10 Exercises� 281

Chapter 10 Exercise Solutions� 305

Chapter 11 Exercises� 351

Chapter 11 Exercise Solutions� 365

Chapter 12 Exercises� 387

Chapter 12 Exercise Solutions� 401

Table of Contents

VII
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 13 Exercises� 417

Chapter 13 Exercise Solutions � 427

Chapter 14 Exercises� 445

Chapter 14 Exercise Solutions� 453

Chapter 15 Exercises� 469

Chapter 15 Exercise Solutions� 479

Chapter 16 Exercises� 499

Chapter 16 Exercise Solutions� 511

Chapter 17 Exercises� 529

Chapter 17 Exercise Solutions� 541

Chapter 18 Exercises� 557

Chapter 18 Exercise Solutions � 567

Chapter 19 Exercises� 581

Chapter 19 Exercise Solutions� 589

Table of Contents

VIII
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 20 Exercises� 611

Chapter 20 Exercise Solutions� 631

Chapter 21 Exercises� 693

Chapter 21 Exercise Solutions� 695

Chapter 22 Exercises� 697

Chapter 22 Exercise Solutions� 699

Chapter 23 Exercises� 701

Chapter 23 Exercise Solutions� 703

Chapter 24 Exercises� 705

Chapter 24 Exercise Solutions� 707

Appendix E Exercises� 709

Appendix E Exercise Solutions� 711

IX
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Java for Aliens
Exercises

Introduction to Exercises

This document represents, together with the Appendices document, the natural completion of
the book “Java for Aliens”.
All the exercises have been moved to this document so as not to take space away from the
theory and not to increase the cost of the book.
For each chapter of the book (and for each appendix, where applicable) specific exercises have
been designed to validate (and expand) what has been learned during the study.
The exercises are fundamental, essential. The theory is usually clear, but applying the concepts
learned is far from easy. Developing not only includes the implementation of the code, but
many other components are part of it, and they influence the final result.
The exercises that you will find in this document therefore strive to insist on topics that other
books treat superficially, or do not deal with at all, such as analysis, design and object-oriented
architecture. There are also exercises for all subjects, even for those that may seem trivial to the
more experienced reader, but which may be fundamental for the neophyte. In this book, you
will find over 600 exercises!

Warning! This document will be updated in the future. Currently
there are some exercises not yet published since they need some fur-
ther revisions. Updates will allow us to carry out further checks on
the quality and correctness of the content, and add more exercises.
The author will notify any news or information via his social media
channels.

Preface

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Based on reader feedback, this file has been organized and improved clarity and the style, and
created exercises that can satisfy all types of readers. There are exercises in which it is required
to add parts of code to fix bugs, code algorithms, design simple applications, or create more
complex applications step by step. Dozens of single or multiple-choice exercises have also been
introduced. They are similar to the test exercises of the Oracle Java programming certification
exams. These exercises help in preparing for certifications, and have been set up in such a way
that the programmer gains confidence. They often consist, essentially, of reading the code and
understanding its meaning and details, and also represent a remarkable test bench for the most
expert readers. I’m sure that the reader will appreciate the effort made to achieve such a large
number of heterogeneous and original exercises.
Unlike many other texts, we have provided solutions for all the exercises (with few excep-
tions). Obviously, when it comes to coding a solution, there are hundreds of valid alterna-
tives, so we must not consider the proposed solutions as, objectively, the better ones. You
can download all the list of solutions and exercises (together with all the code examples
included in the text) at the same address where you have downloaded the file you are
reading: http://www.javaforaliens.com.
Let’s remember once again that, especially for those who are beginners, it is important to start
writing all the code by hand, without using copy-paste or special help from the development
tool chosen. It is also very important to use comments for all of our code. This will allow us to
learn the definitions better, and to have more security when writing code.
So, it is fundamental to write the source code on a text editor such as Windows Notepad (as de-
scribed in the first chapter) and compile using the command line (see Appendix A). We do not
advise performing the exercises of these very first chapters (let’s say the first 4) using a complex
IDE like Eclipse or Netbeans... we could end up studying the IDE rather than Java.
It is, instead, advisable (if you do not want to have too much to do with Notepad and the com-
mand line) to use EJE (https://sourceforge.net/projects/eje) which offers simple utilities designed
for those who start to program. For example, it allows us to compile and execute our files by
pressing two distinct buttons.

EJE is easy to install (just unzip the file in any folder) and use. How-
ever, Appendix M is dedicated to its description.

Finally we suggest, after having done an exercise, to consult the relative solution before moving
on to the next one (often an exercise is a prerequisite for the next one).
For any type of communication, you can write directly to the author at: claudio@claudiodesio.com.
You can also contact him via the most important social networks and through his personal

Preface

XI
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

website (also to keep up to date with news, the Telegram group will notify you only for news
concerning this book):

 Telegram:	 http://t.me/java4aliens

 Facebook: 	 http://www.facebook.com/claudiodesiocesari

 Twitter: 	 http://twitter.com/cdesio

 LinkedIn: 	 http://www.linkedin.com/in/claudiodesio

 Internet: 	 http://www.claudiodesio.com

 YouTube: 	 http://www.youtube.com/claudiodesiocesari

 Instagram: 	 http://www.instagram.com/cdesio

Happy working!

 Claudio De Sio Cesari

E

E

E

E

E

E

E

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1
Exercises

Introduction to Java

The following exercises are designed for those starting from scratch. These exercises have
the goal of giving a minimum of confidence with the Java programming environment to the
reader.
Let’s remember once again that, especially for those who are beginners, it is important to start
writing all the code by hand, without copy-paste or special help from the development tool
chosen. It is also very important to use comments for every line of code written. This will allow
us to learn better the definitions, and to be more aware when writing code.
So, it will be fundamental to write the source code on a text editor such as Windows Notepad
(as described in the first chapter) and compile using the command line (see Appendix C). We do
not recommend performing the exercises of these very first chapters (let’s say the first 4) using
a complex IDE like Eclipse or Netbeans... we could end up studying the IDE rather than Java.
It is instead advisable (if you do not want to have too much to do with Notepad and the com-
mand line) to use EJE (https://sourceforge.net/projects/eje), which offers simple features designed
for helping the beginners to start to code. For example, it allows us to compile and execute our
files by pressing two distinct buttons.

EJE must be downloaded at https://sourceforge.net/projects/eje. It is easy
to install (just unzip the file in any folder) and use. To run it, double-
click on the eje.bat file. However, you can find more information in
Appendix M.

Chapter 1 Exercises

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

From Chapter 5 onwards, it will be easier to switch to an IDE, since other development envi-
ronments will be explained.
Finally we suggest, after having done an exercise, to consult the relative solution before moving
on to the next one (often an exercise is a prerequisite for the next one). This advice applies to
all exercises in all chapters and appendices.
At the same address (http://www.javaforaliens.com/download.html) where you downloaded the appen-
dices you can also download all the sample code contained in the book and in the appendices
(always downloadable at the same address), and all the code of the exercises (with solutions)
related to all the chapters and all the appendices.

Exercise 1.a)

Write, save, compile and run the HelloWorld program. We recommend to the reader to do this
exercise twice: the first time using Notepad and the DOS prompt, and the second using EJE.

EJE allows us to insert pre-formatted parts of code via the Insert
menu (or using shortcuts).

Exercise 1.b) Basic Concepts of Computer Science, True or False:

A computer is composed of hardware and software.

The operating system is part of a computer’s hardware. In fact, a computer cannot func-
tion without an operating system.

Windows Notepad is software.

The power supply cable of a computer is hardware.

Machine language is the language that a computer processor can interpret.

The machine language is unique and standard.

The machine language has a vocabulary that contains only two symbols: 0 and 1.

Both the compiler and the interpreter have the task of translating the written instructions
with a certain programming language into machine language instructions.

In general, a program written in an interpreted language has a faster execution time than
a program written in a compiled language.

 An executable program is composed of its source files.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 1 Exercises

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 1.c) Features of Java, True or False:

Java is the name of a technology and at the same time the name of a programming
language.

Java is an interpreted language but not a compiled language.

Java is a language fast but not robust.

Java is a difficult language to learn because in any case it forces you to learn Object
Orientation too.

The Java Virtual Machine is a software that supervises execution of the software written
in Java.

The JVM handles memory automatically through garbage collection.

Platform independence is an unimportant feature.

A Java system is a closed system.

Garbage collection guarantees platform independence.

 Java is a free language that collects the best features of other languages, and excludes
those deemed worse and more dangerous.

Exercise 1.d) Java Code, True or False:

The following declaration of the main() method is valid:

public static main(String arguments[]) {...}

The following declaration of the main() method is valid:

public static void Main(String args[]){...}

The following declaration of the main() method is valid:

public static void main(String arguments[]) {...}

The following declaration of the main() method is valid:

public static void main(String Arguments[]) {...}

The following class declaration is correct:

public class {...}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

Chapter 1 Exercises

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The following class declaration is correct:

public Class Car {...}

The following class declaration is correct:

public class Car {...}

You can declare a method outside the block of code that defines a class.

The block of code that defines a method is delimited by two round brackets.

 The block of code that defines a method is delimited by two square brackets.

Exercise 1.e) Development Environment and Process, True or False:

The JVM is software that simulates hardware.

The bytecode is contained in a file with the suffix .class.

Java development consists of writing the program, saving it, running it and finally
compiling it.

Java development consists of writing the program, saving it, compiling it and finally
running it.

The name of the file that contains a Java class must match the name of the class,
regardless of whether the letters are uppercase or lowercase.

Once you have compiled a program written in Java, you can run it on any operating
system that has a JVM.

To run any Java application, all you need is a browser.

The JDK compiler is invoked via the javac command and the JVM is invoked via the java
command.

To run a file called Foo.class, we need to run the following command from the prompt:
java Foo.java.

 To run a file called Foo.class, we need to run the following command from the prompt:
java Foo.class.

Exercise 1.f)

Delete the static modifier of the main() method from the HelloWorld class. Using the DOS

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 1 Exercises

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

prompt, compile and run the program, and interpret the execution error message.

Knowing how to interpret error messages is absolutely essential.

Exercise 1.g)

Delete the first open brace encountered by the HelloWorld class. Using the DOS prompt,
compile the program and interpret the compilation error message.

Exercise 1.h)

Delete the last closed parenthesis (last symbol of the program) from the HelloWorld class.
Using the command line, compile the program and interpret the error message.

Exercise 1.i)

Delete the symbol “;” from the HelloWorld class. Using the DOS prompt, compile the program
and interpret the error message.

Exercise 1.j)

Double the closing brace of the HelloWorld class. Using the DOS prompt, compile the
program and interpret the error message

Exercise 1.k)

Add a block of braces inside the main() method:

public class HelloWorld {
 public static void main(String args[]) {
 {}
 System.out.println("Hello World!");
 }
}

Compile, execute and draw your conclusions.

Exercise 1.l)

Double the symbol “;” in the HelloWorld program, then compile and execute it.
What happens?

Chapter 1 Exercises

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 1.m)

Write the HelloWorld program by writing each word and every symbol on the next line. What
is the problem?

Exercise 1.n)

Change the HelloWorld program in order to print another string instead of the “Hello World!”
string.

Exercise 1.o)

Make the HelloWorld program print a number instead of the “Hello World!” string.

Exercise 1.p)

Try printing the sum of two numbers to the HelloWorld program instead of the “Hello World!”
string, after reading the solution from the previous Exercise 1.o.

Exercise 1.q)

Compile and run the following program:

public class HelloWorld {
 public static void main(String args[]) {

 }
}

what is the output?

Exercise 1.r)

Compile and run the following program:

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println("");
 }
}

what is the output?

Exercise 1.s)

Compile and run the following program:

Chapter 1 Exercises

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println(args);
 }
}

what is the output?

Exercise 1.t)

Write a program named ShoppingList that prints a shopping list, where each item to buy re-
sides on its own line.

Exercise 1.u)

Write a program named CompactShoppingList that prints a shopping list, where each item to
buy is separated from another with a comma.

Exercise 1.v)

Create a new file named SayJava that prints out the string “JAVA” as in the follow-
ing example.

JAVA

Exercise 1.w)

Write a program defined by the Arrows class that prints the following output:

<----<<<

>>>---->

Exercise 1.x)

Write a program defined by the PrintContacts class that prints the contact list of a phone
book. Each contact must be printed on three lines: in the first there will be the name of the
contact, in the second the address, and in the third the phone number. Each contact must be
separated from the next one by an empty line.

Chapter 1 Exercises

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 1.y)

Create a class called PrintEmptyRowClass that prints the following output:

public class EmptyRow{
 public static void main(String args[]) {
 System.out.println();
 }
}

Exercise 1.z)

Create a new file named SayMyName that prints out your name as in the following
example:

***** * ****** * * ** * *****
* * * * * * * * * * *
* * ****** * * * * * * *
* * * * * * * * * * *
***** ***** * * ***** *** * *****

Note that to print each character 5 columns and 5 rows were used
(except for the I character). Each character is separated from another
one by 3 columns.

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1
Exercise Solutions

Introduction to Java

To solve our exercises, there are often hundreds of different and valid solutions. Each of them
has its pros and cons. Therefore, we must not take the solution proposed for an exercise as the
only existing one. This concept also applies to all other chapters. This does not apply to solu-
tions that do not consist of code (for example “True or False” exercises).

Solution 1.a)

The code could be the following:

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World!");
 }
}

For the instructions to be performed from the command line to compile and execute the code,
see sections 1.3.2 and 1.4.3.

Solution 1.b) Basic Concepts of Computer Science, True or False:

True.

False, the operating system is software.

True.

1.

2.

3.

Chapter 1 Exercise Solutions

10
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

True.

True.

False, each processor defines its own machine language.

True.

True.

False, because an interpreted language must alternate the translation phase with the
execution phase, so it is usually slower.

 False, an executable program is composed of its binary files.

Solution 1.c) Java Features, True or False:

True.

False.

False.

True.

True.

True.

False.

False.

False.

 True.

Solution 1.d) Java Code, True or False:

False, the return type (void) is missing.

False, the identifier (main) should start with a lowercase letter.

True.

True.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

Chapter 1 Exercise Solutions

11
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

False, the identifier is missing.

False, the keyword (class) must be written with a lowercase letter.

True.

False.

False, round brackets must be braces.

 False, square brackets must be braces.

Solution 1.e) Development Environment and Process, True or False:

True.

True.

False, you must first compile it and then send it running.

True.

False, we must also take capital and small letters into account.

True.

False, one browser is sufficient only to run applets (which today are no longer
supported).

True.

False, the right command is java Foo.

 False, the right command is java Foo.

Solution 1.f)

The code should be the following:

public class HelloWorld {
 public void main(String args[]) {
 System.out.println("Hello World!");
 }
}

The file quietly compiles, but at runtime we’ll be warned that we have defined a main() method
which is not a valid method for starting the application, precisely because it has not been de-

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 1 Exercise Solutions

12
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

clared with the static modifier:

Error: Main method is not static in class HelloWorld, please define the main method as:
 public static void main(String[] args)

Solution 1.g)

The code should be similar to the following:

public class HelloWorld
 public static void main(String args[]) {
 System.out.println("Hello World!");
 }
}

The compiler error message is as follows:

error: '{' expected
public class HelloWorld
 ^
1 error

Solution 1.h)

The code should be similar to the following:

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World!");
 }

The compiler error message is as follows:

error: reached end of file while parsing
 }
 ^
1 error

which tells us that the end of the file has been reached... and something is missing.

Solution 1.i)

The code should be similar to the following:

public class HelloWorld {
 public static void main(String args[]) {

Chapter 1 Exercise Solutions

13
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println("Hello World!")
 }
}

The compiler error message is as follows:

error: ';' expected
 System.out.println("Hello World!")
 ^
1 error

Where the compiler warns us that a semicolon is missing.

Solution 1.j)

The error message is as follows:

HelloWorld.java:5: error: class, interface, or enum expected
}
^
1 error

The message is the same as we have already seen in section 1.5.1, where we had defined a class
by mistakenly using the capital letter for the class keyword. In that case, as we know, a Java
source file must necessarily define a class within it. The compiler since it had not found a valid
definition, claimed the definition of a class (or an interface or an enumeration, but these last
two concepts have not yet been defined). In this case instead, the compiler expects that in place
of the superfluous brace, another class (or an interface or an enumeration) will be defined. In
fact, as we will see later, it is possible to define other classes within a single source file

Solution 1.k)

The file is compiled and executed as if the pair of braces did not exist. In fact, it is possible to
use pairs of braces within our methods, perhaps surrounding other instructions. For example
we could also write:

public class HelloWorld {
 public static void main(String args[]) {
 {
 System.out.println(args);
 }
 }
}

Also here, the braces are undoubtedly superfluous, but there are rare cases in which the paren-
thesis can be used to isolate pieces of code, from the rest. For now, we just need to know that
braces, if used in pairs, can be used within our source files.

Chapter 1 Exercise Solutions

14
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 1.l)

The code should be similar to the following:

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World!");;
 }
}

However, the file is compiled and executed without errors. In fact, the superfluous “;” symbol
is considered by the compiler as a (legal) termination of an empty statement. We could also
write it on the next line (since as we read in Chapter 1 nothing changes) to “see” the empty
statement:

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World!");
 ;
 }
}

Solution 1.m)

The code should be similar to the following:

public
class
HelloWorld
{
public
static
void
main
(
String
args
[
]
)
{
System
.
out
.
println
(
"Hello World!"

Chapter 1 Exercise Solutions

15
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

)
;
}
}

However, the file is compiled and executed without errors. In fact, as we will see in the next
chapters, Java is a free form language. The problem is that it becomes very complicated to read
for us.

Solution 1.n)

The code could be similar to the following:

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Una frase a piacere!");
 }
}

Solution 1.o)

The code could be similar to the following:

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println("8");
 }
}

but we printed the number as a string (the strings will be the subject of the third chapter), in fact
we enclosed it in two quotation marks. We could also write directly:

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println(8);
 }
}

This time we are printing a different data type (there are no double quotes). In the next exercise
we will begin to understand the situation better.

Solution 1.p)

The code could be similar to the following:

public class HelloWorld {
 public static void main(String args[]) {

Chapter 1 Exercise Solutions

16
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println("25+7");
 }
}

The output therefore will not print a sum, but simply:

25+7

We could also write this without double quotes:

public class HelloWorld {
 public static void main(String args[]) {
 System.out.println(25+7);
 }
}

In this case the output will be the desired one:

32

In fact, the numeric data types (which are written without double quotes as we will see in
Chapter 3), allow us to perform arithmetic operations.

Solution 1.q)

The program does not print anything because the print instruction is missing
(System.out.println()).

Solution 1.r)

The program does not print anything because nothing is printed in the print instruction
System.out.println(). Note, however, that the cursor has dropped to the next line, due to the
fact that the instruction System.out.println() always wraps after printing (but also after not
printing). In fact, println stands for “print line”.

Solution 1.s)

In this case the output will be similar to the following:

[Ljava.lang.String;@5679c6c6

An object (called args) has been “printed” and we will understand in the next few chapters why
it has such a mysterious string representation.

Chapter 1 Exercise Solutions

17
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 1.t)

The code should be similar to the following:

public class ShoppingList {
 public static void main(String args[]) {
 System.out.println("bread");
 System.out.println("coffee");
 System.out.println("tea");
 System.out.println("fruit");
 }
}

E l’output è il seguente:

bread
coffee
tea
fruit

Solution 1.u)

The code should be similar to the following:

public class CompactShoppingList {
 public static void main(String args[]) {
 System.out.println("bread, coffee, tea, fruit");
 }
}

And the output is the following:

bread, coffee, tea, fruit

Solution 1.v)

The code could be similar to the following:

public class SayJava {
 public static void main(String args[]) {
 System.out.println("----------");
 System.out.println("| JAVA |");
 System.out.println("----------");
 }
}

Chapter 1 Exercise Solutions

18
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 1.w)

The required code should be the following:

public class Arrows {
 public static void main(String args[]) {
 System.out.println("<----<<<");
 System.out.println("");
 System.out.println(">>>---->");
 }
}

To print an empty line, the natural solution was to use the System.out.println("") state-
ment, which passes an empty string "" as a parameter to the println() method. Actually, it is
also possible to use the System.out.println() statement instead, without passing any param-
eter to the method.

Solution 1.x)

The required code should be similar to the following:

public class PrintContacts {
 public static void main(String args[]) {
 System.out.println("Contacts List");
 System.out.println();
 System.out.println("Claudio De Sio Cesari");
 System.out.println("13, Java Street");
 System.out.println("131313131313");
 System.out.println();
 System.out.println("Stevie Wonder");
 System.out.println("10, Music Avenue");
 System.out.println("1010101010");
 System.out.println();
 System.out.println("Gennaro Capuozzo");
 System.out.println("1, Four Days of Naples Square");
 System.out.println("1111111111");
 }
}

Note that to print blank lines, we used the System.out.println() method without passing any
parameters. The solution would have been valid even if we had used an empty string like this:
System.out.println("").

Solution 1.y)

The required code should be the following:

Chapter 1 Exercise Solutions

19
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class PrintEmptyRowClass {
 public static void main(String args[]) {
 System.out.println("public class EmptyRow {");
 System.out.println(" public static void main(String args[]) {");
 System.out.println(" System.out.println();");
 System.out.println(" }");
 System.out.println("}");
 }
}

Note that we did not print anything to the System.out.println() method, because otherwise
we would have had problems with the double quotes. In fact, if we had written:

 System.out.println(" System.out.println("");");

we would get the following error:

PrintEmptyRowClass.java:5: error: ')' expected
 System.out.println(" System.out.println("");");
 ^
1 error

This is because the compiler cannot understand that the second double quotes it encounters
must be considered to be printed, and not as double quotes that close a string! The second dou-
ble quotes are therefore considered to be the closing double quotes of the string highlighted
in bold:

 System.out.println(" System.out.println("");");

So the third double quotes is not accepted, because the compiler expects the parenthesis of the
println() method to be closed. We will see in the next chapters how to solve this problem.

Solution 1.z)

The code could be similar to the following:

public class SayMyName {
 public static void main(String args[]) {
 System.out.println("***** * ****** * * ** * *****");
 System.out.println("* * * * * * * * * * *");
 System.out.println("* * ****** * * * * * * *");
 System.out.println("* * * * * * * * * * *");
 System.out.println("***** ***** * * ***** *** * *****");
 }
}

21
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2
Exercises

Key Components
of a Java Program

Remember that many exercises are preparatory to the following ones, so we
recommend doing all the exercises or at least consulting the solutions before going
ahead.

Exercise 2.a)

The following class is provided (copy, save and compile):

public class IntegerNumber {
 public int integerNumber;
 public IntegerNumber() {
 }
 public void printNumber() {
 System.out.println(integerNumber);
 }
}

This class defines the concept of an integer as an object. It declares an integer variable and a method that will print the
variable itself.
Write, compile and execute a class that:

Chapter 2 Exercises

22
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 will instantiate at least two objects from the IntegerNumber class (containing a main()
method);

 will change the value of the corresponding variables and test that these values are
correctly assigned, calling the method printNumber() on the two objects;

 will add a constructor to the IntegerNumber class to initialize the instance variable.

 Two more questions:

 what type of variable is the integerNumber variable defined in the IntegerNumber (local
variable, parameter or instance variable)?

 If we instantiate an object of the IntegerNumber class, without assigning a new value to
the integer variable, what will be the value of the latter?

Exercise 2.b) Key Components Concepts, True or False:

An instance variable must necessarily be initialized by the programmer.

A local variable shares the life cycle with the object in which it is defined.

A parameter has a life cycle coinciding with the method in which it is declared: it is cre-
ated when the method is invoked, it is not more usable when the method ends.

An instance variable belongs to the class in which it is declared.

A method is synonymous with action, operation.

Both variables and methods are usually usable through the dot operator, applied to an
instance of the class where they were declared.

A constructor is a method that never returns anything, in fact it has void return type.

A constructor is called the “default constructor” , if it has no parameters.

A constructor is a method and therefore can be used through the dot operator, applied to
an instance of the class where it was declared.

 A package is physically a folder containing classes, which explicitly declared to be part of
the package itself in the respective source files.

Exercise 2.c) Key Components Syntax, True or False:

In a method declaration (not constructor), the name is always followed by brackets
surrounding the optional parameters, and is always preceded by a return type.

E

E

E

E

E

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

Chapter 2 Exercises

23
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The following method is correctly defined:

public void method() {
 return 5;
}

The following method is correctly defined:

public int method() {
 System.out.println("Ciao");
}

The following variable is correctly defined:

public int a = 0;

The following variable x is correctly used (refer to the Point class defined in this
chapter):

Point p1 = new Point ();
Point.x = 10;

The following variable x is correctly used (refer to the Point class defined in this
chapter):

Point p1 = new Point();
Point.p1.x = 10;

The following variable x is correctly used (refer to the Point class defined in this
chapter):

Point p1 = new Point();
x = 10;

The following constructor is correctly used (refer to the Point class defined in this
chapter):

Point p1 = new Point();
p1.Point();

The following constructor is correctly defined:

public class Computer {
 public void Computer(){
 }
}

 The following constructor is correctly defined:

public class Computer {
 public computer(int a) {

 }
}

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 2 Exercises

24
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 2.d)

Create a Square class, which declares a side instance variable of type int. Then cre-
ate a public method called perimeter() that returns the perimeter of the square,
and a public area() method that returns the area of the square.

Remember that the perimeter is the sum of the sides of the square,
while the area is calculated by multiplying the side by itself. Finally,
the symbol to perform a multiplication in Java is the asterisk *.

Exercise 2.e)

Create a SquareTest class that contains a main() method that instantiates an object of type
Square, with side of value 5. Then print the perimeter and the area of the object just created.

Exercise 2.f)

After doing the previous exercise, you should have set the variable side with a statement like
the following:

objectName.side = 5;

To avoid to write this statement, create a constructor in the Square class of the Exercise 2.d,
which takes the value of the variable side as input. Once done, compile the Square class. The
SquareTest class, on the other hand, will no longer compile due to the instruction specified
above and the non-use of the new constructor. Modify the code of the SquareTest class so that
it compiles and runs correctly.

Exercise 2.g)

In the Square class created in the Exercise 2.d, replace the value 4 used to calculate the perim-
eter, with an instance constant named SIDES_NUMBER.

Note that for the constant, a name consisting of only uppercase letters
separated with an underscore symbol was used. This is a convention
that is used for all constants as explained in section 3.1.

This should not affect the SquareTest class.

Chapter 2 Exercises

25
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 2.h)

Create a Rectangle class equivalent to the Square class created in the Exercise 2.d and refined
in subsequent exercises. Before coding the class, decide which variables and methods this class
must have.

Never code directly. It’s a classic mistake that can lead to getting lost
when you’re just start learning programming. You first need to define
the specifications in your mind, or even better on a sheet of paper.
The advice is to have clear the various definitions (instance variables,
local variables, methods, parameters, constructors, etc.).

Exercise 2.i)

Create a RectangleTest class that contains a main() method and that tests the Rectangle class,
equivalently as we did in Exercise 2.e. This time, at least two different rectangles must be in-
stantiated.

Exercise 2.j)

Add to both Square and Rectangle classes created in the previous exercises, a
method called printDetails(), which prints the details of the geometric figure,
including perimeter and area. Also create a new version of the SquareTest and RectangleTest
classes that directly invoke the printDetails() methods on the instantiated objects

Exercise 2.k)

Starting from the solution of the previous exercise, create an additional method in
the Square and Rectangle classes, called getDetails(), which returns the same
string that was printed in the printDetails() method. After creating it, make sure that the
printDetails() method takes advantage of the getDetails() method so as not to duplicate
the code. Create a class called TestQuadrilaters that prints the details of a square and a rect-
angle.

Exercise 2.l)

Abstract the concept of Nation with a class, creating at least one constructor and instance vari-
ables, but no methods.

Chapter 2 Exercises

26
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 2.m)

After creating the Nation class of Exercise 2.l, can you create one or more meth-
ods? If you can, define them within the class. If you can’t, can you explain why?

Exercise 2.n)

Given the following class:

public class Exercise2N {
 public String string;
 public int integer;
 final public String INTEGER = "initialization";
}

Which of the following statements is true (choose only one statement)?

The code can be compiled correctly.

The code cannot be compiled correctly because it is not possible to declare a variable
with the name string.

The code cannot be compiled correctly because it is not possible to declare a variable
with the name integer.

The code cannot be compiled correctly because it is not possible to declare a variable of
type String by calling it INTEGER.

The code cannot be compiled correctly because the variable with the name integer de-
clares the modifiers in reverse order (it should first be declared public and then final).

Exercise 2.o)

Given the following class:

public class Exercise2O {
 public String toString() {
 return "Exercise2O";
 }

 public void main() {

 }

 public void static method() {

 }

1.

2.

3.

4.

5.

Chapter 2 Exercises

27
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 static public void main(String arguments[]) {

 }
}

There is only one error in this class that will prevent it from being compiled, which one?

If you are unable to answer the question, write the class by hand, com-
pile and interpret the error. Then fix it and compile the file.

Exercise 2.p)

Given the following class:

public class Exercise2P {
 public String string;

 public static void method(String arguments[]) {
 public int integer=0;
 }
}

There is only one error in this class that will prevent it from being compiled, which one?

If you are unable to answer the question, write the class by hand, com-
pile and interpret the error. Then fix it and compile the file.

Exercise 2.q)

Given the following class:

public class Exercise2Q {

 public static void main(String arguments) {
 System.out.println("Quelo")
 }
 }
}

There are three errors in this class that will prevent it from being compiled, which ones?

If you are unable to answer the question, write and complete the class
by hand, and interpret the errors. Then fix the errors and compile the
file.

Chapter 2 Exercises

28
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 2.r)

Given the following class:

public class Exercise2R {
 public int var1;
 public int var2;

 System.out.println("Exercise 2.r");

 public Exercise2R() {

 }

 public Exercise2R(int a , int b) {
 var1 = b;
 var2 = a;
 }

 public static void main(String args[]) {
 Exercise2R exercise2R = new Exercise2R (4,7);
 System.out.println(exercise2R.var1);
 System.out.println(exercise2R.var2);
 }
}

Once executed, what will this program print?

This program cannot be run.

This program does not compile.

It will print 74.

It will print 47.

Exercise 2.s)

Given the following classes:

public class Course {
 public String name;

 public Course() {

 }

 public Course(String n) {
 name = n;

1.

2.

3.

4.

Chapter 2 Exercises

29
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 }
}

public class Exercise2S {

 public static void main(String args[]) {
 Course course1 = new Course();
 course1.name = "Java";
 Course course2 = new Course("Java");
 System.out.println(course1.name);
 System.out.println(course2.name);
 }
}

Which sequence of instructions among the following is needed to execute the program?

javac Course.java, javac Exercise2S.java, java Course

javac Course.java, javac Exercise2S.java, java Course.class

javac Course.java, javac Exercise2S.java, java Exercise2S

javac Course.java, javac Exercise2S.java, java Exercise2S Course

Exercise 2.t)

Given the following classes:

public class Course {
 public String name;

 public Course() {

 }

 public Course(String n) {
 name = n;
 }
}

public class Exercise2T {

 public static void main(String args[]) {
 Course course1 = new Course();
 course1.name = "Java";
 Course course2 = new Course("Java");
 System.out.println(course1.name);
 System.out.println(course2.name);
 }
}

1.

2.

3.

4.

Chapter 2 Exercises

30
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Once executed, what this program will print?

This program cannot be run.

This program does not compile.

Will print:

Java
Java

Will print:

Java

Exercise 2.u)

Given the following class:

public class Exercise2U {
 int c = 3;
 public static void main(String args[]) {
 int a = 1;
 int b = 2, c, d = 4;
 System.out.println(a+b+c+d);
 }
}

Once executed, what this program will print?

This program does not compile.

Will print:

10

Will print:

7

Will print:

0

Exercise 2.v)

Create a class called Exercise2V that allows you to get the sum of 2, 3, 5 and 10 integers.

1.

2.

3.

4.

1.

2.

3.

4.

Chapter 2 Exercises

31
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 2.w)

Consider the solution in Exercise 1.x, where we created a class that simulated the printing of the
details of some contacts in a phone book:

public class PrintContacts {
 public static void main(String args[]) {
 System.out.println("Contacts List");
 System.out.println();
 System.out.println("Claudio De Sio Cesari");
 System.out.println("13, Java Street");
 System.out.println("131313131313");
 System.out.println();
 System.out.println("Stevie Wonder");
 System.out.println("10, Music Avenue");
 System.out.println("1010101010");
 System.out.println();
 System.out.println("Gennaro Capuozzo");
 System.out.println("1, Four Days of Naples Square");
 System.out.println("1111111111");
 }
}

Abstract, save, and compile and a Contact class that contains the necessary variables and one
or more constructors.

Exercise 2.x)

Consider the solution of the Exercise 2.w, create a new version of the PrintContacts
class of the Exercise 1.x (whose code is also reported in the Exercise 2.w), this time
taking advantage of the Contact class created in the Exercise 2.w. The output of the program
must be the same as the program PrintContacts of the Exercise 1.x.

Tip: use a method similar to printDetails() that we have defined in
the solution of Exercise 2.k.

Exercise 2.y)

Considering the solution in Exercise 2.x, create a PhoneBook class, which contains
the contacts created in Exercise 2.x. It must define a constructor without param-
eters that instantiate its own instance variables. Create a new version of the PrintContacts
class, which always has the same output. This version must not instantiate the Contact objects,
but retrieve them from the PhoneBook class.

Chapter 2 Exercises

32
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 2.z)

Create a City class that abstracts the concept of city. Then declare a Nation class
declaring a capital instance variable of type City. Finally, create an Exercise2Z
class that creates a nation with a capital, and prints a sentence that verifies the actual association
between the nation and the capital.

We recommend that you create constructors for these classes.

33
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2
Exercise Solutions

Key Components
of a Java Program

Solution 2.a)

A class that complies with the requirements is listed below:

public class RequestedClass {
 public static void main (String args []) {
 IntegerNumber one = new IntegerNumber();
 IntegerNumber two = new IntegerNumber();
 one.integerNumber = 1;
 two.integerNumber = 2;
 one.printNumber();
 two.printNumber();
 }
}

Furthermore, a constructor for the IntegerNumber class could set the only instance variable
integerNumber:

public class IntegerNumber {
 public int integerNumber;

 public IntegerNumber() {
 }

Chapter 2 Exercise Solutions

34
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public IntegerNumber(int n) {
 integerNumber = n;
 }

 public void printNumber() {
 System.out.println(integerNumber);
 }
}

In this case, however, to instantiate objects from the IntegerNumber class, it will no longer be
possible to use the default constructor (which will no longer be inserted by the compiler). So,
the following statement would produce a compilation error.

IntegerNumber one = new IntegerNumber();

Instead, create objects by passing the value to the constructor, for example:

IntegerNumber one = new IntegerNumber(1);

Answers to the two questions:

This is an instance variable, because declared within a class, outside of methods.

The value will be zero, which is the null value for an integer variable. In fact, when an
object is instantiated, instance variables are initialized to null values if not explicitly
initialized to other values.

Solution 2.b) Key Components Concepts. True or False:

False, a local variable must necessarily be initialized by the programmer.

False, an instance variable shares the life cycle with the object to which it belongs.

True.

False, an instance variable belongs to an object instantiated by the class in which it is
declared.

True.

True.

False, a constructor is a method that never returns anything, in fact it has no return type.

False, a constructor is called the “default constructor” if it is inserted by the compil-
er. It also has no parameters, but not all constructors without parameters are default
constructors.

1.

2.

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 2 Exercise Solutions

35
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

False, a constructor is a special method that has the characteristic of being invoked once
and only once an object is instantiated.

 True.

Solution 2.c) Key Components Syntax. True or False:

True.

False, it attempts to return an integer value but declares void as return type.

False, the method should return an integer value.

True.

False, the dot operator must be applied to the object and not to the class:

Point p1 = new Point();
p1.x = 10;

False, the dot operator must be applied to the object and not to the class, furthermore the
class does not “contain” the object.

False, the dot operator must be applied to the object. The compiler would not find the
declaration of the x variable.

False, a constructor is a special method that has the characteristic of being invoked once
and only once an object is instantiated, using the new operator.

False, the constructor does not declare a return type and must have a name coinciding
with the class.

 False, the constructor must have a name coinciding with the class.

Solution 2.d)

The code should be similar to the following:

public class Square {
 public int side;

 public int perimeter() {
 int perimeter = side * 4;
 return perimeter;
 }

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 2 Exercise Solutions

36
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public int area() {
 int area = side * side;
 return area;
 }
}

Solution 2.e)

The code should be similar to the following:

public class SquareTest {
 public static void main(String args[]) {
 Square square = new Square();
 square.side = 5;
 int perimeter = square.perimeter();
 System.out.println(perimeter);
 int area = square.area();
 System.out.println(area);
 }
}

Note that we have created the perimeter and area local variables with the same name as the
method, and this is not a problem. In fact, the name of a method always differs from the name
of a variable because it is declared with round brackets. We could also have called the variables
differently, but it is a good practice that the names are self-explanatory. However, we could also
completely avoid the use of these variables if we had written the class like this:

public class SquareTest {
 public static void main(String args[]) {
 Square square = new Square();
 square.side = 5;
 System.out.println(square.perimeter());
 System.out.println(square.area());
 }
}

The code is more compact, but at least at the beginning, it is better to use the variables to better
memorize the definitions.

Solution 2.f)

The Square class code should look like the following:

public class Square {
 public int side;

Chapter 2 Exercise Solutions

37
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public Square(int l) {
 side = l;
 }

 public int perimeter() {
 int perimeter = side * 4;
 return perimeter;
 }

 public int area() {
 int area = side * side;
 return area;
 }
}

The SquareTest class code should look like the following:

public class SquareTest {
 public static void main(String args[]) {
 Square square = new Square(5);
 int perimeter = square.perimeter();
 System.out.println(perimeter);
 int area = square.area();
 System.out.println(area);
 }
}

Solution 2.g)

The code could be similar to the following:

public class Square {
 public final int SIDES_NUMBER = 4;
 public int side;

 public Square(int l) {
 side = l;
 }

 public int perimeter() {
 int perimeter = side * SIDES_NUMBER;
 return perimeter;
 }

 public int area() {
 int area = side * side;
 return area;
 }
}

Chapter 2 Exercise Solutions

38
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 2.h)

The Rectangle class code should look like the following:

public class Rectangle {
 public final int NUMBER_OF_EQUAL_SIDES = 2;
 public int base;
 public int height;

 public Rectangle(int b, int h) {
 base = b;
 height = h;
 }

 public int perimeter() {
 int perimeter = (base + height) * NUMBER_OF_EQUAL_SIDES;
 return perimeter;
 }

 public int area() {
 int area = base * height;
 return area;
 }
}

Solution 2.i)

The RectangleTest class code should look like the following:

public class RectangleTest {
 public static void main(String args[]) {
 Rectangle rectangle1 = new Rectangle(5,6);
 Rectangle rectangle2 = new Rectangle(8,9);
 System.out.println("Perimeter of rectangle 1 = "
 + rectangle1.perimeter());
 System.out.println("Area of rectangle 1 = "
 + rectangle1.area());
 System.out.println("Perimeter of rectangle 2 = "
 + rectangle2.perimeter());
 System.out.println("Area of rectangle 2 = " + rectangle2.area());
 }
}

Solution 2.j)

The code of the Square class could be the following (in bold the new method requested):

public class Square {
 public final int SIDES_NUMBER = 4;

Chapter 2 Exercise Solutions

39
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public int side;

 public Square(int l) {
 side = l;
 }

 public int perimeter() {
// int perimeter = side * 4;
 int perimeter = side * SIDES_NUMBER;
 return perimeter;
 }

 public int area() {
 int area = side * side;
 return area;
 }

 public void printDetails(){
 System.out.println("This square, has side = " + side + ", perimeter = "
 + perimeter()+ ", area = " + area());
 }
}

The code of the Rectangle class could be the following (in bold the new method requested):

public class Rectangle {
 public final int NUMBER_OF_EQUAL_SIDES = 2;
 public int base;
 public int height;

 public Rectangle(int b, int h) {
 base = b;
 height = h;
 }

 public int perimeter() {
 int perimeter = (base + height) * NUMBER_OF_EQUAL_SIDES;
 return perimeter;
 }

 public int area() {
 int area = base * height;
 return area;
 }

 public void printDetails(){
 System.out.println("This rectangle, has base = " + base + ", height = "
 + height + ", perimeter = " + perimeter()+ ", area = " + area());
 }
}

Chapter 2 Exercise Solutions

40
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The code of the SquareTest class could be the following (note how the code is simpler, shorter
and more readable):

public class SquareTest {
 public static void main(String args[]) {
 Square square = new Square(5);
 square.printDetails();
 }
}

Same goes for the TestRettangolo class, whose code could be the following:

public class RectangleTest {
 public static void main(String args[]) {
 Rectangle rectangle1 = new Rectangle(5,6);
 Rectangle rectangle2 = new Rectangle(8,9);
 rectangle1.printDetails();
 rectangle2.printDetails();
 }
}

Solution 2.k)

The code of the Square class could be the following (in bold the modified code):

public class Square {

 public final int SIDES_NUMBER = 4;
 public int side;

 public Square(int l) {
 side = l;
 }

 public int perimeter() {
// int perimeter = side * 4;
 int perimeter = side * SIDES_NUMBER;
 return perimeter;
 }

 public int area() {
 int area = side * side;
 return area;
 }

 public void printDetails(){
 System.out.println(getDetails());
 }

Chapter 2 Exercise Solutions

41
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public String getDetails(){
 return "This square, has side = " + side + ", perimeter = " +
 perimeter()+ ", area = " + area();
 }
}

With the same criterion we could modify the Rectangle class with the following code (in bold
the modified code):

public class Rectangle {
 public final int NUMBER_OF_EQUAL_SIDES = 2;
 public int base;
 public int height;

 public Rectangle(int b, int h) {
 base = b;
 height = h;
 }

 public int perimeter() {
 int perimeter = (base + height) * NUMBER_OF_EQUAL_SIDES;
 return perimeter;
 }

 public int area() {
 int area = base * height;
 return area;
 }

 public void printDetails(){
 System.out.println(getDetails());
 }

 public String getDetails(){
 return "This rectangle, has base = " + base + ", height = " +
 height + ", perimeter = " + perimeter()+ ", area = " + area();
 }
}

The code of the QuadrilateralsTest class could be the following:

public class QuadrilateralsTest {
 public static void main(String args[]) {
 Square square = new Square(5);
 square.printDetails();
 Rectangle rectangle = new Rectangle(5,6);
 rectangle.printDetails();
 }
}

Chapter 2 Exercise Solutions

42
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 2.l)

The Nation class code should look like the following:

public class Nation {
 public String name;
 public String capital;
 public int population;

 public Nation (String n, String c, int p) {
 name = n;
 capital = c;
 population = p;
 }
}

This abstraction, although very generic, seems correct. The only defined constructor implies
that we have to specify three input parameters for every instance, so that they must be consid-
ered to be mandatory:

Nation italy = new Nation("Italy", "Rome", "60000000");

You didn’t have to create a class with the same variables, the impor-
tant thing is to have a correct abstraction.

Solution 2.m)

It is possible that someone has succeeded in creating methods within this class. In the previ-
ous exercise, an abstraction of the Nation class was requested only in a generic way, without
specifying the context or program in which this class will have a role. This is why it is difficult
for us to create methods, since we are currently ignoring the program in which Nation will be
used. We could use this class in a program that preserves the physical data of the nations, but we
could also use it in a video game that simulates the famous board game Risiko. The methods
(but also the instance variables) to be defined, could drastically change from context to context.
In the first case we would define instance variables like rivers, lakes, mountains, surfaces,
etc., and methods like produce(), export(), import(). In the second case we could define the
boundaries variable, and the method defend().
In conclusion, we have made the definition of the Nation class extremely generic, precisely
because we had no constraints to exploit.

Chapter 2 Exercise Solutions

43
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 2.n)

The answer is the number 1, which means the code can be compiled without errors. Don’t be
misled by the names of the variables (see other possible answers) that could lead to confusion.
Also, the order in which the modifiers are specified is not a problem.

Solution 2.o)

The mistake is that there is no ; next to the toString() method statement:

return "Exercise2O"

which should be corrected this way:

return "Exercise2O";

The other methods are all correct.

Solution 2.p)

The error is that a local variable cannot be declared public within a method. In fact, public
defines the visibility outside the class of an instance variable, not outside a method.
Note that we have named argz the parameter of the main() method, instead of the standard
args. This is legal because it is only a parameter name.

Solution 2.q)

The first error is that braces are missing for the args parameter of the main() method. The
second is that there is no ; next to the only statement in the main() method. The third is due
to an extra closing brace. Once these errors are corrected, the class compiles and can also be
executed since it contains a main() method. The correct class will be the following:

public class Exercise2Q_OK {
 public static void main(String args) {
 System.out.println("Quelo");
 }
}

Solution 2.r)

The program will not compile because of the statement:

System.out.println("Exercise 2.r");

Chapter 2 Exercise Solutions

44
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

which does not belong to any method code block. But we have seen that within a class only vari-
ables and methods are defined, not statements. By eliminating that statement, the program:

public class Exercise2R_OK {
 public int var1;
 public int var2;

 public Exercise2R_OK() {

 }

 public Exercise2R_OK(int a , int b) {
 var1 = b;
 var2 = a;
 }

 public static void main(String args[]) {
 Exercise2R_OK exercise2R = new Exercise2R_OK(4,7);
 System.out.println(exercise2R.var1);
 System.out.println(exercise2R.var2);
 }
}

will compile and will print at runtime:

7
4

Solution 2.s)

The correct answer is 3. It would also be possible to compile only the Exercise2S class, since
using the Course class, it will oblige the compiler to compile the latter as well. So, we can also
execute this sequence

javac Exercise2S.java
java Exercise2S

Solution 2.t)

The correct answer is 3.

Solution 2.u)

The correct answer is 1. In fact, the local variable c has not been initialized and will cause the
following error:

Chapter 2 Exercise Solutions

45
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise2U.java:6: error: variable c might not have been initialized
 System.out.println(a+b+c+d);
 ^
1 error

As stated in this chapter, the instance variable has nothing to do with the local variable with the
same name. In any case, once initialized to 3:

public class Exercise2u_OK {
 int c = 3;
 public static void main(String args[]) {
 int a = 1;
 int b = 2, c = 3, d = 4;
 System.out.println(a+b+c+d);
 }
}

will print:

10

Solution 2.v)

The code for the Exercise2V class, could be the following:

public class Exercise2V {
 public int sum2Int(int a, int b) {
 return a+b;
 }

 public int sum5Int(int a, int b, int c, int d, int e) {
 return a+b+c+d+e;
 }

 public int sum10Int(int a, int b, int c, int d, int e,
 int f, int g, int h, int i, int l) {
 return a+b+c+d+e+f+g+h+i+l;
 }

 //Just for test
 public static void main(String args[]) {
 Exercise2V ex = new Exercise2V();
 System.out.println(ex.sum2Int(1,1));
 System.out.println(ex.sum5Int(1,1,1,1,1));
 System.out.println(ex.sum10Int(1,1,1,1,1,1,1,1,1,1));
 }
}

Chapter 2 Exercise Solutions

46
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

It would not be entirely correct to use a varargs, since it would allow us to do many other opera-
tions that are not required.

Soluzion1e 2.w)

The code of the Contact class could be the following:

public class Contact {

 public String name;

 public String address;

 public String phoneNumber;

 public Contact(String nam, String num) {
 name = nam;
 phoneNumber = num;
 }

 public Contact(String nam, String add, String num) {
 name = nam;
 address = add;
 phoneNumber = num;
 }
}

Note that we have decided to define two constructors, one that takes the values of the three
variables as input, the other that does without the address. We have not introduced other con-
structors since we consider it useless for a contact to be created without specifying at least a
name and a phone number.

Soluzione 2.x)

The code of the PrintContacts class could be the following:

public class PrintContacts {
 public static void main(String args[]) {
 System.out.println("Contacts List");
 System.out.println();
 Contact contact1 = new Contact("Claudio De Sio Cesari",
 "13, Java Street", "131313131313");
 Contact contact2 = new Contact("Stevie Wonder", "10, Music Avenue",
 "1010101010");
 Contact contact3 = new Contact("Gennaro Capuozzo",
 "1, Four Days of Naples Square" ,"1111111111");
 System.out.println(contact1.name);
 System.out.println(contact1.address);
 System.out.println(contact1.phoneNumber);

Chapter 2 Exercise Solutions

47
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println();
 System.out.println(contact2.name);
 System.out.println(contact2.address);
 System.out.println(contact2.phoneNumber);
 System.out.println();
 System.out.println(contact3.name);
 System.out.println(contact3.address);
 System.out.println(contact3.phoneNumber);
 }
}

However, the code is rather verbose.
As recommended, we add a printDetails() method in the Contact class (see code in bold):

public class Contact {
 public String name;

 public String address;

 public String phoneNumber;

 public Contact(String nam, String num) {
 name = nam;
 phoneNumber = num;
 }

 public Contact(String nam, String add, String num) {
 name = nam;
 address = add;
 phoneNumber = num;
 }

 public void printDetails() {
 System.out.println(name);
 System.out.println(address);
 System.out.println(phoneNumber);
 System.out.println();
 }
}

We can rewrite the PrintContacts class more easily (changes in bold):

public class PrintContactsV2 {
 public static void main(String args[]) {
 System.out.println("Contacts List");
 System.out.println();
 Contact contact1 = new Contact("Claudio De Sio Cesari",
 "13, Java Street", "131313131313");
 Contact contact2 = new Contact("Stevie Wonder", "10, Music Avenue",
 "1010101010");

Chapter 2 Exercise Solutions

48
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Contact contact3 = new Contact("Gennaro Capuozzo",
 "1, Four Days of Naples Square", "1111111111");
 contact1.printDetails();
 contact2.printDetails();
 contact3.printDetails();
 }
}

Solution 2.y)

The code of the PhoneBook class could be the following:

public class PhoneBook {
 public Contact contact1;
 public Contact contact2;
 public Contact contact3;
 public PhoneBook() {
 contact1 = new Contact("Claudio De Sio Cesari",
 "13, Java Street", "131313131313");
 contact2 = new Contact("Stevie Wonder",
 "10, Music Avenue", "1010101010");
 contact3 = new Contact("Gennaro Capuozzo",
 "1, Four Days of Naples Square", "1111111111");
 }
}

As a result, the PrintContacts class can be changed as follows (changes in bold):

public class PrintContacts {
 public static void main(String args[]) {
 System.out.println("Contacts List");
 System.out.println();
 PhoneBook phoneBook = new PhoneBook();
 phoneBook.contact1.printDetails();
 phoneBook.contact2.printDetails();
 phoneBook.contact3.printDetails();
 }
}

Solution 2.z)

One solution could be the coding of the following classes:

public class City {
 public String name;

 public City(String n) {
 name = n;
 }
}

Chapter 2 Exercise Solutions

49
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Nation {
 public String name;
 public City capital;
 public int population;

 public Nation(String n, City c, int p) {
 name = n;
 capital = c;
 population = p;
 }
}

public class Exercise2z {
 public static void main(String args[]) {
 City city = new City("Rome");
 Nation nation = new Nation("Italy", city, 60000000);
 System.out.println(nation.name + " has " + city.name
 + " as its capital");
 }
}

51
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3
Exercises

Coding Style,
Data Types and Arrays

Below is a series of exercises to practice what was learned in Chapter 3. We remember once
again, that many exercises are preparatory to the following ones, so it is not worth skipping
some, and we recommend you to consult at least the solutions before going ahead.

Exercise 3.a)

Write a simple program that performs the following arithmetic operations cor-
rectly, carefully choosing the data types to be used to store their results.

A division (use the / symbol) between two integers a = 5, and b = 3. Store the result in a
variable r1, choosing the data type appropriately.

A multiplication (use the * symbol) between a char c = ‘a’, and a short s = 5000. Store the
result in a variable r2, choosing the type of data appropriately.

A sum (use the + symbol) between an int i = 6 and a float f = 3.14F. Store the result in
a variable r3, choosing the data type appropriately.

A subtraction (use the - symbol) between r1, r2 and r3. Store the result in a variable r4,
choosing the data type appropriately.

Verify the correctness of the operations by printing the partial results and the final result. Keep

1.

2.

3.

4.

Chapter 3 Exercises

52
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

in mind the automatic promotion in expressions, and use the casting appropriately. Write all
the code in a class with a main() method.

Exercise 3.b)

Write a program with the following requirements.

 Implement a Person class that declares the variables name, surname, age.
Also create a details() method that returns information about the person object with a
string. Remember to use the conventions and rules described in this chapter.

 Implement a Main class that, in the main() method, presents two objects called person1
and person2 of the Person class, initializing the relative fields for each of them through
the dot operator.

 Declare a third reference (person3) that points to one of the objects already instantiated.
Check that actually person3 points to the desired object, printing the person3 fields al-
ways using the dot operator.

 Adequately comment the code and use the javadoc tool to produce the related documen-
tation.

All the rules and conventions described in this chapter are used in
the standard Java documentation. Just observe that String starts with
a capital letter, being a class. Obviously, System is also a class.

Exercise 3.c) Arrays, True or False:

An array is an object and can therefore be declared, instantiated and initialized.

A two-dimensional array is an array whose elements are other arrays.

The length method returns the number of elements of an array.

An array is not resizable.

An array is heterogeneous by default.

E

E

E

E

1.

2.

3.

4.

5.

Chapter 3 Exercises

53
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

An array of integers can contain byte types as elements, that is, the following lines of
code do not produce compilation errors:

int arr [] = new int[2];
byte a = 1, b=2;
arr [0] = a;
arr [1] = b;

An array of integers can contain char types as elements, that is, the following lines of
code do not produce compilation errors:

char a = 'a', b = 'b';
int arr [] = {a,b};

An array of strings can contain char types as elements, that is, the following lines of code
do not produce compilation errors:

String arr [] = {'a' , 'b'};

An array of strings is a two-dimensional array, because strings are nothing more than ar-
rays of characters. For example:

String arr [] = {"a" , "b"};
is a two-dimensional array.

 Given the following two-dimensional array:

int arr [][]= {
 {1, 2, 3},
 {1,2},
 {1,2,3,4,5}
};

it will turn out that:

arr.length = 3;
arr[0].length = 3;
arr[1].length = 2;
arr[2].length = 5;
arr[0][0] = 1;
arr[0][1] = 2;
arr[0][2] = 3;
arr[1][0] = 1;
arr[1][1] = 2;
arr[1][2] = 3;
arr[2][0] = 1;
arr[2][1] = 2;
arr[2][2] = 3;
arr[2][3] = 4;
arr[2][4] = 5;

6.

7.

8.

9.

10.

Chapter 3 Exercises

54
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 3.d)

Create a PrintMyName class with a main() method, which prints your name using an array of
characters.

Exercise 3.e)

Create a class Result that declares a single instance variable of type float named
result. Add any useful methods and constructors. Create a ChangeResult class
that declares a public method of name changeResult() which takes an object of type Result
and changes its local variable result by adding to it another value.
Create a class with a main() method named ResultTest that prints the result variable of an ob-
ject of type Result, before and after this object is passed as input to the method changeResult()
of an object of type ChangeResult.

Exercise 3.f)

After having done the previous exercise, add a method called changeResult() to
the class ChangeResult which takes a float parameter as input and changes the
result variable.
Then create an equivalent ResultFloatTest class, which performs the same operations as the
ResultTest class realized in the previous exercise.

Exercise 3.g)

Create a class named ArgsTest with a main() method that prints the variable args[0]. Then
test it by passing various arguments by command line (see section 3.6.5).

Exercise 3.h)

The following class declares several string identifiers:

public class Exercise3H {
 public String Break,
 String,
 character,
 bit,
 continues,
 exports,
 Class,
 imports,
 AAA;

Chapter 3 Exercises

55
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 @,
 _;
}

Are they all valid? Once the invalid ones have been identified, use the comments appropriately
to exclude them from the compilation.

Exercise 3.i)

Given the following class:

package com.claudiodesio.java.exercises;

public class Exercise3I {
 public final String languageName = "Java";
 public int integer;
 public void printString(){
 System.out.println(languageName);
 }
}

Is there any convention not respected for identifiers? If yes, which changes should be done? If
the naming conventions are not respected, the code does not compile?

Exercise 3.j)

Considering the Exercise 1.y, create a class called PrintVoidRowClass that prints the following
ouput:

public class VoidRow {
 public static void main(String args[]) {
 System.out.println("");
 }
}

Exercise 3.k)

Given the following class:

public class Exercise3K {
 public static void main(String args[]) {
 char d = (char)100;
 float \u0066 = (float)d*1_000_000_000;
 System.out.println((long)f);
 }
}

Chapter 3 Exercises

56
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Keeping in mind that the letter f, is encoded in Unicode by the hexadecimal number 66, which
of the following outputs will be produces once executed?

None, we will have a compile error for a syntax error on the second line of the main()
method.

An unknown number.

100000000000

100_000_000_000

100.000.000.000

100,000,000,000

66000000000

0.0

An unpredictable Unicode character.

 The code compiles but at runtime we will have an exception in the first line of the
main() method because it is not possible to cast from int to char.

 The code compiles but at runtime we will have an exception in the second line of the
main() method because it is not possible to cast from int to float.

 The code compiles but at runtime we will have an exception i the third line of the main()
method because it is not possible to cast from float to long.

 The code does not compile for other reasons.

 The code throws a runtime exception for other reasons.

Exercise 3.l)

Given the following class:

public class Exercise3L {
 public static void main(String args[]) {
 bit i1 = 8;
 short i2 = -1024;
 integer i3 = 638;
 long i5 = 888_666_777;
 float i6 = 0;
 double i7 = 0x11B;
 System.out.println(i7);
 }
}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Chapter 3 Exercises

57
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Are the variables inside the main() method all declared correctly? And are all the assigned val-
ues within the range of representation of the respective types?

Exercise 3.m)

Given the following class:

public class Exercise3M {
 public static void main(String args[]) {
 boolean b = true;
 char c = 'I';
 System.out.println(b);
 System.out.println(c+1);
 }
}

Bearing in mind that the letter I is encoded by the number 73, which of the following outputs
will be produced once executed?

We will have an error in compilation.

true to the first line and 74 to the second.

true to the first line and L to the second.

true to the first line and J to the second.

0 to the first line and 74 to the second.

0 to the first line and J to the second.

0 to the first line and L to the second,

Exercise 3.n)

Given the following class:

public class Exercise3N {
 public static void main(String args[]) {
 String s = "Jav";
 char c = "a";
 System.out.println(s+c+1);
 }
}

which of the following outputs will be produced once executed?

We will have an error in compilation.

1.

2.

3.

4.

5.

6.

7.

1.

Chapter 3 Exercises

58
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Java

Java1

Javb

Exercise 3.o)

Given the following class:

package parking;

public class Car {
 public String type;

 public Car(String t){
 type = t;
 }
}

For the following class to compile:

package workers;
//Insert code here

public class Driver {
 public void drive(Car car) {
 System.out.println("I'm driving a " + car.type + " car");
 }
}

You must insert a line of code. Which between the following lines would allow the Driver class
to be compiled (choose all that applies)?

import parking.Car;

import parking.*;

import parking.workers.*;

import parking.Car.*;

import parking.*.Car;

import workers.parking.Car;

Exercise 3.p)

Considering the Car and Driver classes of the previous exercise, which piece of code must be
added to the following class:

2.

3.

4.

1.

2.

3.

4.

5.

6.

Chapter 3 Exercises

59
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Exercise3P {

//Insert code here

 public static void main(String args[]) {
 Car car = new Car("Toyota Yaris");
 Driver driver = new Driver();
 driver.drive(car);
 }
}

Choose only one of the following options:

import parking.*;

import workers.*;

import parking.Car; e import workers.Driver;

No code needs to be added. The code can already be compiled.

Exercise 3.q)

The following statement is correct?

 When we pass a reference of an object to a method as input, we are sure that once the
method has been executed, our reference will always point to the same object it was
pointing to before the method was executed. This does not mean that the internal struc-
ture of the object cannot be modified within the method. In fact, the local parameter of
the method will have the same address as the reference passed, and can therefore work
on the same object.

Exercise 3.r)

Write a program that takes an argument as input (variable args of the main() method) and
store it as a third element of an array of local strings named array.

This program will only work if at least one argument is passed. Any
parameters passed from the command line beyond the first one will
be ignored by the program.

1.

2.

3.

4.

E

Chapter 3 Exercises

60
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 3.s)

Given the following class:

public class Car {
 public String type;

 public Car(String t){
 type = t;
 }
}

Create a Boat class that abstracts the concept of a boat that loads cars. This class must define
a loadCar() method to which a Car object will be passed. Each Car object will be stored in an
array instance variable called carArray, as first element. Also create a test class that you can call
Exercise3S.

Exercise 3.t)

Create an Exercise3T class that must be launched by passing a command line ar-
gument representing an integer, as follows:
java Exercise3T 9

With EJE it is possible to pass command line arguments with the key-
board shortcut Shift - F9, or by clicking on the menu execute with args.

You can replace the number 9 with any other integer number.
The program will have to:

use args[0], which contains an integer, to create an array of integers of the same size
specified by the argument;

print a sentence that will confirm the creation of the array, printing its size.

Since the parameters are stored in the args string array elements, we need to convert the
parameter passed as input from string to integer. Search the library for the parseInt()
method of the Integer class. Read the documentation, understand how it works and use it in
the program.

In case you are not able to do some task, search Google for help, the
web is full of solutions.

1.

2.

Chapter 3 Exercises

61
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 3.u)

Create a program that:

create an array of character types, containing all the letters of the alphabet;

use a (static) method of the java.util.Arrays class to print its contents as a string. Look
for the appropriate method in the official documentation.

In case you are not able to do some task, search Google for help, the
web is full of solutions.

Exercise 3.v)

Create a class that prints integer random numbers.

Hint: there is a method of a class in the Java library that does exactly
this. To find it, search for the word “random” in the documentation.

Exercise 3.w)

Given the following class:

public class Exercise3W {
 public static void main(String args[]) {
 var var = "var";
 var a = " ";
 var b = " = ";
 var c = 8;
 var d = ";";
 var e = c + d;
 System.out.println(var + a + "i" + b + c +d);
 }
}

Is it possible to compile this application?

No, we will have a compilation error due to a syntax error on the first line of the main()
method.

1.

2.

1.

Chapter 3 Exercises

62
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

No, we will have a compilation error due to a syntax error on the second line of the

main() method.

No, we will have a compilation error due to a syntax error on the third line of the main()

method.

No, we will have a compilation error due to a syntax error on the fourth line of the main()

method.

No, we will have a compile error for a syntax error on the fifth line of the main()

method.

No, we will have a compile error for a syntax error on the sixth line of the main()

method.

No, we will have a compilation error due to a syntax error on the seventh line of the

main() method.

Yes.

Exercise 3.x)

Rewrite the solution of the Exercise 2.y, using the word var, wherever it is possible to use it. Also
in the PhoneBook class, replace the three instance variables contact1, contact2 and contact3
with an array, and modify the PrintContacts class accordingly.

Exercise 3.y)

Which of the following snippets can be compiled without errors:

public class var {}

private class var {}

public var MyClass {}

var var[] = new int[8];

public var var = 1;

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

Chapter 3 Exercises

63
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 3.z)

Create a ReportCard class that abstracts the concept of school report. It must have
the following information:

name, surname and class of the student;

a table of votes that you associate for each subject, the vote and the judgment

It must also declare a method that reads the report data legibly.

Also create an Exercise3Z class that prints one or more report cards.

1.

2.

3.

4.

65
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3
Exercise Solutions

Coding Style,
Data Types and Arrays

Solution 3.a)

public class Exercise3A {
 public static void main (String args[]) {
 int a = 5, b = 3;
 double r1 = (double)a/b;
 System.out.println("r1 = " + r1);
 char c = 'a';
 short s = 5000;
 int r2 = c*s;
 System.out.println("r2 = " + r2);
 int i = 6;
 float f = 3.14F;
 float r3 = i + f;
 System.out.println("r3 = " + r3);
 double r4 = r1 - r2 - r3;
 System.out.println("r4 = " + r4);
 }
}

Chapter 3 Exercise Solutions

66
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 3.b)

public class Person {
 public String name;
 public String surname;
 public int age;
 public String details() {
 return name + " " + surname + " years " + age;
 }
}
public class Main {
 public static void main (String args []) {
 Person person1 = new Person();
 Person person2 = new Person();
 person1.name = "Alessandro";
 person1.surname = "Scarlatti";
 person1.age = 30;
 System.out.println("person1 "+person1.details());
 person2.name = "Antonio";
 person2.surname = "Vivaldi";
 person2.age = 40;
 System.out.println("person2 "+person2.details());
 Person person3 = person1;
 System.out.println("person3 "+person3.details());
 }
}

Solution 3.c) Array, True or False:

True.

True.

False, the length variable returns the number of elements in an array.

True.

False.

True, a byte (which takes only 8 bits) can be stored in an int variable (which takes 32
bits).

True, a char (which takes 16 bits) can be stored in an int variable (which takes 32 bits).

False, a char is a primitive data type and String is a class. The two types of data are not
compatible.

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 3 Exercise Solutions

67
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

False, in Java the string is an object instantiated by the String class and not an array of
characters (even if internally uses an array of characters).

 False, all the statements are correct except arr[1][2] = 3; because this element does
not exist.

Solution 3.d)

The code should be similar to the following:

public class PrintMyName {
 public static void main(String args[]) {
 char [] name = {'C', 'l', 'a', 'u', 'd', 'i', 'o'};
 System.out.println(name);
 }
}

Solution 3.e)

The code of the Result class could be the following:

public class Result {
 public float result;

 public Result (float res) {
 result = res;
 }

 public void print() {
 System.out.println(result);
 }
}

Note that we have created a constructor and a method to facilitate printing.
The code of the ChangeResult class could be the following:

public class ChangeResult {
 public void changeResult(Result result) {
 result.result += 1;
 }
}

The code of the ResultTest class could be the following:

public class ResultTest {
 public static void main(String args[]) {
 Result result = new Result(5.0F);

9.

10.

Chapter 3 Exercise Solutions

68
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 result.print();
 ChangeResult cr = new ChangeResult();
 cr.changeResult(result);
 result.print();
 }
}

The output of the previous code will be:

5.0
6.0

Solution 3.f)

The code of the ChangeResult class should change as follows:

public class ChangeResult {
 public void changeResult(Result result) {
 result.result += 1;
 }
 public float changeResult(float result) {
 result += 1;
 return result;
 }
}

Note that this time the method must return the new value of the variable since it is a primitive
type variable (see section 3.3).
The code of the ResultFloatTest class could be the following:

public class ResultFloatTest {
 public static void main(String args[]) {
 float result = 5.0F;
 System.out.println(result);
 ChangeResult cr = new ChangeResult();
 result = cr.changeResult(result);
 System.out.println(result);
 }
}

Note that we had to reassign the value of the result variable after the computation of the
changeResult() method.

Solution 3.g)

The code should be similar to:

Chapter 3 Exercise Solutions

69
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class TestArgs {
 public static void main(String args[]) {
 System.out.println(args[0]);
 }
}

Note that if you don’t specify an argument when you launch the application you will get an
exception at runtime:

java TestArgs
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0
	 at TestArgs.main(TestArgs.java:3)

The exceptions are discussed in Chapter 9.

Solution 3.h)

Only the last two identifiers are not valid, in fact:

The Break identifier is different from break (all keywords do not have uppercase let-
ters).

The String identifier coincides with the name of the String class, but not being a key-
word, you can use it as an identifier. Nevertheless, it is a bad practice.

The character identifier is not a keyword (there is char instead).

The bit identifier is not a keyword (there is byte instead).

The continues identifier is not a keyword (there is continue instead).

The exports identifier is a restricted word, and would be unusable within the declaration
of a module, but in this context, it does not create problems.

The Class identifier is not a keyword (there is class instead).

The imports identifier is not a keyword (there is import instead).

The _AAA_ identifier is not a keyword.

 The identifier _@_ is not legal because we can’t use the @ symbol as part of identifiers.

 The identifier _ is a reserved word starting from Java 9.

You can comment out the invalid identifiers in the following way:

public class Exercise3H {
 public String Break,

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Chapter 3 Exercise Solutions

70
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 String,
 character,
 bit,
 continues,
 exports,
 Class,
 imports,
 AAA/*,
 @,
 _*/;
}

We have used a multi-line comment to comment out only on what should be commented.
Clearly this approach does not favour to the readability of the code. The most appropriate
way to comment out our code requires the replacement of the “,” symbol with the “;” sym-
bol immediately after the declaration of the identifier _AAA_, and the use of the single-line
comments:

public class Exercise3H {
 public String Break,
 String,
 character,
 bit,
 continues,
 exports,
 Class,
 imports,
 AAA;
// _@_,
// _*/;
}

Solution 3.i)

The only convention not used correctly concerns the constant (we remind you that the conven-
tions do not affect the compilation of the code).
The code should be corrected as follows:

package com.claudiodesio.java.exercises;

public class ExerciseSolution3I {
 public final String LANGUAGE_NAME = "Java";
 public int integer;
 public void printString(){
 System.out.println(LANGUAGE_NAME);
 }
}

Chapter 3 Exercise Solutions

71
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 3.j)

The problem arises for printing double quotes defined within the println() method. The so-
lution is to escape the double quotes (in bold):

public class PrintVoidRowClass {
 public static void main(String args[]) {
 System.out.println("public class VoidRow {");
 System.out.println(" public static void main(String args[]) {");
 System.out.println(" System.out.println(\"\");");
 System.out.println(" }");
 System.out.println("}");
 }
}

Solution 3.k)

The code compiles and runs without errors, and prints:

99999997952

that is, an unknown number. Indeed, the float types, due to the limitations of the IEEE-754 stan-
dard, when exceed the 9 decimal places can use approximate numbers (see section 3.3.2.1).
The correct answer is therefore to number 2.

Solution 3.l)

The bit and integer types do not exist (if anything, there are byte and int). All declared val-
ues are compatible with the respective representation ranges, including the value 0x11B which
is 283.0 for the decimal system and which, being stored in a double, is absolutely compatible.

Solution 3.m)

The right answer is the number 2. In fact, a boolean literal will be printed exactly as its literal
value (true in this case). Instead c + 1 is promoted to an integer, and from 73 it becomes 74. To
be able to print the relative character value (J) we should cast the whole operation in this way:

System.out.println((char)(c+1));

Solution 3.n)

We will have a compile-time error because the value assigned to the character c, is a string (note
the double quotes instead of the single quotes).

Chapter 3 Exercise Solutions

72
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 3.o)

The correct answers are 1 and 2, all the others are incorrect contain syntax errors.

Solution 3.p)

The correct answer is 3 because both Car and Driver classes were used in the code.

Solution 3.q)

Yes, the reasoning is correct.

Solution 3.r)

The code should be similar to:

public class Exercise3R {
 public static void main(String args[]) {
 String[] array = new String[5];
 array[2] = args[0];
 }
}

Solution 3.s)

The required code should be similar to this:

public class Boat {
 int index = 0;
 public Car[] carArray;

 public Boat () {
 carArray = new Car[100];
 }

 public void loadCar(Car car) {
 carArray[index] = car;
 System.out.println("Car: "+ car.type +" loaded");
 index++;
 }
}

Where we used an index to keep track of the positions already occupied on the boat. This is
increased each time a car is loaded, and then used to load the next one.
The following test class satisfies the request:

Chapter 3 Exercise Solutions

73
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Exercise3S {
 public static void main(String args[]) {
 Boat boat = new Boat();
 Car car1 = new Car("Renault");
 Car car2 = new Car("Volkswagen");
 Car car3 = new Car("Nissan");
 boat.loadCar(car1);
 boat.loadCar(car2);
 boat.loadCar(car3);
 }
}

Solution 3.t)

The required code should be similar to the following:

public class Exercise3T {
 public static void main(String args[]) {
 int arrayDimension = Integer.parseInt(args[0]);
 int [] array = new int[arrayDimension];
 System.out.println("The array has dimension " + array.length);
 }
}

Note that the parseInt() method is static (argument not yet addressed) and can be used with
the syntax: ClassName.parseInt(), but it is also possible to instantiate an object and invoke it
as it was an ordinary method (but it is useless to instantiate the object).

Solution 3.u)

The required code should be similar to the following:

import java.util.Arrays;

public class Exercise3U {
 public static void main(String args[]) {
 char[] array = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
 't', 'u', 'v', 'w', 'x', 'y', 'z'};
 System.out.println(Arrays.toString(array));
 }
}

The toString() method of the Arrays class was the required method. To use it you need to
import the Arrays class.

Chapter 3 Exercise Solutions

74
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 3.v)

The required code should be similar to the following:

import java.util.Random;

public class Exercise3V {
 public static void main(String args[]) {
 Random random = new Random();
 System.out.println(random.nextInt());
 }
}

Solution 3.w)

The Exercise3W class will be compiled correctly and when executed will print:

var i = 8;

Solution 3.x)

We can replace instance variables of the PhoneBook class with an array, using the following
code:

public class PhoneBook {
 public Contact [] contacts;
 public PhoneBook () {
 contacts = new Contact[]{
 new Contact("Claudio De Sio Cesari", " 13, Java Street ", "131313131313"),
 new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),
 new Contact("Gennaro Capuozzo", " 1, "Four Days of Naples Square ",
 "1111111111")};
 }
}

but we can also use the ordinary syntax of the array:

public class PhoneBook {
 public Contact [] contacts;
 public PhoneBook () {
 contacts = new Contact[3];
 contacts[0] = new Contact("Claudio De Sio Cesari", "13, Java Street",
 "131313131313");
 contacts[1] = new Contact("Stevie Wonder", "10, Music Avenue",
 "1010101010");
 contacts[2] = new Contact("Gennaro Capuozzo",
 "1, Four Days of Naples Square", "1111111111");
 }
}

Chapter 3 Exercise Solutions

75
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

As for the introduction of the word var, in the Contact and PhoneBook classes, since no local
variable is defined, it is not possible to use the word var, so these classes should not be modified.
The PrintContacts class instead, can be modified in this way (in bold the change):

public class PrintContacts {
 public static void main(String args[]) {
 System.out.println("Contacts List");
 System.out.println();
 var phoneBook = new PhoneBook();
 phoneBook.contacts[0].printDetails();
 phoneBook.contacts[1].printDetails();
 phoneBook.contacts[2].printDetails();
 }
}

Solution 3.y)

No snippets are correct. The numbers 1 and 2 show classes with the var identifier, but it is not
possible to use the word var as an identifier for any type (see section 3.7.2). Furthermore, in the
case of the snippet number 2, it is not even possible to use the private keyword to define a class
(we will see it better in the next chapters). In snippet 3, there is a syntax that tries to define a
class using the var keyword instead of the class keyword, but this is not the function for which
the word var was created. In the fourth snippet we try to use the word var as an identifier of an
array, but again in section 3.7.2, it is clearly specified that this is illegal. Finally, in snippet num-
ber 5, we can infer from the presence of the public modifier, that it is a definition of an instance
variable and not a local variable, and therefore the use of the word var is not allowed.

Solution 3.z)

We decide to create an abstraction for the Student class:

public class Student {
 public String name;
 public String surname;
 public String schoolClass;

 public Student(String nam, String sur, String sc) {
 name = nam;
 surname = sur;
 schoolClass = sc;
 }

 public String toString() {
 return "Student: "+ name +" "+ surname +"\nClass "+ schoolClass;
 }
}

Chapter 3 Exercise Solutions

76
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

We have declared the essential information required, and we have created a constructor to set
this information. We also created a toString() method that returns a descriptive string of the
object.

We will see later that this method will be used very often in Java pro-
gramming, because it is already present in every class.

Then we create a ReportCard class that abstracts the concept of a table of votes:

import java.util.Arrays;

public class ReportCard {
 public Student student;
 public String[][] tableOfVotes;

 public ReportCard (Student stu, String [][] tab){
 student = stu;
 tableOfVotes = tab;
 }

 public void printReportCard() {
 System.out.println(student.toString());
 System.out.println(Arrays.toString(tableOfVotes[0]));
 System.out.println(Arrays.toString(tableOfVotes[1]));
 System.out.println(Arrays.toString(tableOfVotes[2]));
 System.out.println(Arrays.toString(tableOfVotes[3]));
 System.out.println(Arrays.toString(tableOfVotes[4]));
 System.out.println(Arrays.toString(tableOfVotes[5]));
 System.out.println(Arrays.toString(tableOfVotes[6]));
 }
}

Note that this class declares a student object and a two-dimensional array tableOfVotes,
both to be set when the object is instantiated with the provided constructor. It also de-
clares the method printingReportCard() which uses the static method toString() of the
class java.util.Arrays to format the content of each “row” of the two-dimensional array
tableOfVotes.
Finally, with the following class, let’s print two report cards:

public class Exercise3Z {
 public static void main(String args[]) {
 Student student1 = new Student("Giovanni","Battista","5A");
 String [][] tabellaVoti1 = {
 {"English","7","Does not engage too much."},
 {"Maths","9","He is very fit for this subject."} ,

Chapter 3 Exercise Solutions

77
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 {"History","7","He could do more."} ,
 {"Geography","8","Passionate."} ,
 {"French","9", "Able to support dialogues."},
 {"Physical Education and Sports","6", "Vote of encouragement."},
 {"Music","7", "He has passion for the subject."}
 };
 ReportCard reportCard1 = new ReportCard (student1, tabellaVoti1);

 Student student2 = new Student("Daniele","Sapore","2A");
 String [][] tabellaVoti2 = {
 {"English","8","He shows enthusiasm for the subject."},
 {"Maths","5","Not at all interested."} ,
 {"History","6","Interested, but makes little effort."} ,
 {"Geography","6","He could do more."} ,
 {"French","8", "Excellent pronunciation."},
 {"Physical Education and Sports","7", "A bit lazy."},
 {"Music","9",
 "He plays different instruments and has a great voice."}
 };

 ReportCard reportCard2 = new ReportCard (student2, tabellaVoti2);

 reportCard1.printReportCard();
 reportCard2.printReportCard();

 }
}

The output will be the following:

Student: Giovanni Battista
Class 5A
[English, 7, Does not engage too much.]
[Maths, 9, He is very fit for this subject.]
[History, 7, He could do more.]
[Geography, 8, Passionate.]
[French, 9, Able to support dialogues.]
[Physical Education and Sports, 6, Vote of encouragement.]
[Music, 7, He has passion for the subject.]
Student: Daniele Sapore
Class 2A
[English, 8, He shows enthusiasm for the subject.]
[Maths, 5, Not at all interested.]
[History, 6, Interested, but makes little effort.]
[Geography, 6, He could do more.]
[French, 8, Excellent pronunciation.]
[Physical Education and Sports, 7, A bit lazy.]
[Music, 9, He plays different instruments and has a great voice.]

79
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4
Exercises

Operators and
Execution Flow Management

After studying the fourth chapter, we should already be able to write programs with Java. What
is still missing are the concepts of Object Orientation that we will study starting from the next
chapter. Meanwhile, we should be familiar with the execution flow.

Exercise 4.a)

Write a simple program consisting of a single class, which using only an infinite
loop, the modulo operator, two if constructs, a break and a continue, print only
the first five even numbers.

Exercise 4.b)

Write an application that prints the 26 characters of the alphabet with a loop.

Exercise 4.c)

Write a simple class that prints out the multiplication table.

Tip 1: Arrays are not required.

Chapter 4 Exercises

80
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Tip 2: the System.out.println() method prints the argument passed as
input to it, and then moves the cursor to the next line; in fact, println
stands for “print line”. There is also the System.out.print() method
which instead prints only the argument passed to it.

Tip 3: take advantage of a double nested loop.

Exercise 4.d) Operators and Execution Flow, True or False:

The unary pre-increment and post-increment operators applied to a variable give the
same result. In fact, if we have:

int i = 5;

or
i++;

or
++i;

nothing changes; the value of i is updated to 6;

d += 1 is the same as d++, where d is a double.

If we have:

int i = 5;
int j = ++i;
int k = j++;
int h = k--;
boolean flag = ((i != j) && ((j <= k) || (i <= h)));

flag will be false.

The instruction:

System.out.println(1 + 2 + "3");

will print 33.

The switch construct in any case can replace the if construct.

The ternary operator in any case can replace the if construct.

1.

2.

3.

4.

5.

6.

Chapter 4 Exercises

81
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The for construct in any case can replace the while construct.

The do construct in any case can replace the while construct.

The switch construct in any case can replace the while construct.

 The break and continue instructions can be used in the switch, for, while and do
constructs, but not in the if construct,

Exercise 4.e)

Modify the ArgsTest created in the Exercise 3.g, so as to avoid runtime exceptions, with a con-
struct learned in this chapter.

Exercise 4.f)

It is good practice to add the default clause in a switch construct. Can you explain why?

Exercise 4.g)

It is a good idea to add the else clause to an if construct. Can you explain why?

Exercise 4.h)

Create a class with a main() method that selects the first 10 numbers divisible by 3, and concat-
enate and print them with a string, so that the output of the program is:

Number multiple of 3 = 3
Number multiple of 3 = 6
Number multiple of 3 = 9
...

Use an ordinary for loop.

Exercise 4.i)

Repeat the Exercise 4.h using a while loop instead of a for loop.

Exercise 4.j)

Repeat the Exercise 4.j using a do-while loop instead of a for loop.

7.

8.

9.

10.

Chapter 4 Exercises

82
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 4.k)

Create a class called EvenOrOdd that defines a method called getEvenOrOdd(), which randomly
returns the string “Even” or “Odd”. Also create a test class that invokes this method and prints
the result.

Tip: see the solution of the Exercise 3.v.

Exercise 4.l)

Using the EvenOrOdd class created in the previous exercise, create a class called HeadsOrTails
that defines a method called getHeadsOrTails() that using a switch expression, returns the
string “Heads” or “Tails”. Also create a test class that invokes this method and prints the result.

Exercise 4.m)

Consider the following code:

import java.util.Scanner;

public class InteractiveApp {

 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 String string = "";
 System.out.println("Type something then press enter, " +
 "or type \"end\" to end the program");

 while (!(string = scanner.next()).equals("end")) {
 System.out.println("You typed " + string.toUpperCase() + "!");
 }

 System.out.println("Program ended!");
 }
}

This class reads keyboard input using the Scanner class of the java.util package (which we
will discuss in the Chapter 14). The next() method used in the while construct (with a complex
syntax that also includes the assignment to the string variable) is a blocking method (that is, that
blocks the execution of the code waiting for user input) that reads the input from the keyboard,
until the enter key is pressed. The program ends when you type the word “end”.
Edit the previous program so that it becomes a word moderator, meaning that it must censor
some words you type.

Chapter 4 Exercises

83
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Perform the exercise only by censoring the words typed individually
(not within a sentence), unless you are convinced that you are able to
do it (the documentation is as always at your disposal to find methods
useful to do what you want).

Exercise 4.n)

Which of the following operators can be used with boolean variables?

+

%

++

/=

&

=

!!

>>>

Exercise 4.o)

What is the output of the following program?

public class Exercise4O {
 public static void main(String args[]) {
 int i = 99;
 if (i++ >= 100) {
 System.out.println(i+=10);
 } else {
 System.out.println(--i==99?i++:++i);
 }
 }
}

Choose from the following options:

10

101

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

Chapter 4 Exercises

84
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

99

110

Exercise 4.p)

What is the output of the following program?

public class Exercise4P {
 public static void main(String args[]) {
 int i = 22;
 int j = i++%3;
 i = j!=0?j:i;
 switch (i) {
 case 1:
 System.out.println(8<<2);
 case 0:
 System.out.println(8>>2);
 break;
 case 2:
 System.out.println(i!=j);
 break;
 case 3:
 System.out.println(++j);
 break;
 default:
 System.out.println(i++);
 break;
 }
 }
}

Choose from the following options:

24

6 and on the next line 10

10

true

false

22

21

32 and on the next line 2

3.

4.

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 4 Exercises

85
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 4.q)

Write a program that asks the user to enter the number of days passed since his last vacation.
Once this number is entered, the program will have to print how many minutes have passed
since the last vacation.

Exercise 4.r)

Given the following class:

public class Exercise4R {

 private static int matrix[][] = {
 {1, 7, 3, 9, 5, 3},
 {6, 2, 3},
 {7, 5, 1, 4, 0},
 {1, 0, 2, 9, 6, 3, 7, 8, 4}
 };

 public static void main(String args[]) {

 }
}

implement the main() method so that it reads a number (between 0 and 9) as parameter
args[0], and find the position (row and column) of the first occurrence of the number speci-
fied within the two-dimensional array called matrix.

Exercise 4.s)

The solution of the previous exercise fails when:

no command line argument is specified;

an integer argument from the command line is specified, that is not within the range 0-9;

an argument from the command line is specified that is not an integer.

Add, to the solution of the Exercise 4.r, the code that manages the three cases (specifying a
message with the instructions to follow for correct use).

The third case can be managed with what has been studied so far,
but later we will study methods to simplify our code. In particular in
Chapter 9 where we talk about exception handling, and in Chapter . . .

1.

2.

3.

Chapter 4 Exercises

86
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

. . . 14 where we talk about regular expressions, we will see that there
are quite simple solutions for managing the third case.

Exercise 4.t)

Declare a SimpleCalc class that given two numbers, defines the methods for:

Summing them.

Subtract the second from the first.

Multiply.

Divide them.

Return the rest of the division.

Return the largest number (the maximum).

Return the smallest number (the minimum).

Return the average of the two numbers

Create a class that tests all methods.

Exercise 4.u)

Declare a class using the Scanner class, which allows the user to interact with the
SimpleCalc class: the user must be able to write the first operand, select the opera-
tion to be performed from a list and specify the second operand. The program must return the
right result.

Exercise 4.v)

Declare a StrangeCalc class that given an unspecified number of numbers, defines the
methods for:

Summing them.

Subtract the second from the first.

Multiply.

Divide them.

1.

2.

3.

4.

5.

6.

7.

8.

9.

1.

2.

3.

4.

Chapter 4 Exercises

87
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Return the rest of the division.

Return the largest number (the maximum).

Return the smallest number (the minimum).

Return the average of the two numbers.

Exercise 4.w)

Declare a class that uses the Scanner class, which allows the user to interact with
the StrangeCalc class. The reader is free to decide how the user will interact with
the program.

Exercise 4.x)

Using the HeadsOrTails class defined in the solution of the Exercise 4.l, create a
class called HeadsOrTailsGame, which simulates the tossing of a coin, and which
allows the user to guess whether “heads” or “tails” will come out. The program will have to print
a final message stating if the user has won or not.

Exercise 4.y)

Change the HeadsOrTailsGame class created in the previous exercise, so that the
program initially allows you to specify the number of attempts to do. The program
will have to count the number of times the user has guessed the result of the coin toss, and the
number of times he has not guessed, and will have to decide whether he has won the game or
not.

Exercise 4.z)

Considering the PhoneBook class created in Exercise 3.x, create a method called
searchContactsbyName(String name) which takes as input a string that can rep-
resent a name or part of it, and must return an array of Contact objects that contain this string
in its name. Also create a test class called SearchContacts which allows the user to specify the
string to be passed as a search criterion to the searchContactsByName() method and which
prints the search results.

5.

6.

7.

8.

89
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4
Exercise Solutions

Operators and
Execution Flow Management

Solution 4.a)

public class PairTest {
 public static void main(String args[]){
 int i = 0;
 while (true)
 {
 i++;
 if (i > 10)
 break;
 if ((i % 2) != 0)
 continue;
 System.out.println(i);
 }
 }
}

In the main() method we first declare a variable i that acts as an index and that we initialize
to 0. Then we declare a while infinite loop, whose condition is always true. Within the loop
we immediately increase by one unit the value of the variable i. Then we check if the value of
the aforesaid variable is greater than 10, if the answer is yes, the following break construct will

Chapter 4 Exercise Solutions

90
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

make us exit the loop that had to be infinite, and consequently the program will terminate im-
mediately after. If the value is less than 10, using the modulo operator (%), checks if the rest of
the division between i and 2 is different from 0. But this rest will be different from 0 if and only
if i is an odd number. If therefore the number is odd, with the continue construct the flow will
pass to the next iteration starting from the first statement of the while loop (i++). If i is an even
number, then it will be printed.
The output of the previous program is the following:

2
4
6
8
10

Solution 4.b)

public class ArrayTest {
 public static void main(String args[]) {
 for (int i = 0; i < 26; ++i) {
 char c = (char)('a' + i);
 System.out.println(c);
 }
 }
}

We execute a loop with the index i that varies from 0 to 25. Adding to the character 'a' the
value of the index i (which at each iteration increases by one unit), we will get the other char-
acters of the alphabet. The cast to char is necessary because the sum between a character and
an integer is promoted to integer.

Solution 4.c)

The code could be the following:

public class MultiplicationTables {
 public static void main(String args[]) {
 for (int i = 1; i <= 10; ++i) {
 for (int j = 1; j <= 10; ++j) {
 System.out.print(i*j + "\t");
 }
 System.out.println();
 }
 }
}

Chapter 4 Exercise Solutions

91
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

With this double nested loop and using the escape character \t, we can print the multiplication
table with a few lines of code.

Solution 4.d) Operators and Execution Flow, True or False:

True.

True.

False, the boolean variable flag will be true. The atomic expressions have value
true-false-true, respectively. Indeed, it’s true that: i = 6, j = 7, k = 5, h = 6. In fact,
(i != j) is true and also (i <= h) is true. The expression ((j <= k) || (i <= h)))
is true. Finally, the AND operator cause the flag value is true.

True.

False, switch can only check an integer variable (or a compatible type) by comparing
its equality with the constants. From version 5 we can also use enumerations and the
Integer type (or a compatible type), and from version 7 also strings. The if construct
allows to perform cross-checks using objects, boolean expressions, etc.

False, the ternary operator is equivalent to an expression that returns a value. In particu-
lar it always produces a value, and this must necessarily be assigned or used in some way
(assigning it to a variable, passing it as an argument to a method, etc.). For example, if i
and j are two integers, the following expression: i < j ? i : j; would cause a compila-
tion error (besides not making sense), since the result is not used.

True.

False, the do loop, unlike the while loop, guarantees the execution of the first iteration
on the code block in any case.

False, the switch is a condition construct, not a loop construct.

 False, the continue cannot be used within a switch construct, but only within loops.

Solution 4.e)

The code could be the following:

public class ArgsTest {
 public static void main(String args[]) {
 if (args.length == 1) {
 System.out.println(args[0]);

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 4 Exercise Solutions

92
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 } else {
 System.out.println("Please, specify a value from the command line");
 }
 }
}

Solution 4.f)

This is because we do not know a priori how our program will evolve, and therefore, even if
the default clause might not be needed when writing the program, modifying the program
could create a new unexpected condition, creating a bug in our application. In fact, a new case
will not be expected and the execution flow will not enter into any case clause of the switch
construct. Even using the default construct just to print a sentence “Unexpected case” could
be a good habit.

Solution 4.g)

The answer is identical to the previous one. The else clause for an if construct is equivalent to
a default clause for the switch construct.

Solution 4.h)

The requested code could be the following:

public class Exercise4H {
 public static void main(String args[]) {
 for (int i = 1, j = 1; j <= 10; i++) {
 if (i % 3 == 0){
 System.out.println("Number multiple of 3 = " + i);
 j++;
 }
 }
 }
}

Solution 4.i)

The requested code could be the following:

public class Exercise4I {
 public static void main(String args[]) {
 int i = 1, j = 1;
 while(j <= 10) {
 if (i % 3 == 0){

Chapter 4 Exercise Solutions

93
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println("Number multiple of 3 = " + i);
 j++;
 }
 i++;
 }
 }
}

Solution 4.j)

The requested code could be the following:

public class Exercise4J {
 public static void main(String args[]) {
 int i = 1, j = 1;
 do {
 if (i % 3 == 0){
 System.out.println("Number multiple of 3 = " + i);
 j++;
 }
 i++;
 } while(j <= 10) ;
 }
}

Solution 4.k)

The required EvenOrOdd class code could be the following:

import java.util.*;

public class EvenOrOdd {
 public String getEvenOrOdd() {
 Random random = new Random();
 return random.nextInt() % 2 == 0 ? "Even" : "Odd";
 }
}

Note that we used a ternary operator because it seems the best choice,
but we could have used a simple if construct as well.

While the EvenOrOddTest class code could be:

Chapter 4 Exercise Solutions

94
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class EvenOrOddTest {
 public static void main(String args[]) {
 EvenOrOdd evenOrOdd = new EvenOrOdd();
 System.out.println(evenOrOdd.getEvenOrOdd());
 }
}

Solution 4.l)

The code of the requested HeadsOrTails class could be the following:

public class HeadsOrTails {
 public String getHeadsOrTails() {
 EvenOrOdd evenOrOdd = new EvenOrOdd();
 String evenOrOddString = evenOrOdd.getEvenOrOdd();
 String headsOrTails = switch (evenOrOddString) {
 case "Even" -> "Heads";
 case "Odd" -> "Tails";
 default -> "There's a Bug!!!";
 };
 return headsOrTails;
 }
}

while the class code that HeadsOrTailsTest could be the following:

public class HeadsOrTailsTest {
 public static void main(String args[]) {
 HeadsOrTails headsOrTails = new HeadsOrTails();
 System.out.println(headsOrTails.getHeadsOrTails());
 }
}

Solution 4.m)

The requested code could be the following:

import java.util.Scanner;

public class Moderator {

 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 String string = "";
 System.out.println("Type something then press enter, or type"
 + " \"end\" to end the program");
 while (!(string = scanner.next()).equals("end")) {
 string = moderateString(string);

Chapter 4 Exercise Solutions

95
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println("You typed " + string.toUpperCase() + "!");
 }
 System.out.println("Program ended!");
 }

 private static String moderateString(String string) {
 switch (string) {
 case "gosh":
 case "golly":
 case "hilarious":
 case "jocund":
 string = "CENSORED!";
 break;
 default:
 break;
 }
 return string;
 }
}

It’s just one of the solutions (certainly not the most elegant).

Solution 4.n)

Let’s list all the cases:

+ no, if used as a sum operator, but as a string concatenation operator it allows to concat-
enate a string to a boolean.

% no.

++ no.

/= no.

& yes, i.e. (true & false) = true.

= yes, is an assignment operator, applicable to any type.

!! this is not a valid operator!

>>> no.

Solution 4.o)

The correct answer is: 99.
In fact, i is initially 99. Then in the boolean condition of the first if, a post-increment operator

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 4 Exercise Solutions

96
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

is used, which having lower priority than the >= operator is executed after it. This implies that i
still holds 99 when tested if it is >=100, and only after this check is incremented to 100. So, the
if condition is false, and the related code block is not executed. Then the code block of the
else clause is executed. Here the result of a ternary operator is printed. In fact, the value of i
is decreased from 100 to 99, and therefore the ternary operator returns the first value, that is
i++. Also in this case, it is a post-increment operator (with low priority), and therefore the value
of i (99) is first printed and then the variable is incremented (but the program terminates im-
mediately after).

Solution 4.p)

The correct answer is: 32 and at the next line 2, or the output is the following:

32
2

In fact, initially i is 22, and j is as the remainder of 22 (and not 23 because the post-increment
is applied after the modulo operator %) divided by 3, or 1. After that, is assigned to i the return
value of the ternary operator which checks if j!=0 (that is true). Then the value of j is returned
which is 1. The execution flow, in the switch construct enters in the case 1 where 8 << 2 is
printed, which is equivalent to 8 multiplied by 2 raised to 2, or 32. The case 2 is also executed,
since there is no break that at the end of the case 1. Then 8 >> 2 is printed which is equivalent
to 8 divided by 2 raised to 2, or 2.

Solution 4.q)

The code could be the following:

import java.util.Scanner;

public class Exercise4Q {

 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 System.out.println(
 "Type the number of days passed from the end of your last holidays");
 int days = scanner.nextInt();
 System.out.println("You typed " + days + " days!");
 int ore = days*24;
 int minutes = ore*60;
 System.out.println("So " + minutes +
 " minutes are just passed from your last holidays!");
 }
}

Chapter 4 Exercise Solutions

97
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 4.r)

The solution could be the following:

public class Exercise4R {

 private static int matrix[][] = {
 {1, 7, 3, 9, 5, 3},
 {6, 2, 3},
 {7, 5, 1, 4, 0},
 {1, 0, 2, 9, 6, 3, 7, 8, 4}
 };

 public static void main(String args[]) {

 int numberToFind = Integer.parseInt(args[0]);

 FIRST_LABEL:
 for (int i = 0; i < matrix.length; i++) {
 int[] row = matrix[i];
 for (int j = 0; j < row.length; j++) {
 if (row[j] == numberToFind) {
 System.out.println(numberToFind + " found at row = "
 + ++i + ", column = " + ++j);
 break FIRST_LABEL;
 }
 }
 }

 System.out.println("Search completed");
 }
}

We first had to convert args[0] using the static method of the Integer class parseInt() (see
Exercise 3.t) storing it in a variable numberToFind. Then we used a double nested loop to navi-
gate inside the cells of the matrix, using the indices i (for the rows) and j (for the columns).
Note the use of the label we called FIRST_LABEL, which marks the external loop. When the first
occurrence of the numberToFind is found, the instruction:

break FIRST_LABEL;

terminates the external loop, and the program continues printing the message Search completed,
and then ends.

Chapter 4 Exercise Solutions

98
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 4.s)

The code could be the following:

public class Exercise4S {

 private static int matrix[][] = {
 {1, 7, 3, 9, 5, 3},
 {6, 2, 3},
 {7, 5, 1, 4, 0},
 {1, 0, 2, 9, 6, 3, 7, 8, 4}
 };

 public static void main(String args[]) {

 int numberToFind = checkArgument(args);

 if (numberToFind == -1) {
 System.out.println("Specificy an integer number between 0 and 9");
 return;
 }

 FIRST_LABEL:
 for (int i = 0; i < matrix.length; i++) {
 int[] row = matrix[i];
 for (int j = 0; j < row.length; j++) {
 if (row[j] == numberToFind) {
 System.out.println(numberToFind + " found at row = "
 + ++i + ", column = " + ++j);
 break FIRST_LABEL;
 }
 }
 }

 System.out.println("Search completed");
 }

 private static int checkArgument(String[] args) {
 if (args.length == 1) {
 if (args[0].length() == 1) {
 for (int i = 0; i < 10; i++) {
 if (args[0].equals("" + i)) {
 return Integer.parseInt(args[0]);
 }
 }
 }
 }
 return -1;
 }
}

Chapter 4 Exercise Solutions

99
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Note that we have delegated to the checkArgument() method the correctness of the input spec-
ified by the user. This method returns the specified value, or, if it is not correct, the value -1. As
you can see from the code of the main() method, if the value returned by the checkArgument()
method is -1, a help message is printed for the user, and with the return statement, the
method ends. Note that the main() method returns void, so to exit the method we use the
return statement without specifying what to return.
Let’s now analyze the method checkArgument(). With the first if construct, we first checked
that the length of the array args is 1, or that a single argument has been specified, using the
length variable of the array (see section 3.6.5). With the second if construct, we checked that
the length of the string args[0] is exactly 1. We used the call to the length() method of the
String class (not to be confused with the variable length of the array). The following for loop
executes a loop on values ranging from 0 to 9, and checks that args[0] coincides with one of
the values. When it finds a match, the current value is returned after having converted it to an
integer by calling the static method of the Integer class parseInt() (see Exercise 3.t). If, on the
other hand, there is no correspondence in the for loop, for example because a letter or symbol
has been specified (so not an integer between 0 and 9), then the loop will end and the value -1
will be returned.

Solution 4.t)

The SimpleCalc requested class could be similar to the following:

public class SimpleCalc {

 public double sum(double d1, double d2) {
 return d1 + d2;
 }

 public double subtract(double d1, double d2) {
 return d1 - d2;
 }

 public double multiply(double d1, double d2) {
 return d1 * d2;
 }

 public double divide(double d1, double d2) {
 return d1 / d2;
 }

 public double returnRest(double d1, double d2) {
 return d1 % d2;
 }

Chapter 4 Exercise Solutions

100
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public double maximum(double d1, double d2) {
 return d1 > d2 ? d1 : d2;
 }

 public double minimum(double d1, double d2) {
 return d1 > d2 ? d2 : d1;
 }

}

While the test class could be:

public class Exercise4T {

 public static void main(String args[]) {
 SimpleCalc simpleCalc = new SimpleCalc();
 System.out.println("42.7 + 47.8 = " +
 simpleCalc.sum(42.7, 47.8));
 System.out.println("42.7 - 47.8 = " +
 simpleCalc.subtract(42.7, 47.8));
 System.out.println("42.7 x 47.8 = " +
 simpleCalc.multiply(42.7, 47.8));
 System.out.println("42.7 : 47.8 = " +
 simpleCalc.divide(42.7, 47.8));
 System.out.println("the rest of the division between 42.7 and 47.8 è " +
 simpleCalc.returnRest(42.7, 47.8));
 System.out.println("the maximum between 42.7 and 47.8 è " +
 simpleCalc.maximum(42.7, 47.8));
 System.out.println("the minimum between 42.7 and 47.8 è " +
 simpleCalc.minimum(42.7, 47.8));
 }
}

Solution 4.u)

The requested code could be the following:

import java.util.*;

public class Exercise4U {

 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 System.out.println("Type the first operand then press enter.");
 double firstOperand = Double.parseDouble(scanner.nextLine());
 System.out.println(
 "Now choose the operation to perform then press enter:");
 printOperationsTable();

Chapter 4 Exercise Solutions

101
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 String operation = scanner.nextLine();
 System.out.println("Now choose the second operand then press enter.");
 double secondOperand = Double.parseDouble(scanner.nextLine());
 double result=performOperation(firstOperand, secondOperand, operation);
 System.out.println("Result = " + result);
 }

 private static double performOperation(double firstOperand,
 double secondOperand, String operation) {
 SimpleCalc simpleCalc = new SimpleCalc();
 switch (operation) {
 case "+":
 return simpleCalc.sum(firstOperand, secondOperand);
 case "-":
 return simpleCalc.subtract(firstOperand, secondOperand);
 case "x":
 return simpleCalc.multiply(firstOperand, secondOperand);
 case "d":
 return simpleCalc.divide(firstOperand, secondOperand);
 case "r":
 return simpleCalc.returnRest(firstOperand, secondOperand);
 case "u":
 return simpleCalc.maximum(firstOperand, secondOperand);
 case "m":
 return simpleCalc.minimum(firstOperand, secondOperand);
 default:
 System.out.println("The operation specified " + operation +
 " is invalid");
 System.exit(1);
 return Double.NaN;
 }
 }

 private static void printOperationsTable() {
 System.out.println("'+' : sum");
 System.out.println("'-' : subtract");
 System.out.println("'x' : multiply");
 System.out.println("'d' : divide");
 System.out.println("'r' : return the rest of the division");
 System.out.println("'u' : maximum");
 System.out.println("'m' : minimum");
 }
}

The exercise had already outlined how to implement the interaction between the user and the
program. In the next chapter we will see, among other things, how to find design solutions to
our programs, and how important it is to do some activities before starting to code. For the rest,
the code is quite clear, and we will make just some observations on the most obscure points.

Chapter 4 Exercise Solutions

102
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Note that to perform the calculations we used the widest numeric data type: the double type.
Note also the use of the static method parseDouble() of the Double class, which converts a
string to double (see official documentation), as well as the parseInt() method of the Integer
class converts a string to an int (see Exercise 3. t).
We have not managed (it was not required) the possible incorrect use of the program by the
user, because it is too demanding for the notions we have studied so far. With the exception
handling that we will study in Chapter 9, we will find simple solutions. Unfortunately, in some
operations it loses its precision. You can check it for example by performing an operation of
remainder from the division between 2.3 and 2, which results in an inaccurate value as you can
see from this output example:

Type the first operand then press enter.
2.3
Now choose the operation to perform then press enter:
'+' : sum
'-' : subtract
'x' : multiply
'd' : divide
'r' : return the rest of the division
'u' : maximum
'm' : minimum
r
Now choose the second operand then press enter.
2
Result = 0.2999999999999998

This is due to how the double type in memory is represented, and we had also mentioned it in
section 3.3.2.1 (we should use the BigDecimal type, see official documentation), and it is a prob-
lem common to all modern programming languages that use the same method of represen-
tation in memory (IEEE-754 Standard). The System.exit() method terminates the program
instantly. It should also be noted that the program proposes to the user to choose specific letters
(see performOperation() method) that correspond to operations to be performed.

Solution 4.v)

The StrangeCalc requested class could be similar to the following:

public class StrangeCalc {

 public double sum(double... doubles) {
 double result = 0;
 for (double aDouble : doubles) {
 result += aDouble;
 }
 return result;
 }

Chapter 4 Exercise Solutions

103
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public double multiply(double... doubles) {
 double result = doubles[0];
 for (int i = 1; i < doubles.length; i++) {
 result *= doubles[i];
 }
 return result;
 }

 public double maximum(double... doubles) {
 double max = doubles[0];
 for (int i = 1; i < doubles.length; i++) {
 double aDouble = doubles[i];
 if (aDouble > max) {
 max = aDouble;
 }
 }
 return max;
 }

 public double minimum(double... doubles) {
 double min = doubles[0];
 for (int i = 1; i < doubles.length; i++) {
 double aDouble = doubles[i];
 if (aDouble < min) {
 min = aDouble;
 }
 }
 return min;
 }
}

We used varargs as parameters to make the calling of these methods easier. The sum() method
is very simple and a simple enhanced for loop is used to execute the sum. In the other three
cases, we had to first recover the first element, and then carry out the operations with the rest
of the elements of the array passed as input.
While the test class could be the following:

public class Exercise4V {

 public static void main(String args[]) {
 StrangeCalc strangeCalc = new StrangeCalc();
 System.out.println("42.7 + 47.8 = " + strangeCalc.sum(42.7, 47.8));
 System.out.println("42.7 x 47.8 x 2= " +
 strangeCalc.multiply(42.7, 47.8, 2));
 System.out.println("The maximum between 42.7, 47.8, 50, 2, 8, 89 is " +
 strangeCalc.maximum(42.7, 47.8, 50, 2, 8, 89));
 System.out.println("The minimum between 42.7, 47.8, 50, 2, 8, 89 is " +
 strangeCalc.minimum(42.7, 47.8, 50, 2, 8, 89));
 }
}

Chapter 4 Exercise Solutions

104
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 4.w)

The requested code could be the following:

import java.util.*;

public class Exercise4Z {

 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 System.out.println("Type an operand, then press enter " +
 "(add other operands repeating this operation). \nWhen you are " +
 "finished choose the operation to be performed, then press enter.");
 printOperationsTable();
 String temp;
 String operandsString = "";
 while (isNotOperation(temp = scanner.nextLine())) {
 operandsString += temp + "-";
 }
 if (isNotOperation(temp)) {
 System.out.println("Operation code error!");
 }
 String[] operandsArray = operandsString.split("-");
 double[] operands = new double[operandsArray.length];
 for (int i = 0; i < operandsArray.length; i++) {
 operands[i] = Double.parseDouble(operandsArray[i]);
 }
 double result = performOperation(operands, temp);
 System.out.println("Result = " + result);
 }

 private static boolean isNotOperation(String line) {
 if (line.equals("+") || line.equals("x") || line.equals("u") ||
 line.equals("m")) {
 return false;
 }
 return true;
 }

 private static double performOperation(double[] operands, String operation) {
 StrangeCalc strangeCalc = new StrangeCalc();
 switch (operation) {
 case "+":
 return strangeCalc.sum(operands);
 case "x":
 return strangeCalc.multiply(operands);
 case "u":
 return strangeCalc.maximum(operands);
 case "m":

Chapter 4 Exercise Solutions

105
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 return strangeCalc.minimum(operands);
 default:
 System.out.println("Operation specified " + operation +
 " invalid!");
 System.exit(1);
 return Double.NaN;
 }
 }

 private static void printOperationsTable() {
 System.out.println("'+' : sum");
 System.out.println("'x' : multiply");
 System.out.println("'u' : maximum");
 System.out.println("'m' : minimum");
 }
}

We have decided to have the user specify all the operands, and then execute the operation when
a possible operator is specified. Designing a solution to the problem was not trivial at all.
Also in this case, we have not managed (it was not required) the possible incorrect use of the
program by the user, because it is too demanding for the notions that we have studied so far.
With the exception handling that we will study in Chapter 9, we will find simple solutions.
The critical point of the code concerns the management of the input, which must be analyzed
and transformed into data types that are used to perform our operations (double). Unfortu-
nately, we are missing a very important topic that we have not yet studied: the collections
(which we will examine in more detail in chapter 18, but we will also introduce them in chapters
8 and 12). Without this topic, to store the various operands specified by the user, we had use a
string (operandsString) that contained the various operands separated by the dash symbol.
Then with the split() method (see the String class documentation), we obtained an array
of operands in the form of a string (operandsArray). Then we instantiated an array of double
named operands of the same size as operandsArray, and filled it with double-type operands
after converting them using the static parseDouble() method of the Double class.
A rather artificial solution, but it worked.
Here is an example of application execution:

Type an operand, then press enter (add other operands repeating this operation).
When you are finished choose the operation to be performed, then press enter.
'+' : sum
'x' : multiply
'u' : maximum
'm' : minimum
2
3
4
5

Chapter 4 Exercise Solutions

106
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

6
7.28
x
Result = 5241.6

Solution 4.x)

The required code could be the following:

import java.util.*;

public class HeadsOrTailsGame {

 public static void main(String args[]) {

 System.out.println("Heads or Tails?");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.nextLine();

 if ("heads".equals(input)) {
 System.out.println("Ok, tossing the coin...");
 HeadsOrTails headsOrTails = new HeadsOrTails();
 String result = headsOrTails.getHeadsOrTails();
 System.out.print("It's " + result + "...");
 System.out.println("Heads".equalsIgnoreCase(result)? "you win!" :
 "you loose!");
 } else if ("tails".equals(input)) {
 System.out.println("Ok, tossing the coin...");
 HeadsOrTails headsOrTails = new HeadsOrTails();
 String result = headsOrTails.getHeadsOrTails();
 System.out.print("It's " + result + "...");
 System.out.println("Tails".equalsIgnoreCase(result)? "you win!" :
 "you loose!");
 } else {
 System.out.println("I'm sorry, you can only write heads or tails,"
 + " try again...");
 System.out.println("Program terminated... bye!");
 }
 }
}

The algorithm implemented seems to work, unfortunately the same code is repeated several
times. For now, it’s okay because we’ve achieved our goal, but in the next chapters we’ll try to
improve the quality of our code.

Chapter 4 Exercise Solutions

107
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 4.y)

The required code could be the following:

import java.util.*;

public class HeadsOrTailsGame {
 public static void main(String args[]) {
 System.out.println("Let's play heads or tails, how many attempts you"
 + " want to do?");
 Scanner scanner = new Scanner(System.in);
 String numberOfAttemptsString = scanner.nextLine();
 int numberOfAttempts = Integer.parseInt(numberOfAttemptsString);
 int counter = 1;
 var numberOfWinningAttempts = 0;
 var numberOfLosingAttempts = 0;
 String message = "";
 System.out.println("You have chosen to do "+ numberOfAttempts
 +" attempts...let's begin!");
 while (counter <= numberOfAttempts) {
 System.out.println("Attempt number " + counter);
 System.out.println("Heads or tails?");
 String choice = scanner.nextLine();
 if ("heads".equalsIgnoreCase(choice)) {
 System.out.println("Ok, tossing a coin...");
 HeadsOrTails headsOrTails = new HeadsOrTails();
 String result = headsOrTails.getHeadsOrTails();
 counter++;
 System.out.print("It's "+ result + "...");
 if ("heads".equalsIgnoreCase(result)) {
 message = "you win!";
 numberOfWinningAttempts++;
 } else {
 message = "you lose!";
 numberOfLosingAttempts++;
 }
 } else if ("tails".equalsIgnoreCase(choice)) {
 System.out.println("Ok, tossing a coin...");
 HeadsOrTails headsOrTails = new HeadsOrTails();
 String result = headsOrTails.getHeadsOrTails();
 counter++;
 System.out.print("It's "+ result + "...");
 if ("tails".equalsIgnoreCase(result)) {
 message = "you win!";
 numberOfWinningAttempts++;
 } else {
 message = "you lose!";
 numberOfLosingAttempts++;
 }

Chapter 4 Exercise Solutions

108
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 } else {
 message = "I'm sorry, you can only write heads or tails, try"
 + " again...";
 }
 System.out.println(message);
 }
 message = "You win " + numberOfWinningAttempts + " times, and lost "
 + numberOfLosingAttempts + " times, so...";
 if (numberOfWinningAttempts > numberOfLosingAttempts) {
 message += "you win the game! Congratulations!";
 } else if (numberOfWinningAttempts < numberOfLosingAttempts) {
 message += "you lose the game! Ah ah!";
 } else {
 message += "you draw the game! Try again!";
 }
 System.out.println(message);
 }
}

The code is quite understandable, and the reader should be able to interpret it. Note that we
have used the equalsIgnoreCase() method of the String class to make comparisons without
taking uppercase and lowercase letters into account. Furthermore, we can note the manage-
ment of the counter variable, which is increased only when the launch is actually executed,
but not when the launch is not executed if the user input is not compatible with the logic of the
program.

Solution 4.z)

Let’s insert the required method (in bold) into the PhoneBook class:

public class PhoneBook {
 public Contact [] contacts;
 public PhoneBook () {
 contacts = new Contact[]{
 new Contact("Claudio De Sio Cesari", "13, Java Street",
 "131313131313"),
 new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),
 new Contact("Gennaro Capuozzo", "1, Four Days of Naples Square",
 "1111111111")};
 }

 public Contact[] searchContactsByName(String name) {
 Contact []foundContacts = new Contact[contacts.length];
 for (int i = 0, j = 0; i < foundContacts.length; i++) {
 if (contacts[i].name.toUpperCase().contains(name.toUpperCase())) {
 foundContacts[j] = contacts[i];
 j++;

Chapter 4 Exercise Solutions

109
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 }
 }
 return foundContacts;
 }
}

The algorithm is not trivial, and also uses a for loop that uses two indexes (i and j), which
are used for the two arrays involved. Note that the returned array (foundContacts) will be the
same size as the contacts array, even if its elements may not be initialized. Also note that be-
fore using the contains() method of the String class to check if a contact name contains the
name method parameter, we used the toUpperCase() method to make a non-case-sensitive
comparison.
The SearchContacts class requested, could be:

import java.util.Scanner;

public class SearchContacts {
 public static void main(String args[]) {
 System.out.println("Search Contacts");
 System.out.println();
 var phoneBook = new PhoneBook();
 System.out.println("Enter name or part of the name to be searched");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.nextLine();
 Contact[] foundContacts = phoneBook.searchContactsByName(input);
 System.out.println("Contacts found with name containing \""
 + input + "\"");
 for (Contact contact : foundContacts) {
 if (contact != null) {
 contact.printDetails();
 }
 }
 }
}

Note that the elements of the returned array are printed, only if different from null.

111
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5
Exercises

Real Development with Java

Here you will find many exercises a little different from the usual programming exercises.
Learning to program with objects is a daunting task, but once you understand how to approach,
you can get unimaginable results.

Exercise 5.a) JShell, True or False:

JShell is a program located in the bin directory of the JDK, like the java and javac tools, and
we can call it directly from the command line, because we have correctly set the PATH
variable to the bin folder to which it belongs.

JShell is an IDE.

A package cannot be declared in a JShell session.

The termination symbol “;” of a statement, can be omitted only if we write a Java
statement on a single line.

Declaring the same variable twice is possible, because JShell follows different rules than
the compiler. The last variable declared will overwrite the previous one.

If we declare a variable of type String without initializing it, it will be initialized
automatically to null.

It is not possible to declare an interface in a JShell session.

1.

2.

3.

4.

5.

6.

7.

Chapter 5 Exercises

112
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The abstract modifier is always ignored within a JShell session.

It is not possible to declare a main() method in a JShell session.

 You can declare annotations and enumerations in a JShell session.

Exercise 5.b) JShell Commands, True or False:

To end a JShell session, type the command goodbye.

All JShell commands must have the symbol \ as prefix.

The commands help and ? are equivalent.

The history command shows all the snippets and all the commands executed by the
user in the current session. Next to the snippets there is a snippet id that allows you to
recall the corresponding snippet.

The list command shows all the commands entered by the user in the current session.

The /types -all command will list all the variables declared in the current session.

The reload command will cause all instructions executed in the current session to be
executed again.

The drop command can delete a certain snippet by specifying its snippet id.

If we specify the /set start JAVASE command, we will import all the Java Standard
Edition packages into this and all other future JShell sessions.

 With the command /! we recall the last edited snippet, be it valid or invalid.

Exercise 5.c)

Consider the following lines edited within a JShell session:

jshell> public int a;
a ==> 0

jshell> private String a
a ==> null

jshell> /reset
| Resetting state.

jshell> /list

What will be the output of the final list command?

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 5 Exercises

113
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 5.d)

Considering all the instructions of the previous exercise, what will be the output of the follow-
ing command?

jshell> /history

Exercise 5.e)

If we wanted to open in a JShell session the HelloWorld.java file (created in the first chapter)
which is in the current directory, what command should we execute?

/save HelloWorld.java

/retain HelloWorld.java

/reload HelloWorld.java

/open HelloWorld.java

/start HelloWorld.java

/env HelloWorld.java

/!

Exercise 5.f)

Once the HelloWorld.java file is opened in a JShell session, how can we have the Hello World!
string printed?

Exercise 5.g)

Which command we need to execute if we want to copy the HelloWorld.java file opened in the
Exercise 5.e to the C:/myFolder folder?

/save HelloWorld.java

/retain HelloWorld.java

/save HelloWorld2.java

/save C:/myFolder/HelloWorld.java

/save -start start C:/myFolder/HelloWorld.java

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4.

5.

Chapter 5 Exercises

114
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

/env C:/myFolder/HelloWorld.java

/! C:/myFolder/HelloWorld.java

Exercise 5.h) JShell Auxiliary Tools, True or False:

In a JShell session it is possible to declare a variable without specifying a reference.

In a JShell session it is possible to declare a reference without specifying the reference
type.

In a JShell session it is possible to write a value, then with the TAB key to automatically
infer the type of the variable to JShell, and then write the name of the reference.

While declaring a reference to a type that is not imported, it is possible to have JShell
suggest a list of possible imports to use for the type, by simultaneously pressing the SHIFT
and TAB keys, release them and then press the v key.

The /edit command will open the Notepad++ program

In a JShell session the simultaneous pressing of the CTRL - SPACEBAR keys, causes the
auto-completion of the code you started writing, or in the case of more options available,
the choice between them.

In a JShell session, pressing the CTRL - E keys at the same time, causes the cursor to move
to the end of the line.

In a JShell session, pressing the ALT - D keys at the same time, causes the word to be
deleted to the right of the cursor.

The /set feedback silent command, causes JShell to avoid printing the analysis
messages on the written code.

 Writing System and pressing the TAB key twice, JShell will show us the documentation
of the System class.

Exercise 5.i)

The use of an IDE implies (choose all the answers that are believed to be correct):

Initial slowdown in learning development, because it requires the study of the same
IDE.

6.

7.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

Chapter 5 Exercises

115
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The possibility of using a debugger.

The ability to integrate with other development tools, databases or application servers.

The possibility of using an advanced editor that allows us to automate the creation of
programming constructs and use code refactoring techniques.

The inability to use packages, which must be managed from the command line.

Exercise 5.j)

Which of the following statements are correct?

From the version 10 of Java we can directly launch a source file containing a public class.

If we declare multiple classes within the same file, only one must be public in order to
compile the file.

If we declare multiple classes within the same source file, only one must be public in
order to launch the source file.

If we declare multiple classes within the same source file, only one must contain the
main() method.

If we declare multiple classes within the same source file, the first must contain the main()
method.

Exercise 5.k)

Which of the following statements are correct?

When we launch a source file, no .class file is generated.

Before a source file is executed, it is compiled by the JVM in memory.

You can launch a shebang file from the Windows command prompt.

It is possible to pass parameters to a shebang file

Exercise 5.l)

The architecture takes care of (choose all the answers you think are correct):

To define UML activity diagrams that model the functionalities of the system.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1.

2.

3.

4.

1.

Chapter 5 Exercises

116
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Improve software performance.

To optimize the use of resources by the software.

To optimize the partitioning of the software in such a way as to simplify the installation
procedure.

Exercise 5.m)

A deployment diagram (choose all the statements that you think are correct):

It is a static diagram.

Show application execution flows.

Shows how hardware nodes host software components.

Highlight the dependencies between software components.

The main element of the diagram is a node, which is represented by a rectangle with two
small rectangles emerging from the upper left corner.

Exercise 5.n)

We stated that the basic knowledge of topics such as XML and database, is essential for working
in an IT company. This is because almost all of the applications use these two technologies in
some way. If you work at a web application, what are the basic knowledge you need to have?

Exercise 5.o)

Briefly define the concepts of client, server, standalone application, mobile, web, web client,
web server and enterprise application.

Exercise 5.p)

Define the tasks of the following corporate roles:

Project manager

Business analyst

IT manager

Release manager

2.

3.

4.

1.

2.

3.

4.

5.

1.

2.

3.

4.

Chapter 5 Exercises

117
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

DBA

Graphic designer

Exercise 5.q)

Defining what is an object-oriented methodology.

Exercise 5.r)

Which of the following statements are true about UML use case diagrams?

The class symbol cannot be used in the UML use case diagram.

A use case is represented with a rectangle in UML.

The use case diagram is a static diagram, in fact it does not contain information regarding
the timeline.

The actors of the use case diagram represent the users of the system, and therefore natu-
ral persons.

A use case can be connected to multiple actors.

Exercise 5.s)

Which of the following statements are true?

A use case scenario does not contain conditions.

Scenarios can be described with an activity diagram as well as plain text.

All possible scenarios should be described for each use case.

The description of the scenarios allows us to discover any flows, before even writing the
code.

A deployment diagram shows the interaction between the user and the system.

Candidate classes are the fundamental classes that will surely be implemented in our
program.

Exercise 5.t)

Which of the following statements are true about UML sequence diagrams?

5.

6.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

Chapter 5 Exercises

118
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

An activity diagram allows us to simulate a scenario, but using objects.

The activity line of an object is represented by a dotted line.

Messages represent methods.

In the activity diagram, it is possible to represent an actor.

The names of the objects in a sequence diagram are represented with the syntax
objectName:ClassName, but one between the name of the object and the name of the
class can be omitted.

Exercise 5.u)

Problem statement: create an authentication program that asks the user for user-
name and password, and guarantees access to it (just printing a welcome message
with the name of the user) if the credentials entered are correct. The system must support au-
thentication for at least three username and password pairs.
Perform the use case analysis and identify the various use cases, following the advices of the
sections 5.5.1. and 5.5.1.1.

There are various software tools that support UML diagrams
(https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools). Each
of them has its philosophy and its complexity. You should choose one
sooner or later (perhaps after having made some comparisons), al-
though for now it is fine to use a sheet of paper, a pencil and an eraser.
Choosing a tool, understanding how it works, etc. takes some time.

Exercise 5.v)

Identify the scenarios of the use cases of the previous exercise by following the
advices of the section 5.5.1.2.

Exercise 5.w)

Let’s continue the previous exercise following the process described in section
5.5.2. Being a simple desktop application, it seems superfluous to create a deploy-
ment diagram. But if we think about how we can one day reuse a part of this application (we
are talking about an application that allows us to authenticate ourselves in a system, and that

1.

2.

3.

4.

5.

Chapter 5 Exercises

119
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

we could also integrate in the case study introduced in Chapter 5 to authenticate in the Logos
application), then it could be very useful to have another point of view, that specifies the depen-
dencies between the various software components. So, let’s try to create a component diagram
(or a deployment diagram) by creating components that have significative names, and then we
will begin to think to classes. It must be just a trivial diagram (high level deployment diagram)
that enhances the possibility that a certain part of the software can be reusable.

Exercise 5.x)

Let’s continue the previous exercise following the process described in section 5.5.3.
So, we can identify the candidate classes, and consequently the key abstraction

Exercise 5.y)

Let’s continue the previous exercise verifying the feasibility of the identified
scenarios, creating sequence diagrams based on the interactions among the
identified classes, as described in the section 5.5.4.

Exercise 5.z)

Based on the steps taken in the 5.r, 5.s, 5.t, 5.u, and 5.v exercises, implement a
working solution.

121
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5
Exercise Solutions

Real Development with Java

Solution 5.a) JShell, True or False:

True.

False.

True.

True.

True.

True, uninitialized variables are initialized to their own null values. A string, being an
object, has its own null value.

False.

False.

False, it is possible to declare a main() method, but it will not have the same role of ini-
tial method as in an ordinary Java program.

 True.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 5 Exercise Solutions

122
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 5.b)

False, we need to edit the exit command.

False, all JShell commands must be prefixed with /.

True.

False, it is true that the history command shows all the snippets and all the commands
executed by the user in the current session, but it is not true that next to the snippets
there is a snippet id.

False, the list command shows all the snippets entered by the user in this session, with
the respective snippet id next to them.

False, the /types -all command it will list all the types (classes, interfaces, enumer-
ations, annotations) declared in the current session. Rather, the / variables -all
command will list all the variables declared in the current session.

True.

True.

False, it is true that we will import all the Java Standard Edition packages in this session,
but not in future sessions (we should also have explicitly specified the -retain option).

 True.

Solution 5.c)

The output of the list command will be empty. In fact, the reset command will have reset all
the entered snippets.

Solution 5.d)

The output of the history command will be the following:

public int a;
private String a
/reset
/list
/history

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 5 Exercise Solutions

123
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 5.e)

The correct command is:

/open HelloWorld.java

Solution 5.f)

We can only invoke the main() method in the following way:

jshell> HelloWorld hw = new HelloWorld();
hw ==> HelloWorld@52a86356

jshell> hw.main(null);
Hello World!

Note that since the args array is not used within the main() method, then we could pass it
null.
Even if we haven’t studied it seriously yet, the static modifier allows us to avoid instantiating
the object hw, and to execute the command directly using the class name:

jshell> HelloWorld.main(null)
Hello World!

Solution 5.g)

The correct command is:

/save C:/myFolder/HelloWorld.java

Solution 5.h)

True, that is an implicit variable, and JShell will automatically infer the type.

True, in this case we talk about forwarding reference, and JShell will create the reference,
but it won’t make it available until we declare its type as well. At that point the reference
will be replaced and initialized to null.

False, instead, press the SHIFT and TAB keys simultaneously, release them and then press
the v key (which stands for “variable”). JShell will infer the type of the variable, declare it
and position the cursor immediately after it to allow us to define the reference.

4.

4.

1.

2.

3.

Chapter 5 Exercise Solutions

124
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

False, instead, press the SHIFT and TAB keys simultaneously, release them and then press
the i key (which stands for “input”).

False, the JShell Edit Pad program will be opened, unless first we have set as default edi-
tor Notepad++ using the command:

/set editor C:\Program Files (x86)\Notepad++\notepad++.exe

False, pressing the TAB key causes the auto-completion of the code you started writing,
or in the case of more options available, the choice between them.

True.

True.

True.

 True.

Solution 5.i)

Only the fifth answer is false. An IDE, on the other hand, exempts the programmer from com-
plex package management.

Solution 5.j)

Only the second and fifth answers are true. In particular, the first one is false because it is pos-
sible to directly launch a source file from version 11, not from version 10.

Solution 5.k)

Only the third answer is false.

Solution 5.l)

Only the first answer is false. An architect in fact dedicates himself essentially to the non-func-
tional requirements of the application.

Solution 5.m)

The following statements are incorrect:

number 2: because no execution flow is shown.

4.

5.

6.

7.

8.

9.

10.

1.

Chapter 5 Exercise Solutions

125
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

number 5: it is true that the node is the main element of the diagram, but is represented as
a three-dimensional cube. The description instead refers to the component element.

Solution 5.n)

If you work in the web area, you have basic knowledge about the HTTP protocol, HTML,
Javascript and CSS languages, libraries like Bootstrap, and frameworks like Spring, or Angular
JS and so on.

Solution 5.o)

By definition, a client is a program that requires services to another program called a server.
By definition, a server is a program that is always running, which provides services. A client and
a server usually communicate over the network, with a well-defined protocol.
Standalone applications (also called desktop applications) are run on desktops and laptops, and usu-
ally have a graphical interface.
Web applications are applications that have an architecture divided into a client part and a server
part.
A web client requests web pages, and coincides with the programs that we commonly call
browsers (Mozilla Firefox, Google Chrome and so on).
A web server is instead a server application that provides services available on the net.
Enterprise applications are an evolution of web applications, and usually provide more com-
plex services such as downloading resources, web services (i.e. communication applications
between heterogeneous systems using the HTTP protocol), services reporting, etc., and
therefore as an enterprise client can also have programs specially created to interact with the
enterprise server layer. The latter is in turn made up of various layers that use different technolo-
gies to fulfil various purposes.
A mobile application (often simply called an app) is an application that runs on mobile clients,
such as smartphones and tablets, and can even have a server counterpart.

Solution 5.p)

See section 5.4.4.

Solution 5.q)

An object-oriented methodology, in its most general definition, could be understood as a couple
consisting of a process and a modelling language.
In turn, a process could be defined as a series of indications regarding the steps to be taken to
successfully complete a project.

2.

Chapter 5 Exercise Solutions

126
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

A modelling language is instead the tool that the methodologies use to describe (possibly in a
graphic manner) all the static and dynamic characteristics of a project. The modelling language
considered de facto standard is the UML.

Solution 5.r)

The only false answers are the number 2 and the number 4. In fact, as regards the statement
number 2, the only rectangle that is part of the syntax of the use case diagram, is the system
boundary, which usually surrounds the use cases and delimits the system. As for statement
number 4, in reality the concept of actor must be interpreted as “role”. A system user could also
be another system.

Solution 5.s)

Only the last two statements are false. In particular, the definition reported in statement number
5 is about the use case diagram, not the deployment diagram. Instead, the definition reported
in statement number 6 is that of key abstractions, not candidate classes.

Solution 5.t)

Only statement 2 is incorrect, as it reports the definition of an object’s lifeline, and not an
activity line.

Solution 5.u)

There is only one use case that we have called “Login” (see Figure 5.r.1). In fact, the interactions
that the user will have with the system are limited to activities related to authentication, such
as entering the username and password. Even with different types of flows that can be authen-
ticated, the final task is solely to authenticate

Figure 5.u.1 - Use case diagram.

Chapter 5 Exercise Solutions

127
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

In our case we have found a single use case, but this does not mean
that it will always be this way, and therefore that we must avoid the
use case analysis! It is also essential for the most trivial programs

Solution 5.v)

The analysis of the scenarios is very subjective. The moment we write it, we are deciding “what”
the application must do, something far from obvious.
Let’s start from the prerequisite that we have not yet studied the graphical interfaces (to which
the last two chapters are dedicated) and therefore we have to think about creating a program
that works only from the command line.
Another prerequisite is that the system has statically preloaded some valid username and pass-
word pairs.

Main Scenario

The system asks the user to enter the username.

The user enters the username.

The system verifies that the username is valid and asks to enter the password.

The user enters the password.

The system checks that the password is valid and responds with a message confirming
authentication, using the real name of the user who authenticated.

As already said, this is only one of the possible solutions. We could
also think of specifying together username and password, validating
authentication with a captcha code, warning the user if the CAPS LOCK
key is inserted, masking the password characters with asterisks,
asking the user if he wants to memorize the username for the next
login and so on. We have chosen a simple interaction.

Scenario 2

The system asks the user to enter the username.

The user enters the username.

1.

2.

3.

4.

5.

1.

2.

Chapter 5 Exercise Solutions

128
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The system does not recognize the entered username, prints a message and returns to
step 1.

Scenario 3

The system asks the user to enter the username.

The user enters the username.

The system verifies that the username is valid, and asks to enter the password.

The user enters the password.

The system does not recognize the password entered, prints a message and returns to
step 1.

By defining these three trivial scenarios it is much clearer what we have to do.

Solution 5.w)

With the diagram of Figure 5.t.1, we highlight how we will create a software component that
contains the classes that perform the authentication, separated from the class that contains the
main() method. The only tool we currently know to separate classes is packages, so we will use
different packages.

Figure 5.w.1 - Architecture of the application represented by a high level deployment diagram.

3.

1.

2.

3.

4.

5.

6.

Chapter 5 Exercise Solutions

129
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

By consulting Appendix E, you can also learn how to create the JAR
file containing the classes of the authentication component. In this
way it will be easier to reuse it later as it is a single file. The Exercise
E.a, relative to that appendix, requires the creation of the JAR file
with the classes of this exercise.

Solution 5.x)

Following the process described in section 5.5.3, in order to find the list of key abstraction, we
must first draw up the list of candidate classes. Below is our list with related comments.

Authentication: it could be a class to which give the responsibility to manage the main
functionality of the application.

Login: it looks more like the name of the main application method. It could be a method
within Authentication or an object declared in Authentication.

User: it could be the entity that contains the information for authentication.

System: too generic, does not seem to be the right name for a class.

Username: could be a property of the User class.

Password: it could be a property of the User class.

Name: could be a property of the User class.

Verification: it could be an Authentication method, or an object declared in
Authentication.

Insertion: could define a method, but it does not seem a key abstraction.

 Message: for now, it seems only a string, certainly not a key abstraction. This does not
exclude that it could become a class later.

 Substitution: it could define a method, but it does not seem a key abstraction.

So, the list of key abstractions, for now, is limited to the only two classes in the list in bold:
Authentication and User. To these we add a LauncherAuthentication class which contains
only the main() method and which has the sole responsibility of starting the application by
instantiating the correct objects and recalling the methods appropriately.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Chapter 5 Exercise Solutions

130
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Remember that the choice of these classes, like the previous steps,
depend on experience, intentions, time available, predisposition,
concreteness and the mindset of the person performing the analysis.
There are thousands of solutions that can lead to development suc-
cess, each of which has its pros and cons. The advice is to orientate
(especially in the early days) on the simplest possible solution.

Solution 5.y)

Following the process described in section 5.5.4, we now need to give the superficial definition
of key abstraction, with interaction diagrams (see appendix G), i.e. collaboration or sequence
diagrams.
These two diagrams are equivalent, so that many UML tools allow you to transform a col-
laboration diagram into a sequence diagram and vice versa pressing a button. In particular, a
sequence diagram shows the interactions between the objects in a given period of time, em-
phasizing the sequence of messages that the entities exchange. A collaboration diagram, on the
other hand, as the sequence diagram shows the interactions between objects in a given period
of time, but emphasizes the structural organization of the interacting entities.
Since in this case it seems more interesting to emphasize the sequence of messages exchanged
between objects, we will use a sequence diagram to describe the scenarios described in the so-
lution of Exercise 5.s, using the objects described in Exercise 5.u. Since these latter objects are
only key abstractions, at this time we can also decide whether we need to create new classes,
add, modify or move methods, rename existing classes and so on. The diagram, with its “vision
from the top”, favors the identification of any incorrect situations, which can be improved or
failed.
In Figure 5.y.1 we have only found a flow consistent with that described in the main scenario,
using only the key abstraction identified in the previous exercise. The situation seen in this way
seems to work.
The application user runs the application using the LauncherAuthentication class. This calls
a method called login() on the Authentication class. From this point on, this method will
perform operations. First it calls the requestUsername() method that requests the username
from the user by printing a message, and waits for user input.
The application user runs the application using the LauncherAuthentication class. This calls
a method called login() on the Authentication class. From this point on, this method will
perform operations. First it calls the requestUsername() method that requests the username
from the user by printing a message, and waits for user input.

Chapter 5 Exercise Solutions

131
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure 5.y.1 - Sequence diagram representing the main scenario.

This method is internal, i.e. defined in the same class. This can be un-
derstood from the fact that the arrow that defines it, starts and ends
in the same class. In UML the call of a method is indicated by of an
“arrow” (which as a UML element is called a message) starting from
a certain object. The “arrow” points to the object where the method
called resides. So, an arrow that returns on the same object indicates
the call to an internal method.

Then once the user enters the username, the Authentication class will call an internal method
called verifyUsername(). This method will retrieve the user object from the user collection
that has been defined to represent the list of users (which we will implement through arrays).

This part was not represented in the diagram, to avoid make it too
complex to read. We could have added a known element to specify
our intentions, it would have been more correct, but we avoided since
we have had to explain the diagram with these few lines.

Chapter 5 Exercise Solutions

132
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure 5.y.2 - Sequence diagram representing the second scenario.

Figure 5.y.3 - Sequence diagram representing the third scenario.

So, even if the User object does not appear on the diagram, it is somehow involved. This is be-
cause in our mind, a user should define the username, password and name variables, and then

Chapter 5 Exercise Solutions

133
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

to check if there is a certain username, but also to see if a password is associated with a certain
username, a User object must be used.
The rest of the code is very simple to interpret. The internal method requestPassword() is
called, which asks the user for the password by printing a message, and waits for user input.
Then once the user enters the password, the Authentication class will call an internal method
called verifyPassword() (and even in this case the verification will be done using a User ob-
ject). Finally, the message “Welcome” is printed, specifying the name of the user who is authen-
ticated (which is taken from the User object used to validate the authentication).
We can see that for how we designed the diagram in Figure 5.y.2, and in the related scenario, the
username will be requested until a valid username is entered. The same goes for the password
as it is possible to observe in Figure 5.y.3, which shows a sequence diagram related to the third
scenario identified.

Solution 5.z)

The code that came out from our analysis is not exactly what we expected:

package com.claudiodesio.authentication;

import java.util.*;

public class Authentication {

 private static final User[] users = {
 new User("Daniele", "dansap", "music"),
 new User("Giovanni", "giobat", "science"),
 new User("Ligeia", "ligder", "arte")
 };

 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 while (true) {
 System.out.println("Insert username.");
 String username = scanner.nextLine();
 User user = verififyUsername(username);
 if (user == null) {
 System.out.println("User not found!");
 continue;
 }
 System.out.println("Insert password");
 String password = scanner.nextLine();
 if (password != null && password.equals(user.password)) {
 System.out.println("Welcome " + user.name);
 break;
 } else {

Chapter 5 Exercise Solutions

134
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println("Authentication failed");
 }
 }
 }

 private static User verifyUsername(String username) {
 if (username != null) {
 for (User user : users) {
 if (username.equals(user.username)) {
 return user;
 }
 }
 }
 return null;
 }
}

When we wrote the code, we found some difficulties. The first was to implement the algorithm
described in the scenarios: we had to introduce an infinite loop and the break and continue
commands, not really the solution we expected.
We have also taken another decision in contrast to our analysis: delete the LauncherAuthentication
class which should have contained only the main() method. This was because it seemed a forced
decision and lacked any use.
Another doubt arose when we had to verify the correctness of the username and password, as
we had not decided in the design phase if the verification had to take into account capital or
small letters.
We could not even create a verifyPassword() method complementary to the verifyUsername(),
since if we had created a separate method we could not have used the break clause to exit the
infinite loop. In short, compared to the analysis we did, there were problems that we solved
directly with the code. But where did these problems come from? Why didn’t our process work
the way we guessed?
The answer is that essentially, we lack fundamental concepts that we have yet to study. There-
fore, this exercise will continue in the exercises of the next chapter to make it clearer and more
efficient. In particular, we have missed two basic steps: assigning responsibilities to the classes
we create, and creating a class diagram that helps us better distribute responsibilities between
classes. Each object must have a single responsibility, or several responsibilities closely related
to each other. Responsibilities will be implemented either as methods or as variables, and de-
fine roles that can be assigned to objects.
In any case the program we wrote works correctly. Although our analysis was not perfect, he
gave us some important indications. For example, the analysis of the scenarios was funda-
mental to understand what we had to do. And the interaction diagrams have also directed us

Chapter 5 Exercise Solutions

135
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

towards the implementation solution (then partially disregarded).

After the experience with these exercises, if you were not able to solve
the exercises 4.m, 4.q, 4.r, 4.s, 4.t, 4.u, 4.ve 4.z of the previous chapter,
you could try to redesign them from scratch and try to find a solution
by yourself, maybe different from the one proposed.

137
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6
Exercises

Encapsulation and Scope

It’s time to slowly discover the right object-oriented mentality.

After each exercise, we recommend at least to consult the solution.

Exercise 6.a) Object Orientation Theory, True or False:

The Object Orientation has been created only a few years ago.

Java is a non-pure object-oriented language, SmallTalk is a pure object-oriented lan-
guage.

All object-oriented languages support object-oriented paradigms in the same way. It can
be said that a language is object-oriented if it supports encapsulation, inheritance and
polymorphism; in fact, other paradigms such as abstraction and reuse also belong to
functional philosophy.

Applying abstraction means focusing only on the important characteristics of the entity
to be abstracted.

The reality that surrounds us is a source of inspiration for the object-oriented
philosophy.

1.

2.

3.

4.

5.

Chapter 6 Exercises

138
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Encapsulation helps us interact with objects; abstraction helps us interact with classes.

Reuse is favored by the implementation of other object-oriented paradigms.

Inheritance allows the programmer to manage multiple classes collectively.

Encapsulation divides objects into two separate parts: the public interface and the inter-
nal implementation.

 To use the object, it is enough to know the internal implementation, it is not necessary
to know the public interface.

Exercise 6.b) Encapsulate and complete the following classes:

public class Driver {
 private String name;

 public Driver(String name) {
 // set the name
 }
}

public class Car {
 private String stable;
 private Driver driver;

 public Car(String stable, Driver driver) {
 // set the stable and the driver
 }

 public String getDetails() {
 // return a descriptive string of the object
 }
}

Keep in mind that the Car and Driver classes must then be used by the following classes:

public class RaceTest {
 public static void main(String args[]) {
 Race monteCarlo = new Race("Montecarlo GP");
 monteCarlo.runRace();
 String result = monteCarlo.getResult();
 System.out.println(result);
 }
}

public class Race {
 private String name;

6.

7.

8.

9.

10.

Chapter 6 Exercises

139
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private String result;
 private Car grid [];

 public Race(String name) {
 setName(name);
 setResult("Race not finished");
 createStartingGrid();
 }

 public void createStartingGrid() {
 Driver one = new Driver("Joey");
 Driver two = new Driver("Dee Dee");
 Driver three = new Driver("Johnny");
 Driver four = new Driver("Tommy");
 Car carNumberOne = new Car("Ferrari", one);
 Car carNumberTwo = new Car("Renault", two);
 Car carNumberThree = new Car("BMW", three);
 Car carNumberFour = new Car("Mercedes", four);
 grid = new Car[4];
 grid[0] = carNumberOne;
 grid[1] = carNumberTwo;
 grid[2] = carNumberThree;
 grid[3] = carNumberFour;
 }

 public void runRace() {
 int winnerNumber = (int)(Math.random()*4);
 Car winner = grid[winnerNumber];
 String result = winner.getDetails();
 setResult(result);
 }

 public void setResult(String winner) {
 this.result = "Winner of " + this.getName() + ": " + winner;
 }

 public String getResult() {
 return result;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
}

Chapter 6 Exercises

140
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise analysis
The RaceTest class contains the main() method and therefore defines the application execu-
tion flow. It is very readable: we can instantiate a race object and call it “Montecarlo GP”, run
the race, request the result and print it.
The Race class, on the other hand, contains few simple methods and three instance variables:
name (the name of the race), result (a string containing the name of the winner of the race if it
was run) and grid (an array of Car objects that participate to the race).
The constructor takes as input a string with the name of the race that is appropriately set.
Furthermore, the value of the result string is set to “Run not completed”. Finally the method
createStartingGrid() is called.
The createStartingGrid() method instantiates four Driver objects by assigning them names.
It then instantiates four Car objects by assigning them the names of the stables and their driv-
ers. Finally instantiate and initialize the grid array with the newly created cars. A race, after be-
ing instantiated, is ready to run.
The runRace() method contains code that needs to be analyzed more carefully. In the first
line, in fact, the method random() of the class Math is called (it belongs to the java.lang pack-
age that is imported automatically). The Math class abstracts the concept of mathematics and
will be described later in this book. It contains methods that abstract mathematical functions,
such as the square root or the logarithm. Among these methods we use the random() method
which returns a randomly generated double type number, between 0 and 0.9999999... (i.e. the
double number immediately smaller than 1). In the exercise we multiplied this number by 4,
obtaining a random double number between 0 and 3.999999999... This is then converted to in-
teger, so all decimal digits are truncated. We therefore obtained that the variable winnerNumber
stores at runtime a randomly generated number, between 0 and 3, or the possible indexes of
the grid array.
The runRace() method then generates a random number between 0 and 3. It uses it to iden-
tify the Car object of the grid array that wins the race, and then set the result using the
getDetails() method of the Car object (which the reader will write).
All other methods of the class are accessor and mutator methods.

Exercise 6.c) Access Modifiers, static, and Packages, True or False:

A class declared as private cannot be used outside the package in which it is declared.

The following class declaration is incorrect:

public static class Class {...}

1.

2.

Chapter 6 Exercises

141
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The following class declaration is incorrect:

protected class Classe {...}

The following method declaration is incorrect:

public void static metodo () {...}

A static method can only use static variables and, to be used, it is not necessary to
instantiate an object from the class in which it is defined.

If a method is declared static, it cannot be called outside of its package.

A static class is not accessible outside the package in which it is declared.

A protected method is inherited in every subclass whatever its package.

A static variable is shared by all instances of the class to which it belongs.

 If we don’t prefix modifiers to a method, the method is only accessible within the same
package.

Exercise 6.d) Object Orientation in Java (Practice), True or False:

A static method must be also public.

Encapsulation implementation involves the use of the set and get keywords.

To use the encapsulated variables of a superclass in a subclass you must declare them at
least protected.

Declared private methods are not inherited in subclasses.

An instance initializer is invoked before constructors.

A private variable is directly available (technically as if it were public) using the dot op-
erator, to all instances of the class in which it is declared.

The keyword this allows you to reference the members of an object that will be created
only at runtime within the object itself.

The keyword this is always optional.

 The keyword this allows you to call a constructor, from a method of the same class with
this() syntax. However, this must be the first instruction of the method.

 The singleton pattern allows you to create a class that can be instantiated only once.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 6 Exercises

142
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 6.e)

Abstract the concept of Coin with a class (complete with comments). We assume that all the
coins will have the EURO as the currency, and will have the encapsulated value variable. Does
it make sense to create a coin without specifying its value? Create a constraint so that coins must
be instantiated with a value.

It is convenient to print a sentence in every important method to
be able to verify the successful execution of our code. For example,
when a currency is instantiated. This advice also applies to the next
exercises.

Exercise 6.f)

Considering the Coin class created in the previous exercise, is it correct to create the value
variable encapsulated with the methods setValue() and getValue()? Change the class in such
a way as to best abstract the class.

Exercise 6.g)

Create a CoinsTest class with a main() method that instantiates a 20 cents coin and a 1 cent
coin and executes the application. Is there anything wrong with what is printed? If so, change
the code so that the prints are without grammatical errors.

Exercise 6.h)

In the CoinsTest class you can also instantiate a 1 Euro coin. Probably there will be another
bug when printing, fix it. Also add a getDescription() method in the Coin class, that returns a
descriptive string of the current coin.

Exercise 6.i)

Create a class (complete with comments) Purse that abstracts the concept of purse.
This must be able to contain a maximum of 10 coins (the Coin class should already
have been created in the previous exercise). For now, only create a constructor that allows you
to set the coins to be contained.

Chapter 6 Exercises

143
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Also in this case, it is advisable to print the description of the actions
being invoked.

Exercise 6.j)

In the CoinsTest class, you can also instantiate a Purse object with 8 coins and another one
with 11 coins, check that everything works correctly. Update the class comments if necessary.

Exercise 6.k)

Create an add() method within the class that allows you to add a coin to the purse. Provide the
appropriate consistency checks.

Exercise 6.l)

Create a state() method that prints the current contents of the purse.

Exercise 6.m)

Create a withdraw() method in the class that allows you to get (and then remove) a coin from
the purse. Provide the appropriate consistency checks.

Exercise 6.n)

Modify the CoinsTest class so as to test the created classes as completely as possible.

Exercise 6.o)

Encapsulate the User class of the 5.z exercise, and modify the Authentication class accord-
ingly to keep everything working.

Exercise 6.p)

Draw a class diagram containing the two User and Authentication classes modified in the pre-
vious exercise that show their variables and their methods. See Appendix G containing a ref-
erence schema for UML syntax. In particular for static members (which must be underlined),
and the aggregation notation that exists between the Authentication container class and the
User contained class. Also use multiplicity notation. Also include the two classes in package
notation.

Chapter 6 Exercises

144
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 6.q)

We have already noted at the end of Exercise 5.z, that the implemented code solu-
tion did not satisfy us. In fact, during our analysis we had identified an execution
flow based on different classes and methods, as shown in the sequence diagrams of the solu-
tions of the 5.v exercise, which we report for convenience.

Figure 6.q.1 - (Equals to Figure 5.v.1) Sequence diagram that represents the main scenario.

Figure 6.q.2 - (Equals to Figure 5.v.2) Sequence diagram that represents the second scenario.

Chapter 6 Exercises

145
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure 6.q.3 - (Equals to Figure 5.v.3) Sequence diagram that represents the third scenario.

Create a class diagram that correctly represents the classes needed to make the described
scenarios work with the sequence diagrams, supporting themselves with the syntax reference
of the Appendix G. Furthermore, transform the Authentication class into a singleton, as
described in section 6.9.6.
It is also possible to define new methods or variables if appropriate. If you can’t define the
details of the class (for example return types, names or types of parameters and so on, simply
don’t define them).

Obviously, the User class must remain encapsulated.

Exercise 6.r)

Once we implement the solution of the previous exercise, we should have an
Authentication class with different methods and responsibilities. It has a single
public method that manages the flow (login()) and several private methods, some verify the
correctness of the data entered by the user (using the instance variable users) and others print
messages to the user.
An object that is called Authentication is rightly responsible for:

Manage the application execution flow.1.

Chapter 6 Exercises

146
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Check the correctness of the data entered by the user.

Contain the list of users.

Print messages.

Responsibilities identify the abstraction of the class, and this class is certainly too charged with
responsibilities. Let’s then evolve our class diagram: we try to abstract the Authentication
class, in the most correct way and find other abstractions (classes) that can implement more
specific responsibilities. Let’s start by finding a class that contains the data we want to work with.
What do we call it? What variables and methods should it contain? Since we have to think in
an object-oriented way, let’s try to make it as reusable as possible, but also consistent with the
context in which we are defining it.

Exercise 6.s)

Continuing the previous exercise, modify the class diagram by identifying a class that has the
responsibility to print the messages on the screen.

Exercise 6.t)

Continuing the previous exercise, is the Authentication class now abstract correctly? Confirm
or modify the diagram again.

Exercise 6.u)

Based on the conclusion of the previous exercise, implement the code solution closest to the
planned solution. Compared to the solution we had reached in exercise 5.z, we should have
the same functionality, but a simpler code with which to interact, better abstract, and more
reusable.

Exercise 6.v)

Given the following class:

public class BluRay {
 int maxGBSize = 25
 byte[] content;

 BluRay() {
 }

 void setContent(byte[] bytes) {

2.

3.

4.

Chapter 6 Exercises

147
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 this.content = content;
 }

 byte[] getContent() {
 return content
 }
}

add the most appropriate modifiers for each member.

Exercise 6.w)

Which of the following static import declarations are valid:

import static java.lang.*;

import static java.lang.Math;

import static java.lang.Math.*;

import static java.lang.Math.PI;

import static java.lang.Math.random();

import static java.lang.Math.random;

Exercise 6.x)

What is the output of the following program?

public class InitTest {

 {
 System.out.println("Initializer");
 }

 static {
 System.out.println("Static Initializer");
 }

 public InitTest () {
 System.out.println("Constructor");
 }

 public void method() {
 System.out.println("Method");
 }

1.

2.

3.

4.

5.

6.

Chapter 6 Exercises

148
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void staticMethod() {
 System.out.println("Static Method");
 new InitTest().method();
 }

 public static void main(String args[]) {
 InitTest.staticMethod();
 }
}

Exercise 6.y)

Create an encapsulated Book class, so that it abstracts the concept of a book that can be sold in
a bookstore. Among the fields defined by the Book class, there must be the genre field (under-
stood as a literary genre). Let’s make it possible for a book to be associated with only a literary
genre included between a set of predefined literary genres, for example the set consisting of the
genres: novel, thriller, essay, manual. Create a class that tests that Book objects work correctly.

Exercise 6.z)

Taking into account the previous exercise, create also the Bookcase class (under-
stood as a bookcase inside a bookstore). Each bookcase must be dedicated to a
certain literary genre included in the list of genres chosen in the previous exercise, and there-
fore must contain only books of the same genre. In the Bookcase class there must be a method
called addBook(Book book), which allows you to add a book with the correct genre to the book-
case. Also create the Bookstore class. A bookstore must contain only one bookcase for each
genre, and therefore it is necessary to prevent that two bookcases with the same genre can be
added. In addition, the Bookstore class must implement the Singleton pattern. Finally create
a BookstoreTest class, which creates an object of type Bookstore adding to it objects of type
Bookcase to which have been added objects of type Book. Verify that two bookcases with the
same genre cannot be added to the bookstore.

Exercise 6.aa) Static import, True or False:

Static imports allow you not to reference imported static members. After statically importing a
variable, it is not possible to use an object reference to refer to it within the code.
The following import is incorrect because java.lang is always implicitly imported:

import static java.lang.System.out;

It is not possible to import nested and/or anonymous classes statically. In some cases, static

Chapter 6 Exercises

149
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

imports may worsen the readability of our files.
Considering the following enumeration:

package mypackage;
public enum MyEnum {
 A,B,C
}

the following code is valid:

import static mypackage.MyEnum.*;
public class MyClass {
 public MyClass(){
 out.println(A);
 }
}

If we use static imports, we could also import two static members with the same name. Their
use within the code would lead to errors in compilation, if we do not use references.
Shadowing is a phenomenon that could occur if static imports are used.
Essentially the usefulness of static imports lies in the possibility of writing less code that is
probably superfluous.
It makes no sense to statically import a variable if it is then used only once within the code.
It is not recommended to use static imports to import enumeration elements.

151
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6
Exercise Solutions

Encapsulation and Scope

Solution 6.a) Object Orientation Theory, True or False:

False, has existed since the 1960s.

True.

False, each language provides support for the various paradigms in different ways.

True.

True.

True.

True.

True.

True.

 False, you need to know the public interface and not the internal implementation.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 6 Exercise Solutions

152
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 6.b)

The code could be similar to the following:

public class Driver {
 private String name;

 public Driver(String name) {
 setName(name);
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
}

public class Car {
 private String stable;
 private Driver driver;

 public Car(String stable, Driver driver) {
 setStable(stable);
 setDriver(driver);
 }

 public void setStable(String stable) {
 this.stable = stable;
 }

 public String getStable() {
 return stable;
 }

 public void setDriver(Driver driver) {
 this.driver = driver;
 }

 public Driver getDriver() {
 return driver;
 }

 public String getDetails() {
 return getDriver().getName() + " on " + getStable();
 }
 }
}

Chapter 6 Exercise Solutions

153
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 6.c) Modifiers and package, True or False:

False, private cannot be used with a class declaration.

True, static cannot be used with a class declaration.

True, protected it is not applicable to classes.

True, static must be positioned before the void keyword.

True.

False, static it is not an access modifier.

False, static it is not applicable to classes.

True.

True.

 True.

Solution 6.d) Object Orientation in Java (Practice), True or False:

False.

False, these are not keywords but just a convention.

False, they can be private and be used via the accessor and mutator methods.

True.

True.

True.

True.

False, if there is ambiguity between names of instance and local variables, the keyword
this is fundamental.

False, only another constructor of the same class can use that syntax.

 True.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 6 Exercise Solutions

154
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 6.e)

The code could be similar to the following:

/**
 * This class abstract the concept of Coin.
 *
 * @author Claudio De Sio Cesari
 */
public class Coin {

 /**
 * The currency is a constant set to EURO.
 */
 public final static String CURRENCY = "EURO";

 /**
 * Represents the coin value in cents.
 */
 private int value;

 /**
 * Constructor that takes as input the coin value.
 *
 * @param value ithe coin value.
 */
 public Coin(int value) {
 this.value = value;
 System.out.println("Created a coin from " + value + " cents ");
 }

 /**
 * Set the value instance variable.
 *
 * @param value contains the value at which the value
 * of the instance variable value has to be set.
 */
 public void setValue(int value) {
 this.value = value;
 }

 /**
 * Retrieves the value instance variable.
 *
 * @return
 * the value instance variable
 */
 public int getValue() {
 return value;
 }
}

Chapter 6 Exercise Solutions

155
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

A constructor is sufficient to specify the required constraint. Furthermore, the currency being
fixed for all the coins, has been declared as a static constant.

Solution 6.f)

In the current situation, where the specifications required only to create a class that has to al-
ways be instantiated with a value, the question could be ambiguous. However, having no other
explicit constraints, it is reasonable to think of having the constraints that exist in the real
world. A currency that has a specified value (let’s say 5 cents) can never change its value. So, the
setValue() method seems superfluous at least. So, it would be correct to remove it. It is also
advisable to declare the variable final to reinforce the concept of immutability. Below the
modified code:

/**
 * This class abstract the concept of Coin.
 *
 * @author Claudio De Sio Cesari
 */
public class Coin {

 /**
 * The currency is a constant set to EURO.
 */
 public final static String CURRENCY ="EURO";

 /**
 * Represents the coin value in cents.
 */
 private final int value;

 /**
 * Constructor that takes as input the coin value.
 *
 * @param value ithe coin value.
 */
 public Coin(int value) {
 this.value = value;
 System.out.println("Created a "+ value +" cents coin");
 }

 /**
 * Retrieves the value instance variable.
 *
 * @return
 * the value instance variable
 */

Chapter 6 Exercise Solutions

156
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public int getValue() {
 return value;
 }
}

The code is more compact, but perhaps, at least for the first times, it is better to use the vari-
ables to better memorize the definitions.

Solution 6.g)

The code of the CoinsTest class could be the following:

public class CoinsTest {
 public static void main(String args[]) {
 Coin twentyCentsCoin = new Coin(20);
 Coin oneCentCoin = new Coin(1);
 }
}

By running this application the output will be:

Created a 20 cents of EURO coin
Created a 1 cents of EURO coin

But it would be more correct that in the second line the word “cents” was “cent”.
To solve this problem, we could modify the Coin class in the following way (we report only the
constructor responsible for printing and a utility method):

 public Coin(int value) {
 this.value = value;
 System.out.println("Created a "+ formatMeasurementUnit(value) +
 CURRENCY + " coin ");
 }

 private static String formatMeasurementUnit(int value) {
 return value + (value == 1 ? " cent of " : " cents of ");
 }

We have delegated to a new private utility method the formatting of a piece of the sentence to
be printed, using a simple ternary operator (see section 4.3.5), and we have fixed our bug. Now
re-running the CoinsTest class we will get the following output:

Created a 20 cents of EURO coin
Created a 1 cent of EURO coin

Chapter 6 Exercise Solutions

157
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 6.h)

The CoinsTest class code should only be enriched with such an instruction:

Coin oneEuroCoin = new Coin(100);

The execution of this application will produce the following output:

Created a coin of 20 cents of EURO
Created a coin of 1 cent of EURO
Created a coin of 100 cents of EURO

But it would be more correct that in the third line “100 cents of EURO” was “1 EURO”.
To solve this problem, we could modify the Coin class in the following way (we report only how
to change the utility method):

 private static String formatDescriptiveString(int value) {
 String formattedString =" cents of ";
 if (value == 1) {
 formattedString =" cent of ";
 } else if (value > 99) {
 formattedString =" ";
 value /= 100;
 }
 return value + formattedString;
 }

We have modified the private utility method introduced in the previous exercise. It was not
possible to use the ternary operator, so we used an if construct, and we fixed our bug. Now re-
running the CoinsTest class we will get the following output:

Created a coin of 20 cents of EURO
Created a coin of 1 cent of EURO
Created a coin of 1 EURO

The getDescription() method could therefore be coded in this way:

 /**
 * Retrieves the current coin description.
 *
 * @return
 * the current coin description.
 */
 public String getDescription() {
 String description ="coin of "+ formatDescriptiveString(value)
 + CURRENCY;
 return description;
 }

Chapter 6 Exercise Solutions

158
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

And therefore, also the constructor could reuse this method in the following way:

 public Coin(int value) {
 this.value = value;
 System.out.println("Created a "+ getDescription());
 }

Solution 6.i)

The listing of the Purse class could be the following:

/**
 * Abstracts the concept of purse that can contain a limited number of coins.
 *
 * @author Claudio De Sio Cesari
 */
public class Purse {

 /**
 * An array that can contain a limited number of coins.
 */
 private final Coin[] coins = new Coin[10];

 /**
 * Create a Purse object containing coins whose values are
 * specified by the values varargs .
 *
 * @param values
 * a varargs of coin values .
 */
 public Purse(int... values){
 int numberOfCoins = values.length;
 for (int i = 0; i < numberOfCoins; i++) {
 if (i >= 10) {
 System.out.println(
 "Only the first 10 coins were inserted!");
 break;
 }
 coins[i] = new Coin(values[i]);
 }
 }
}

Note that we have used an array of 10 Coin objects (declared final), which will act as a container
for our coins. Also, we used a varargs values, to set the contents of the Purse. This will be handy
when we actually create coin purses.
If more than ten values are passed to the constructor, this will only set the first ten and print a
warning message.

Chapter 6 Exercise Solutions

159
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 6.j)

The modified CoinsTest class code should look something like this:

/**
 * Test classe for the Coin and Purse classes.
 *
 * @author Claudio De Sio Cesari
 */
public class CoinsTest {
 public static void main(String args[]) {
 Coin twentyCentsCoin = new Coin(20);
 Coin oneCentCoin = new Coin(1);
 Coin oneEuroCoin = new Coin(100);
 // Creation of a Purse with 8 coins
 Purse purse = new Purse(2, 5, 100, 10, 50, 10, 100,
 200);
 // Creation of a Purse with 11 coins
 Purse purseToFail = new Purse(2, 5, 100, 10,
 50, 10, 100, 200, 10, 5, 2);
 }
}

The output should be the following:

Created a coin of 20 cents of EURO
Created a coin of 1 cent of EURO
Created a coin of 1 EURO
Created a coin of 2 cents of EURO
Created a coin of 5 cents of EURO
Created a coin of 1 EURO
Created a coin of 10 cents of EURO
Created a coin of 50 cents of EURO
Created a coin of 10 cents of EURO
Created a coin of 1 EURO
Created a coin of 2 EURO
Created a coin of 2 cents of EURO
Created a coin of 5 cents of EURO
Created a coin of 1 EURO
Created a coin of 10 cents of EURO
Created a coin of 50 cents of EURO
Created a coin of 10 cents of EURO
Created a coin of 1 EURO
Created a coin of 2 EURO
Created a coin of 10 cents of EURO
Created a coin of 5 cents of EURO
Only the first 10 coins were inserted!

Chapter 6 Exercise Solutions

160
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 6.k)

The proposed code also creates as a solution a private utility method that returns the first index
of the free array to contain the new currency:

 /**
 * Adds a coin to the purse. If this is full the coin will not
 * be added and a significant error will be printed.
 *
 * @param coin
 * the coin to add.
 */
 public void add(Coin coin) {
 System.out.println("Let's try adding one " + coin.getDescription());
 int freeIndex = firstFreeIndex();
 if (freeIndex == -1) {
 System.out.println("Purse full! The coin " +
 coin.getDescription() + " has not been added!");
 } else {
 coins[freeIndex] = coin;
 System.out.println(coin.getDescription() + " has been added");
 }
 }

 /**
 * Retrieves the first free index in the coin array or -1 if the
 * coin purse is full.
 *
 * @return
 * the first free index in the coin array or -1 if the
 * coin purse is full.
 */
 private int firstFreeIndex() {
 int index = -1;
 for (int i = 0; i < 10; i++) {
 if (coins[i] == null) {
 index = i;
 break;
 }
 }
 return index;
 }

Solution 6.l)

The code for the state() method could be the following:

 /**
 * Print the contents of the purse.
 */

Chapter 6 Exercise Solutions

161
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void state() {
 System.out.println("The purse contains:");
 for (Coin coin : coins) {
 if (coin == null) {
 break;
 }
 System.out.println("One " + coin.getDescription());
 }
 }

Solution 6.m)

The listing for the method withdraw() could be the following (also in this case we have created
a private utility method):

 /**
 * Performs a withdrawal of the specified coin from the current coin purse.
 * In case the specified currency is not present, a significant error
 * will be printed and null will be returned.
 *
 * @param coin
 * the coin to take.
 * @return
 * the coin found, or null if not found.
 */
 public Coin withdraw(Coin coin) {
 System.out.println("Let's try to get a " +
 coin.getDescription());
 Coin foundCoin = null;
 int foundCoinIndex = foundCoinIndex(coin);
 if (foundCoinIndex == -1) {
 System.out.println("Coin not found!");
 } else {
 foundCoin = coin;
 coins[foundCoinIndex] = null;
 System.out.println("One " + coin.getDescription() + " withdrawn");
 }
 return foundCoin;
 }

 private int foundCoinIndex(Coin coin) {
 int foundCoinIndex = -1;
 for (int i = 0; i < 10; i++) {
 if (coins[i] == null) {
 continue;
 }
 int coinInPurseValue = coins[i].getValue();
 int valore = coin.getValue();

Chapter 6 Exercise Solutions

162
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 if (valore == coinInPurseValue) {
 foundCoinIndex = i;
 break;
 }
 }
 return foundCoinIndex;
 }

Solution 6.n)

As a solution we propose a code that tries to test also the error situations:

/**
 * Test classe for the Coin and Purse classes.
 *
 * @author Claudio De Sio Cesari
*/
public class CoinsTest {
 public static void main(String args[]) {
 Coin twentyCentsCoin = new Coin(20);
 Coin oneCentCoin = new Coin(1);
 Coin oneEuroCoin = new Coin(100);
 // Creation of a Purse with 11 coins
 Purse purseToFail = new Purse(2, 5, 100, 10,
 50, 10, 100, 200, 10, 5, 2);
 // Creation of a Purse with 8 coins
 Purse purse = new Purse(2, 5, 100, 10, 50, 10, 100,
 200);
 purse.state();
 // we add a 20 cents coin
 purse.add(twentyCentsCoin);
 // we add a 1 cents coin
 purse.add(oneCentCoin);
 // We add the eleventh coin (we should get an error and the
 // coin will not be added)
 purse.add(oneEuroCoin);
 // We evaluate the status of the purse
 purse.state();
 // we withdraw 20 cents
 purse.withdraw(twentyCentsCoin);
 //Let's add the tenth coin again
 purse.add(oneEuroCoin);
 // We evaluate the status of the purse
 purse.state();
 // We withdraw a non-existent currency (we should get an error)
 purse.withdraw(new Coin(7));
 }
}

Chapter 6 Exercise Solutions

163
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The output should be the following:

Created a coin of 20 cents of EURO
Created a coin of 1 cent of EURO
Created a coin of 1 EURO
Created a coin of 2 cents of EURO
Created a coin of 5 cents of EURO
Created a coin of 1 EURO
Created a coin of 10 cents of EURO
Created a coin of 50 cents of EURO
Created a coin of 10 cents of EURO
Created a coin of 1 EURO
Created a coin of 2 EURO
Created a coin of 10 cents of EURO
Created a coin of 5 cents of EURO
Only the first 10 coins were included!
Created a coin of 2 cents of EURO
Created a coin of 5 cents of EURO
Created a coin of 1 EURO
Created a coin of 10 cents of EURO
Created a coin of 50 cents of EURO
Created a coin of 10 cents of EURO
Created a coin of 1 EURO
Created a coin of 2 EURO
The purse contains:
One coin of 2 cents of EURO
One coin of 5 cents of EURO
One coin of 1 EURO
One coin of 10 cents of EURO
One coin of 50 cents of EURO
One coin of 10 cents of EURO
One coin of 1 EURO
One coin of 2 EURO
Let's try adding one coin of 20 cents of EURO
coin of 20 cents of EURO has been added
Let's try adding one coin of 1 cent of EURO
coin of 1 cent of EURO has been added
Let's try adding one coin of 1 EURO
Purse full! The coin coin of 1 EURO has not been added!
The purse contains:
One coin of 2 cents of EURO
One coin of 5 cents of EURO
One coin of 1 EURO
One coin of 10 cents of EURO
One coin of 50 cents of EURO
One coin of 10 cents of EURO
One coin of 1 EURO
One coin of 2 EURO
One coin of 20 cents of EURO
One coin of 1 cent of EURO
Let's try to get a coin of 20 cents of EURO
One coin of 20 cents of EURO withdraw
Let's try adding one coin of 1 EURO
coin of 1 EURO has been added
The purse contains:

Chapter 6 Exercise Solutions

164
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

One coin of 2 cents of EURO
One coin of 5 cents of EURO
One coin of 1 EURO
One coin of 10 cents of EURO
One coin of 50 cents of EURO
One coin of 10 cents of EURO
One coin of 1 EURO
One coin of 2 EURO
One coin of 1 EURO
One coin of 1 cent of EURO
Created a coin of 7 cents of EURO
Let's try to get a coin of 7 cents of EURO
Coin not found!

Solution 6.o)

The encapsulated User code is as follows:

package com.claudiodesio.authentication;

public class User {
 private String name;
 private String username;
 private String password;

 public User(String name, String username, String password) {
 this.name = name;
 this.username =username;
 this.password =password;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String getUsername() {
 return username;
 }

Chapter 6 Exercise Solutions

165
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void setUsername(String username) {
 this.username = username;
 }
}

while Authentication changes little: it is only necessary to replace direct access to User public
variables, with the corresponding calls to accessor methods:

package com.claudiodesio.authentication;
import java.util.Scanner;

public class Authentication {

 private static final User[] users = {
 new User("Daniele", "dansap", "music"),
 new User("Giovanni", "giobat", "science"),
 new User("Ligeia", "ligder", "art")
 };

 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 while (true) {
 System.out.println("Type username.");
 String username = scanner.nextLine();
 User user = verifyUsername(username);
 if (user == null) {
 System.out.println("User not found!");
 continue;
 }
 System.out.println("Type password");
 String password = scanner.nextLine();
 if (password != null && password.equals(user.getPassword())) {
 System.out.println("Hello " + user.getName());
 break;
 } else {
 System.out.println("Authentication failed");
 }
 }
 }

 private static User verifyUsername(String username) {
 if (username != null) {
 for (User user : users) {
 if (username.equals(user.getUsername())) {
 return user;
 }
 }
 }
 return null;
 }
}

Chapter 6 Exercise Solutions

166
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 6.p)

Figure 6.p.1 shows the required class diagram. Notice how the members of the Authentication
class are marked static with an underline. Furthermore, the aggregation (which indicates the
containment relation), is addressed by the object contained to the containing object, and is dis-
tinguished syntactically from a simple association (relation of use) by drawing a white diamond
on the side of the contained object. The asterisk * symbol next to the object contained instead,
describes the multiplicity of the contained object. Finally, note that on the side of the contain-
ing object there are no multiplicity symbols, this means that it is as if the multiplicity of default
were present, i.e. 1. In fact, an Authentication object contains multiple User objects.

Figure 6.p.1 - Class diagram of the com.claudiodesio.autentication package.

Chapter 6 Exercise Solutions

167
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure 6.q.1 - Class diagram of the com.claudiodesio package. Authentication modified as required.

Chapter 6 Exercise Solutions

168
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 6.q)

Figure 6.q.1 shows the required class diagram. Note that to transform the class
into a singleton, we have defined a private constructor, a static variable of type of
Authentication, and a getInstance() method that has the responsibility to always return the
same instance of Authentication, or instance variable, which is appropriately instantiated
only once.
Since the class is now a singleton and will be instantiated, we have made sure that its methods
and its variables are no longer static. We have written all the methods that have been de-
scribed in the sequence diagrams and we have added the return types and the arguments in
our opinion more correct. Actually, we will find out if these are really correct when we deal with
the implementation, this is only our idea for now, and also a superficial idea (think of the code
solution we implemented in the exercise 5.z, where the result was really different from what we
expected).
In particular we have intended the requestUsername() and requestPassword() methods as
printing methods. In fact, they do not take input parameters or even declare return types. The
verifyUsername() and verificationPassword() methods should instead return a boolean
(true if the check is successful and false if it fails). We have also added the methods welcome(),
authenticationFailed(), and usernameNotFound() intended as printing methods, even if
they have not been reported in the sequence diagrams (the names are self-explanatory). All
these methods are private methods, while the only public method is the login() method,
which manages the flow of calls to private methods.
In our mind the Authentication class must work like this (for now!).

Solution 6.r)

As you can see in Figure 6.r.1, we have created a new class called UserProfiles,
which acts as a database and contains information about users (the user array). We
have decided that an instance of this class will replace the users array that previously resided
within the Authentication class, in order not to lose the Authentication class information
about users. Now the classes are better abstracted, as each has a specific role. We realized that
the singleton design pattern makes more sense than it is implemented in the UserProfiles
class, compared to in Authentication. In fact, it is the data that must be unique for all classes,
not the authentication process. So, we acted accordingly.

Chapter 6 Exercise Solutions

169
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure 6.r.1 - Class diagram of the com.claudiodesio package. Authentication with UserProfiles.

Figure 6.s.1 - Class diagram of the com.claudiodesio package. Authentication with Print.

Chapter 6 Exercise Solutions

170
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Solution 6.s)

We have created a simple utility class called Print, containing all methods that send messages
to the user of the application. We made them all static, because it seems superfluous to instanti-
ate a class that contains only printing methods without defining instance variables.

The latter is a choice like any other, not necessarily the best one. De-
claring static methods implies ignoring the advantages of extensibil-
ity that we will see in the next chapters, but our choice is not to be
condemned.

Solution 6.t)

Is the class correctly abstracted? It depends on your point of view! The Authentication class
is responsible for defining the login flow and verifying the correctness of the data. How it is, it
seems fine. However, one could also think of delegating the verification of the correctness of
the data to another class of utility that we could call Verifier. This class could contain the two
methods of verification declared static, or it could contain a constructor to which we pass
the instance of User that we want to verify. They are all valid choices, each of which has conse-
quences. Not creating the Verifier class would imply having a bigger Authentication class,
but creating it would imply an extra class (among other things strictly dependent on the User
class). For now, we opt to leave things as they are. We will decide later when we have a clearer
picture.

Solution 6.u)

As we have said, the User class remains unchanged:

package com.claudiodesio.authentication;

public class User {
 private String name;
 private String username;
 private String password;

 public User(String name, String username, String password) {
 this.name = name;
 this.username =username;
 this.password =password;
 }

Chapter 6 Exercise Solutions

171
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }
}

The UserProfiles class has been faithfully implemented with respect to how it was designed:

package com.claudiodesio.authentication;

public class UserProfiles {

 private static UserProfiles instance;

 private User[] users;

 private UserProfiles() {
 users = createUsers();
 }

 public static UserProfiles getInstance() {
 if (instance == null) {
 instance = new UserProfiles();
 }
 return instance;
 }

 private User[] createUsers() {
 User[] users = {
 new User("Daniele", "dansap", "music"),

Chapter 6 Exercise Solutions

172
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 new User("Giovanni", "giobat", "science"),
 new User("Ligeia", "ligder", "art")
 };
 return users;
 }

 public void setUsers(User[] users) {
 this.setUsers(users);
 }

 public User[] getUsers() {
 return users;
 }
}

Even the Print class is faithful to how it was designed, except for the introduction of an extra
private method: printMessage(), which centralizes the printing instruction. This can be useful
in the future if we want to change the way we print a message, because we will have to do it only
in that method and not in all the others:

package com.claudiodesio.authentication;

public class Print {

 public static void requestUsername() {
 printMessage("Type username.");
 }

 public static void requestPassword() {
 printMessage("Type password.");
 }

 public static void sayHello(String nome) {
 printMessage("Hello " + nome);
 }

 public static void usernameNotFound() {
 printMessage("User not found!");
 }

 public static void authenticationFailed() {
 printMessage("Authentication failed");
 }

 private static void printMessage(String message) {
 System.out.println(message);
 }
}

Chapter 6 Exercise Solutions

173
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The Authentication class instead, has been changed:

package com.claudiodesio.authentication;

import java.util.Scanner;

public class Authentication {

 public void login() {
 boolean authorized = false;
 Scanner scanner = new Scanner(System.in);
 do {
 Print.requestUsername();
 String username = scanner.nextLine();
 User user = findUser(username);
 if (user != null) {
 Print.requestPassword();
 String password = scanner.nextLine();
 if (verifyPassword(user, password)) {
 Print.sayHello(user.getName());
 authorized = true;
 } else {
 Print.authenticationFailed();
 }
 } else {
 Print.usernameNotFound();
 }
 } while (!authorized);
 }

 private User findUser(String username) {
 User[] users = UserProfiles.getInstance().getUsers();
 if (username != null) {
 for (User user : users) {
 if (username.equals(user.getUsername())) {
 return user;
 }
 }
 }
 return null;
 }

// private boolean verifyUsername(String username) {
// User[] users = UserProfiles.getInstance().getUsers();
// boolean found = false;
// User user = findUser(username);
// if (user != null && username.equals(user.getUsername())) {
// found = true;
// }
// return found;
// }

Chapter 6 Exercise Solutions

174
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private boolean verifyPassword(User user, String password) {
 boolean found = false;
 if (password != null) {
 if (password.equals(user.getPassword())) {
 found = true;
 }
 }
 return found;
 }

 public static void main(String args[]) {
 Authentication authentication = new Authentication();
 authentication.login();
 }
}

In particular, the verifyUsername() method, which returns a boolean as we had planned, has
been commented out and replaced with the findUser() method, which directly returns the
User object corresponding to the username specified as a argument. If no user is found, the
method returns null. This substitution allows us not to duplicate code (either to find a user
with findUser()). In fact, to verify the username with verifyUsername(), we would have done
the same loop, and the code of the two methods would have been almost identical.
The main() method was introduced only as a method to test the login functionality. It could
be placed in any class, such as AuthenticationLauncher, which we initially identified in our
analysis among the solutions of the exercises of the fifth chapter.
The login() method now contains the so-called “business logic”, which is the code that satis-
fies the requirements thanks to an appropriate algorithm. With respect to the solution of the
5.z exercise, note the elimination of the break and continue constructs, replaced by the more
convenient do-while loop, supported by the authorized boolean variable, which is set to true
only when the verification procedures of the username and password are both verified. The
algorithm is clearer and more linear, also thanks to the support of the Print class and the
Scanner object, which are used several times to print output messages, and collect input from
the application user. However, in our opinion, improvements to the algorithm and abstrac-
tion of the class can still be made. In fact, we had to improvise our solution, because the one
designed with the class diagram did not prove to be worthy of being implemented. What has
been missed?
The scenarios were not redesigned with interaction diagrams, after the new classes and the new
methods have been identified. In these interaction diagrams, we could also specify details like
parameter types, object names and return types. In fact, the first sequence diagrams we created
in the 5.v exercise were based only on key abstraction, and were used to verify what to do (they
were analysis diagrams). The diagrams that we could have created after the changes made to the

Chapter 6 Exercise Solutions

175
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

class diagram instead, should have been considered design diagrams that explained how to do it.
For now, a step forward thanks to the class diagram we did it, later we will try to make others.

Solution 6.v)

This should be the solution:

public class BluRay {
 public final static int maxGBSize = 25;
 private byte[] content;

 public BluRay() {
 }

 public void setContent(byte[] bytes) {
 this.content = content;
 }

 public byte[] getContent() {
 return content;
 }
}

Solution 6.w)

The correct statements are 3, 4 and 6.

Solution 6.x)

The program output is:

Static Initializer
Static Method
Initializer
Constructor
Method

Solution 6.y)

The required Book class could be the following:

public class Book {
 private String isbn;
 private String title;
 private String author;
 private int price;

Chapter 6 Exercise Solutions

176
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private String genre;
 public static final String [] genres = {"Romance", "Essay", "Thriller",
 "Handbook"};

 public Book(String isbn, String title, String author, int price,
 String genre) {
 setIsbn(isbn);
 setTitle(title);
 setAuthor(author);
 setPrice(price);
 setGenre(genre);
 }

 public String getIsbn() {
 return isbn;
 }

 public void setIsbn(String title) {
 this.isbn = isbn;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getAuthor() {
 return author;
 }

 public void setAuthor(String author) {
 this.author = author;
 }
 public int getPrice() {
 return price;
 }

 public void setPrice(int price) {
 this.price = price;
 }

 public String getGenre() {
 return genre;
 }

 public void setGenre(String genre) {

Chapter 6 Exercise Solutions

177
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 for (String validGenre : genres) {
 if (validGenre.equals(genre)) {
 this.genre = genre;
 return;
 }
 }
 System.out.println("Genre " + genre +
 " not valid! Please, use one of the following genres:");
 for (String validGenre : genres) {
 System.out.println(validGenre);
 }
 }
}

Note that we have created an array of strings called genres as a static constant to define the de-
fault valid genres. We used the valid genres to test the validity of the call from the setGenere()
method. Note that the use of the return command used within the method, causes its imme-
diate termination. The return command is not followed by any value or variable because the
method has void return type.

Note that the check defined within the setGenere() method allows to
avoid the setting of the genre field in case the method parameter is
not valid, but the Book type object is however created with the genre
variable set to null. In Chapter 9 we will see how to handle this type
of situation by launching an exception, thus avoiding instantiating a
Book object with a null genre field.

With the following class we tested the Book class:

public class BookTest {
 public static void main(String[] args) {
 Book jfaVol1 = new Book("979-12-200-4915-3", "Java for Aliens Vol. 1",
 "Claudio De Sio Cesari", 25, "Handbook");
 Book jfaVol2 = new Book("979-12-200-4916-0", "Java for Aliens Vol. 2",
 "Claudio De Sio Cesari", 25, "Biography");
 System.out.println("JFA Vol 1 Genre = " + jfaVol1.getGenre());
 System.out.println("JFA Vol 2 Genre = " + jfaVol2.getGenre());
 }
}

The output of the previous class follows:

Genre Biography not valid! Please, use one of the following genres:
Romance

Chapter 6 Exercise Solutions

178
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Essay
Thriller
Handbook
JFA Vol 1 Genre = Handbook
JFA Vol 2 Genre = null

Solution 6.z)

Before defining the Bookcase class, we found it necessary to redefine the Book class in the fol-
lowing way:

public class Book {
 private String isbn;
 private String title;
 private String author;
 private int price;
 private String genre;

 public Book(String isbn, String title, String author, int price,
 String genre) {
 setIsbn(isbn);
 setTitle(title);
 setAuthor(author);
 setPrice(price);
 setGenre(genre);
 }

 public String getIsbn() {
 return isbn;
 }

 public void setIsbn(String title) {
 this.isbn = isbn;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getAuthor() {
 return author;
 }

Chapter 6 Exercise Solutions

179
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void setAuthor(String author) {
 this.author = author;
 }
 public int getPrice() {
 return price;
 }

 public void setPrice(int price) {
 this.price = price;
 }

 public String getGenre() {
 return genre;
 }

 public void setGenre(String genre) {
 if (GenreUtils.isValidGenre(genre)) {
 this.genre = genre;
 } else {
 GenreUtils.printError(genre);
 }
 }
}

We can see that we have simplified the implementation, eliminating the genres array, given
that since we will have to use the concept of genre also for the Bookcase class, we preferred to
create a utility class that we have called GenreUtils, whose static methods we also used for sim-
plify the implementation of the setGenere() method checks. The following is the GenreUtils
class:

public class GenreUtils {
 public static final String ROMANCE = "Romance";
 public static final String ESSAY = "Essay";
 public static final String THRILLER = "Thriller";
 public static final String HANDBOOK = "Handbook";
 public static final String SCIFI = "Scifi";
 public static final String[] genres = { ROMANCE, ESSAY, THRILLER, HANDBOOK,
 SCIFI };

 public static boolean isValidGenre(String genre) {
 boolean validGenre = false;
 for (String fixedGenre : genres) {
 if (fixedGenre.equals(genre)) {
 validGenre = true;
 }
 }
 return validGenre;
 }

Chapter 6 Exercise Solutions

180
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void printError(String genre) {
 System.out.println("Genre " + genre +
 " not valid! use one of the followinggenres:");
 for (String fixedGenre : genres) {
 System.out.println(fixedGenre);
 }
 }
}

In the GenreUtils class we have reported the genres in the form of static and public constants,
which if used instead of strings, make it possible to prevent typing errors from becoming bugs.
We took the opportunity to add a new genre: SCIFI. In addition, for convenience we have also
used them to fill the genre array, so as to use loops to iterate the elements of the array. Finally,
we have declared two static and public methods. The isValidGenre() method returns true
only if the genre is valid. The printError() method prints an error message. Both of these
methods were used in the setGenere() method of the Book class.
So, we have defined the Bookcase class it in the following way:

public class Bookcase {
 private Book[] books;
 private String genre;

 public Bookcase(String genre) {
 books = new Book[100];
 setGenre(genre);
 }

 public void addBook(Book book) {
 if (genre == null) {
 System.out.println("The genre of this bookcase is still not set"
 +" and books cannot be added!");
 GenreUtils.printError(null);
 return;
 }
 for (int i = 0; i < books.length; i++) {
 if (books[i] == null) {
 books[i] = book;
 return;
 }
 }
 System.out.println("The bookcase is full!");
 }

 public void setBooks(Book[] books) {

 }

Chapter 6 Exercise Solutions

181
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public Book[] getBooks() {
 return books;
 }

 public void setGenre(String genre) {
 if (GenreUtils.isValidGenre(genre)) {
 this.genre = genre;
 } else {
 GenreUtils.printError(genre);
 }
 }

 public String getGenre() {
 return genre;
 }
}

Note that the setGenre() method is practically the same method defined for the Book class,
as it can take advantage of GenreUtils methods. The method addBook() instead, first of all
checks if the current bookstore object has the genre variable initialized. If not, it prints an error
message and does not perform the rest of the method. Otherwise look for the first free position
in the genre array, if it doesn't find it, then print an error message to warn that there is no posi-
tion available on the bookcase for other books.
Finally, the singleton class Bookstore could be the following

public class Bookstore {
 private static Bookstore instance;
 private String name;
 private Bookcase[] bookcases;

 public Bookstore() {
 bookcases = new Bookcase[GenreUtils.genres.length];
 }

 public static Bookstore getInstance() {
 if (instance == null) {
 instance = new Bookstore();
 }
 return instance;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void addBookcase(Bookcase bookcase) {

Chapter 6 Exercise Solutions

182
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 if (bookcases[bookcases.length-1] != null) {
 System.out.println("This bookstore already has all the bookcases!");
 return;
 }

 for (int i = 0; i < bookcases.length; i++) {
 if (bookcases[i] == null) {
 bookcases[i] = bookcase;
 break;
 } else if (bookcases[i].getGenre().equals(bookcase.getGenre())) {
 System.out.println("The "+ bookcase.getGenre()
 +" bookcase already exists!");
 break;
 }
 }
 }

 public Bookcase[] getBookcases() {
 return bookcases;
 }
}

We can see that within this class we have always used the length variable of the arrays involved,
so the code will not change in the case the number of genres will change.
The addBookcase() method instead, implements an algorithm that first checks if all the book-
cases have already been set. Then within a loop that iterates the bookcases, it looks for the
first free position in the array. For each bookcase already within the array, the method checks
whether it has a genre coinciding with that of the bookcase that was passed as a parameter (if
so, prints an error message and ends the method with a return command) .
We can test everything with the following class:

public class BookstoreTest {
 public static void main(String[] args) {
 Book jfaVol1 = new Book("979-12-200-4915-3", "Java for Aliens Vol. 1",
 "Claudio De Sio Cesari", 25, GenreUtils.HANDBOOK);
 Book jfaVol2 = new Book("979-12-200-4916-0", "Java for Aliens Vol. 2",
 "Claudio De Sio Cesari", 25, GenreUtils.HANDBOOK);
 Book f451 = new Book("978-88-046-6529-8", "Fahrenheit 451",
 "Ray Bradbury", 10, GenreUtils.SCIFI);
 Book shining = new Book("978-88-452-9530-0", "Shining", "Stephen King",
 12, GenreUtils.THRILLER);
 Book tkr = new Book("978-88-683-6730-5", " The Kite Runner ",
 "Khaled Hosseini", 11, GenreUtils.ROMANCE);
 Book ttoe = new Book("978-88-170-7976-1", "The Theory of Everything",
 "Stephen Hawking", 10, GenreUtils.ESSAY);
 Bookcase handbookBookcase = new Bookcase(GenreUtils.HANDBOOK);
 Bookcase scifiBookcase = new Bookcase(GenreUtils.SCIFI);
 Bookcase scifiBookcase2 = new Bookcase(GenreUtils.SCIFI);

Chapter 6 Exercise Solutions

183
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Bookcase thrillerBookcase = new Bookcase(GenreUtils.THRILLER);
 Bookcase romanceBookcase = new Bookcase(GenreUtils.ROMANCE);
 Bookcase essaysBookcase = new Bookcase(GenreUtils.ESSAY);
 Bookcase essaysBookcase2 = new Bookcase(GenreUtils.ESSAY);
 handbookBookcase.addBook(jfaVol1);
 handbookBookcase.addBook(jfaVol2);
 scifiBookcase.addBook(f451);
 thrillerBookcase.addBook(shining);
 romanceBookcase.addBook(tkr);
 essaysBookcase.addBook(ttoe);
 Bookstore bookstore = Bookstore.getInstance();
 bookstore.setName("Bookstore for aliens");
 bookstore.addBookcase(handbookBookcase);
 bookstore.addBookcase(scifiBookcase);
 bookstore.addBookcase(scifiBookcase2);
 bookstore.addBookcase(thrillerBookcase);
 bookstore.addBookcase(romanceBookcase);
 bookstore.addBookcase(essaysBookcase);
 bookstore.addBookcase(essaysBookcase2);
 Bookcase[] bookcases = bookstore.getBookcases();
 System.out.println("Bookstore list of bookcases:");
 for (Bookcase bookcase : bookcases) {
 System.out.println("Bookcase " + bookcase.getGenre() + ":");
 Book[] books = bookcase.getBooks();
 for (Book book : books) {
 if (book != null) {
 System.out.println("\t" + book.getTitle() + " by " +
 book.getAuthor() + " (Genre " + book.getGenre() + ")");
 }
 }
 }
 }
}

whose output will be:

The Scifi bookcase already exists!
This bookstore already has all the bookcases!
Bookstore list of bookcases:
Bookcase Handbook:
	 Java for Aliens Vol. 1 by Claudio De Sio Cesari (Genre Handbook)
	 Java for Aliens Vol. 2 by Claudio De Sio Cesari (Genre Handbook)
Bookcase Scifi:
	 Fahrenheit 451 by Ray Bradbury (Genre Scifi)
Bookcase Thriller:
	 Shining by Stephen King (Genre Thriller)
Bookcase Romance:
	 The Kite Runner by Khaled Hosseini (Genre Romance)
Bookcase Essay:
	 The Theory of Everything by Stephen Hawking (Genre Essay)

Chapter 6 Exercise Solutions

184
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 6.aa) Static import, True o False:

True.

False.

False.

True.

False, out is not statically imported.

True.

True.

True.

True.

 False.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

185
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7
Exercises

Inheritance and Interfaces

For this chapter we will avoid having the reader write too much code. Instead, it is very impor-
tant to focus rather on definitions. If you do not know all the concepts of the theory well, you
will end up writing incoherent code from the point of view of the philosophy of objects

After each exercise look at the solution, because each one could be
preparatory to the next.

Exercise 7.a) Object Orientation in Java (Theory), True or False:

The implementation of inheritance always involves writing a few less lines.

The following class declaration is incorrect:

 public final class Class extends OtherClass {...}

Inheritance is only useful if specialization is used. In fact, specializing we inherit in the
subclass (or subclasses) members of the superclass that we must not rewrite. Instead with
the generalization we create an extra class, and then we write more code.

The super keyword allows you to call superclass methods and constructors. The keyword
this allows you to call methods and constructors of the same class.

1.

2.

3.

4.

Chapter 7 Exercises

186
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Multiple inheritance does not exist in Java because it does not exist in reality.

A functional interface is an interface that declares a single default method.

A subclass is “bigger” than a superclass (in the sense that it usually adds new features and
functionality compared to the superclass).

Suppose we develop an application to manage a soccer tournament. There is inheritance
derived from specialization between the Team and Player classes.

Suppose we develop an application to manage a soccer tournament. There can be inheri-
tance derived from generalization between the Team and Player classes.

 In general, if we had two classes, Father and Son, there would be no inheritance between
these two classes

Exercise 7.b)

Given the following class:

public class Person {
 private String name;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
}

Add comments on the following Employee class to highlight where object-oriented paradigms
are used: encapsulation, inheritance and reuse

public class Employee extends Person {
 private int id;

 public void setData(String name, int id) {
 setName(name);
 setId(id);
 }

 public void setId(int id) {
 this.id = id;
 }

5.

6.

7.

8.

9.

10.

Chapter 7 Exercises

187
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public int getId() {
 return id;
 }

 public String getData() {
 return getName() +", id: "+ getId();
 }
}

Exercise 7.c) Abstract Classes and Interfaces, True or False:

The following class declaration is incorrect:

 public abstract final class Class {...}

The following class declaration is incorrect:

 public abstract class Class;

The following interface declaration is incorrect:

 public final interface Class {...}

An abstract class necessarily contains abstract methods.

An interface can be extended by another interface.

A class can extend a single class but implement multiple interfaces.

The advantage of abstract classes and interfaces is that they force subclasses to imple-
ment inherited abstract methods. Therefore, they represent an excellent tool for
object-oriented design.

An interface can declare more than one constructor.

An interface cannot declare variables but static and public constants.

 An abstract class can implement an interface

Exercise 7.d)

Describe all inheritance relationships between the following classes:

Teacher

Student

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

Chapter 7 Exercises

188
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Person

Desk

Course

Classroom

Lesson

Exercise 7.e)

If we wanted to create the hierarchy defined in the previous exercise, between Student, Person
and Teacher, which could be an abstract class?

Exercise 7.f)

Create the interface (with comments) Musical declaring a method named play(). How would
you declare this method: static, default or abstract?

Exercise 7.g)

Create two subinterfaces (with comments) of Musical: MusicalInstrument and Ringtone.
How would you declare the method play() in the two subinterfaces: static, default or
abstract?

Exercise 7.h)

Suppose we create a Smartphone class that implements both interfaces from the previous ex-
ercise. What’s wrong?

Exercise 7.i) Interfaces after Java 8, True or False:

Static methods cannot be inherited.

The following interface statement is incorrect:

 public static interface Interface;

The following interface statement is incorrect:

 public interface Interface {}

The abstract methods of an interface are not inherited by another interface.

3.

4.

5.

6.

7.

1.

2.

3.

4.

Chapter 7 Exercises

189
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The abstract methods of an interface cannot be implemented by another interface.

Static methods of an interface cannot be implemented by another interface.

An A interface defines a default method m(). Interface B extends interface A and redefines
the m() method with a default implementation. An abstract class C implements interface
A but redefining the method m(). A concrete (non-abstract) class D extends the class C
and implements interface B, without redefining the method m(). Class D inherits the m()
method defined in class C.

An E interface defines an abstract method m(). The F interface extends the E interface and
redefines the m() method with a default implementation. An abstract class G implements
the interface E but does not redefine the method m(). A concrete (non-abstract) class H
extends the abstract class G and implements the interface F, without redefining the meth-
od m(). Class H cannot be compiled correctly.

An interface can extend multiple interfaces.

 An interface can extend an abstract class and an interface.

Exercise 7.j)

Resuming the solution of the Exercise 6.z, let’s suppose we want to make our bookstore sell also
music albums. So, let’s abstract the Album class, bearing in mind that even for music albums
there is an identification number called ISMN (although there are other ways to identify an
album as using the European EAN standard), as well as for books there is the ISBN identifica-
tion number. Then check if there is an inheritance relationship between the Book class and the
Album class. If it exists, implement a solution.

For now, do not implement the checks that the setGenre() method of
the Book class executes so that the genre specified as a parameter be-
longed to a predefined set of literary genres (see Exercise 6.z), since
this will be fixed in the next exercise.

Exercise 7.k)

Starting from the solutions of the previous exercise and of the Exercise 6.z, re-
name the GenreUtils class as LiteraryGenreUtils and create the equivalent
MusicalGenreUtils for the Genre class. Check if there is an inheritance relationship between

5.

6.

7.

8.

9.

10.

Chapter 7 Exercises

190
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

the two classes, and if it exists, implement it. Also, the Album class must have a genre value
belonging to a predefined set of musical genres (see setGenere() method of the Book class).
Finally create an ItemsTest class, equivalent to the BookTest class of the Exercise 6.y, which
tests the objects instantiated by the Book and Album classes.

Exercise 7.l)

Keeping in mind all the code insertions that the compiler implicitly executes, rewrite the
following class, adding all the instructions that the compiler would add:

public class CompilerItsYourTurn extends Object {

 private int var;

 public void setVar(int v) {
 var = v;
 }

 public int getVar() {
 return var;
 }
}

Exercise 7.m)

Considering the following classes:

public class Person {
 private String name;

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return this.name;
 }
}

public class Employee extends Person {
 private int id;

 public void setId(int id) {
 this.id = id; //encapsulation
 }

Chapter 7 Exercises

191
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public int getId() {
 return this.id; //encapsulation
 }

 public String getData() {
 return getName() +", id: "+ getId();
 }
}

What will be the output of the compilation process (choose only one option)?

No output (correct compilation).

Error in the getData() of Employee method.

Error in the getName() of Person method.

Error in the getId() of Employee method.

Exercise 7.n)

If we add the following method to the Employee class described in the Exercise 7.m:

public void setData(String name, int id) {
 setName(name);
 setId(id);
}

What will be the output of the compilation process (choose only one option)?

No output (correct compilation).

Error in the getData() of Employee method.

Error in the setName() of Person method.

Error in the setId() of Employee method

Exercise 7.o)

Which of these statements is true (they could all be true)?

Inheritance allows you to link multiple classes together.

Inheritance allows you to link more interfaces to one another.

Inheritance allows you to link multiple classes and interfaces.

Inheritance makes it possible to link several classes and interfaces

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

Chapter 7 Exercises

192
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 7.p)

Given the following code:

class Animal {}

interface Feline {}

class Lion {}

If we wanted to link the previous types with inheritance, which of the following snippets is valid
from the compiler’s point of view (they could all be valid)?

class Animal extends Feline {}

interface Feline extends Animal {}

class Lion extends Feline {}

class Lion extends Animal implements Feline {}

class Animal extends Lion implements Feline {}

Exercise 7.q)

Given that an interface can declare in addition to abstract methods, also public and private static
methods, public and private implemented (default) methods, and given that with interfaces we
can implement multiple inheritance, why should we prefer an abstract class to an interface?

Exercise 7.r)

Given the following types:

 interface Flying {}

 class Plane implements Flying {}

which of the following snippets are correct?

Plane a = new Plane();

Flying v = new Flying();

plane1.equals(plane2); (where plane1 and plane2 are objects of type Plane)

Flying.plane = new Plane();

1.

2.

3.

1.

2.

3.

4.

5.

E

E

1.

2.

3.

4.

Chapter 7 Exercises

193
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 7.s)

Which modifiers are implicitly added to all the methods declared in an interface (it is possible
to choose more than one answer)?

public

protected

private

static

default

abstract

final

Exercise 7.t)

Given the following hierarchy:

interface A {
 void method();
}

interface B extends A {}

abstract class C implements B {}

public final class D extends C {
 public void method(){}
}

Which of the following statements are false (it is possible to choose more than one statement):

Class C cannot be declared abstract because it implements an interface, so this code does
not compile.

Interface B cannot extend another interface.

Class C implementing B also inherits the abstract method method of A.

Class D does not compile because it cannot be declared final.

Class D does not compile because it is declared public.

Class D does not compile because its method is declared public.

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4.

5.

6.

Chapter 7 Exercises

194
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 7.u)

Which of the following statements are true (it is possible to choose more than one statement):

Static methods declared in an interface are not inherited in subinterfaces.

It is not possible to declare an abstract and final class because the two modifiers are
not compatible with each other.

An abstract class must necessarily declare abstract methods.

Interfaces can also declare constructors.

Abstract classes can declare static methods.

Exercise 7.v)

Suppose we want to define an Athlete type. Suppose each athlete defines the
methods run() and doTraining(). Suppose we also want to define more specific
subclasses like SoccerPlayer, Runner and TennisPlayer. How would you define Athlete, as an
interface or abstract class? Would you add other types?

Exercise 7.w)

Which of the following statements regarding the protected modifier are correct:

A protected class can only be instantiated within the same package in which it is defined,
and in all of its subclasses even if defined in different packages.

If a class has a declared protected constructor, it can only be instantiated by the classes
belonging to the same package.

A protected method is inherited from a subclass regardless of the package in which it is
defined.

A protected variable can be used by all the classes that belong to the same package as the
class that defines this variable.

A protected variable is inherited from a subclass regardless of the package in which it is
defined.

A protected constructor is inherited from a subclass regardless of the package in which
it is defined.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

Chapter 7 Exercises

195
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

A subclass defined in a package different from the one to which its superclass belongs, can
instantiate the latter and then use its protected members.

Exercise 7.x)

Starting from the solution of the Exercise 4.z:

Encapsulate the Contact and PhoneBook classes.

Implement the Singleton pattern for the PhoneBook class.

Update the SearchContacts class to make it work the same as before.

Create a Special class that extends Contact. Suppose that a special contact must also
have a ringtone, and create the corresponding instance variable of type String.

In the PhoneBook class, also create an array of Special objects (call it specialContacts), simi-
lar to the contacts array that already exists. Also create a searchSpecialContactsByName()
method, equivalent to the searchContactsByName() method already present in the
class.

Create a SearchSpecialContacts class equivalent to the SearchContacts class of the
Exercise 4.z, to test the correct functioning of the written code.

Exercise 7.y)

We do not recommend that you perform the following
exercise using Notepad and the command line. With an
IDE (or at least with EJE) you will save many minutes to
complete the exercise.

Starting from the Exercise 7.y, perform the following refactoring techniques to use the reuse,
inheritance and abstraction paradigms:

Make sure that the created classes do not contain duplicate code (reuse all code that can
be reused).

Create a Data interface to be implemented for all classes representing data in the appli-
cation, and the Identifiable interface that declares an abstract method getID() which
returns an int.

7.

1.

2.

3.

4.

5.

6.

1.

2.

Chapter 7 Exercises

196
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Abstract the concept of entity by implementing the Entity abstract class, which imple-
ments the Data and Identifiable interfaces. An Entity object must have an automati-
cally generated incremental identification number. This feature will help us to make our
abstractions evolve in future exercises.

Use inheritance to relate this new class (and possibly the other interfaces) with the already
existing classes of the project where applicable.

Create the package phonebook.data, phonebook.ui and phonebook.business, where we
mean with phonebook.data, a package that must contain classes that represent the data
of the application. The package phonebook.business instead, must contain the classes
that contain the business logic of the application. Finally, the phonebook.ui package must
contain the classes that represent the interface with which the user can interact.

Move the classes and the interfaces of the project in the packages that seem most appro-
priate accordingly. If you think it necessary, you can create other classes and packages and
modify existing ones (you can also create superclasses, subclasses and utility classes).

Test that the SearchSpecialsContacts and SearchContacts classes still work correctly.

Exercise 7.z)

Let’s continue the case study defined in section 5.5. We had taken a series of steps, which repre-
sented a possible process to follow in order to create a code of quality. In particular, we defined
the following steps:

Use case analysis.

Definition of scenarios for each use case.

Define a high level deployment diagram representing the architecture.

Identify the key abstractions.

Verify the validity of key abstractions using iteration diagrams to validate scenario flows,
using objects instantiated by key abstractions.

We have seen in the final exercises related to chapter 6, that other steps to be performed are:

Define the key abstraction on a class diagram.

Re-evaluate the class diagram by adding the essential details, and above all by thinking
about responsibilities.

3.

4.

5.

6.

7.

1.

2.

3.

4.

5.

6.

7.

Chapter 7 Exercises

197
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Doing the entire Logos program is too demanding (it would take weeks if not months of work),
but we can focus on particular use cases, and carry on our process only on these use cases. The
reader could then also iterate the steps made on each use case to complete the program piece
by piece. Even if in the initial analysis of Logos the authentication process has not been identi-
fied, actually there must be! In fact, two actors were defined by the analysis of the use cases: the
administrator (who had the task of configuring the system) and the clerk (who had operational
tasks). It seems obvious that in order to be recognized by the system, a login mechanism is in-
dispensable. So, we can say that we have discovered a new use case, which we define as “authen-
tication”. We then evolve the diagram of the use cases of Figure 5.4 in the diagram of Figure
7.z.1, where we introduce the new case of use found.
For now, let’s focus on the authentication use case in the context of Logos. We have the advan-
tage of having already worked on a program that manages authentication with a certain flow,
let’s see if we can evolve it.
So, keeping in mind that we have already created the User class, we want to define the Clerk
and Administrator classes. Should they be created? And why?

Figure 7.z.1 – Updated Logos Use case diagram.

199
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7
Exercise Solutions

Inheritance and Interfaces

Solution 7.a) Object Orientation in Java (Theory), True or False:

False, the generalization process involves writing an extra class, and this does not always
mean writing less code.

False.

False, even if the generalization process not always allow us to save code, it still has
the advantage of making us manage the classes in a more natural way, favoring the
abstraction of data. It also favor the implementation of polymorphism.

True.

False, multiple inheritance exists in the real world, and in Java exists just a soft version of
it, because only the functional part of our entities can be inherited.

False, is an interface that declares a single abstract method.

True.

False, a team “is not a” player, nor a player “is a” team. If anything, a team “has” a player
but this is not the relationship of inheritance. It is in fact the association relationship.

True, in fact both classes could extend a Participant class.

 False, a Father is always a Son, or both could extend the Person class.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 7 Exercise Solutions

200
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 7.b)

public class Employee extends Person { //inheritance
 private int id;

 public void setData(String name, int id) {
 setName(name); //reuse and inheritance
 setId(id); //reuse
 }

 public void setId(int id) {
 this.id = id; //encapsulation
 }

 public int getId() {
 return id; //encapsulation
 }

 public String getData() {
 //reuse, encapsulation and inheritance
 return getName() +", id: "+ getId();
 }
}

Solution 7.c) Abstract Classes and Interfaces, True or False:

True, the abstract and final modifiers cannot be used together because an abstract
class should be extended, while a final class cannot be extended. For this reason, the com-
piler will not allow the creation of a class declared abstract and final.

True, the code block that defines the class is missing.

True, a final interface does not make sense.

False.

True.

True.

True.

False, an interface cannot declare constructors because it cannot be instantiated.

True.

 True.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 7 Exercise Solutions

201
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 7.d)

Person could be a superclass of Teacher and Student, for all the rest there is no inheritance.

Inheritance is always tested with the “is a” relationship. So, it is very
simple to verify that this relationship cannot be confirmed for all
other class pairs.

Solution 7.e)

Undoubtedly the Person class could be an abstract class, but even Teacher and Student could
be declared abstract if we wanted to extend them with classes such as EngineeringStudent or
MathematicsProfessor.

Solution 7.f)

Assuming that all object-oriented choices are subjective, the abstract implementation is prob-
ably the most correct choice for such an abstract concept:

/**
 * Abstracts the concept of a musical object.
 *
 * @author Claudio De Sio Cesari
 */
public interface Musical {
 /**
 * Performs the music of the current musical object.
 */
 void play();
}

Solution 7.g)

The code of the MusicalInstrument interface could be the following:

/**
 * Abstracts the concept of a musical instrument.
 *
 * @author Claudio De Sio Cesari
 */
public interface MusicalInstrument extends Musical {

}

Chapter 7 Exercise Solutions

202
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The Ringtone interface code could be the following:

/**
 * Astrae the concept of musical ringtone.
 *
 * @author Claudio De Sio Cesari
 */
public interface Ringtone extends Musical {

}

The play() method for us is still abstract.

Solution 7.h)

While it might be plausible to consider a smartphone that uses a specific app a musical instru-
ment, it is simply incorrect that it can be considered a ringtone, in fact the “is a” test fails:
Question: “Is a smartphone a musical instrument?”
Answer: Yes (as long as a specific app to play music is installed)
Question: “Is a smartphone a ringtone?”
Answer: No (if anything, it contains ringtones)

Solution 7.i) Interfaces after Java 8, True or False:

True.

True, the static modifier cannot be applied to classes and interfaces.

True, class is a keyword, and cannot be used as identifier.

False.

False.

True, in particular it is possible to rewrite a method with the same signature in a sub-
interface (but the same concept applies to classes), but technically it is not an override,
because static methods are simply not inherited. In fact, any use of the @Override an-
notation in the subinterface to mark the static method will cause an error in compilation
(see SuperInterface.java and SubInterface.java).

True, the rule “class always win” that we have seen in section 7.4.5.5, is true even if the
class is abstract (see list A.java, B.java, C.java, D.java, TestABCD.java).

False, it could be misleading that the abstract class G also inheriting the abstract method
from interface E makes the rule “class always win” studied in section 7.4.5.5 applies. In-

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 7 Exercise Solutions

203
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

stead, in this case, rule “the most specific implementation wins” applies. In fact, class G
inherits an E interface method, which is less specific than the one redefined in interface F
(see list E.java, F.java, G.java, H.java, TestEFGH.java).

True, although some doubts may arise, an interface can extend multiple interfaces (see.
MyInterface.java).

 False, an interface cannot extend a class in any case.

Solution 7.j)

The abstraction of the Album class that we have created, is very similar to the abstraction of the
Book class:

public class Album extends Item {
 private String ismn;
 private String title;
 private String artist;
 private String genre;
 private String price;

 public Album(String ismn, String title, String artist, String genre, String price) {
 setIsmn(ismn);
 setTitle(title);
 setArtist(artist);
 setGenre(genre);
 setPrice(price);
 }

 public String getIsmn() {
 return ismn;
 }

 public void setIsmn(String ismn) {
 this.ismn = ismn;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getArtist() {
 return artist;
 }

9.

10.

Chapter 7 Exercise Solutions

204
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void setArtist(String artist) {
 this.artist = artist;
 }

 public String getGenre() {
 return genre;
 }

 public void setGenre(String genre) {
 this.genre = genre;
 }

 public String getPrice() {
 return price;
 }

 public void setPrice(String price) {
 this.price = price;
 }
}

Note that there are three fields that are clearly in common with the Book class. For the variables

price and title there is no doubt, while for the genre variable someone could have one since

the musical genres do not correspond to the literary ones. Actually, having managed the pos-

sible values of the literal genres within the GenreUtils utility class, the genre variable does not

depend directly on the values it can assume. Moreover, note that the variables isbn and ismn,

represent substantially the same concept: a number that uniquely identifies an object. But also

the variables author in Book and artist in Album, are semantically very similar in the context

of the sale of books and music albums. Although there are differences in the meaning of the

two words, a buyer of a book usually identifies it also through its author. For example, the book

“Shining” is by Stephen King. In the same way a buyer of a musical album could identify an

album also specifying the relative artist, for example we could say that the album “The Wall”

is by Pink Floyd. This is true because we are in the context of selling albums and books, which

for us are simply “items”. So, we decided to create the abstract superclass Item of the Book and

Album classes in the following way:

public abstract class Item {
 private String id;
 private String title;
 private String name;
 private int price;
 private String genre;

Chapter 7 Exercise Solutions

205
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public Item(String id, String title, String name, int price, String genre) {
 super();
 setId(id);
 setTitle(title);
 setName(name);
 setPrice(price);
 setGenre(genre);
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getPrice() {
 return price;
 }

 public void setPrice(int price) {
 this.price = price;
 }

 public String getGenre() {
 return genre;
 }

 public void setGenre(String genre) {
 this.genre = genre;
 }
}

Chapter 7 Exercise Solutions

206
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The Book and Album classes can therefore be simplified in the following manner:

public class Book extends Item {
 public Book(String isbn, String title, String author, int price,
 String genre) {
 super(isbn, title, author, price, genre);
 }
}
public class Album extends Item {
 public Album(String ismn, String title, String artist, int price,
 String genre) {
 super(ismn, title, artist, price, genre);
 }
}

Note that we have “normalized” the isbn fields of the Book class and ismn of the Album class,
as an id field in the Item superclass. The same goes for the author field of the Book class and
artist field of the Album class, “normalized” in a name field in the superclass Item.

Solution 7.k)

With a non-simple solution, we used generalization for the utility classes. In particular we have
extended with the classes MusicalGenreUtils and LiteraryGenreUtils a new generic class
for which we have reused the name GenreUtils. In the latter, we implemented the static meth-
ods isValidGenre() and printError() by adding the array of genres on which to base the
required check as second parameter. This is necessary, because we do not know a priori if in
this generic class we will use musical or literary genres, but at the same time we do not want to
duplicate code in the subclasses:

public class GenreUtils {

 public static boolean isValidGenre(String genre, String[] validGenres) {
 boolean validGenre = false;
 for (String fixedGenre : validGenres) {
 if (fixedGenre.equals(genre)) {
 validGenre = true;
 }
 }
 return validGenre;
 }

 public static void printError(String genre, String[] validGenres) {
 System.out.println("Genre " + genre +
 " not valid! Please, use one of the following genres:");
 for (String fixedGenre : validGenres) {
 System.out.println(fixedGenre);
 }
 }
}

Chapter 7 Exercise Solutions

207
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

So, we defined the LiteraryGenreUtils class in the following way:

public class LiteraryGenreUtils extends GenreUtils {
 public static final String ROMANCE = "Romance";
 public static final String ESSAY = "Essay";
 public static final String THRILLER = "Thriller";
 public static final String HANDBOOK = "Handbook";
 public static final String SCIFI = "Scifi";
 public static final String[] genres = { ROMANCE, ESSAY, THRILLER, HANDBOOK,
 SCIFI };

 public static boolean isValidGenre(String genre) {
 return isValidGenre(genre, genres);
 }

 public static void printError(String genre) {
 printError(genre, genres);
 }
}

And the MusicalGenreUtils class like this:

public class MusicalGenreUtils extends GenreUtils {
 public static final String ROCK = "Rock";
 public static final String JAZZ = "Jazz";
 public static final String BLUES = "Blues";
 public static final String POP = "Pop";
 public static final String RAP = "Rap";
 public static final String[] genres = { ROCK, JAZZ, BLUES, POP, RAP };

 public static boolean isValidGenre(String genre) {
 return isValidGenre(genre, genres);
 }

 public static void printError(String genre) {
 printError(genre, genres);
 }
}

In these two classes we have ensured that the isValidGenre() and printError() methods in-
voke the methods defined in the superclass. We also defined information on genres.
In the Book class, we then redefined the setGenre() method as can be seen below (in bold):

public class Book extends Item {

 public Book(String isbn, String title, String author, int price,
 String genre) {
 super(isbn, title, author, price, genre);
 }

Chapter 7 Exercise Solutions

208
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void setGenre(String genre) {
 if (LiteraryGenreUtils.isValidGenre(genre)) {
 super.setGenre(genre);
 } else {
 LiteraryGenreUtils.printError(genre);
 }
 }
}

Note that we were forced to invoke the setGenre() method of the Item superclass using the
super reference, since we needed to call a method that had the same name as the method we
were redefining.
The same goes for the Album class:

public class Album extends Item {
 public Album(String ismn, String title, String artist, int price,
 String genre) {
 super(ismn, title, artist, price, genre);
 }

 public void setGenre(String genre) {
 if (MusicalGenreUtils.isValidGenre(genre)) {
 super.setGenre(genre);
 } else {
 MusicalGenreUtils.printError(genre);
 }
 }
}

Finally, we implemented the ItemsTest class in the following way:

public class ItemsTest {
 public static void main(String[] args) {
 Book jfaVol1 = new Book("979-12-200-4915-3", "Java for Aliens Vol. 1",
 "Claudio De Sio Cesari", 25, LiteraryGenreUtils.HANDBOOK);
 Book jfaVol2 = new Book("979-12-200-4916-0", "Java for Aliens Vol. 2",
 "Claudio De Sio Cesari", 25, "NonExisting");
 System.out.println("Genre JFA Vol 1 = " + jfaVol1.getGenre());
 System.out.println("Genre JFA Vol 2 = " + jfaVol2.getGenre());
 Album lad = new Album("979-0-236-44-3", "Live after Death",
 "Iron Maiden", 25, MusicalGenreUtils.ROCK);
 Album mop = new Album("978-0-789-01-2", "Master of Puppets",
 "Metallica", 25, "NonExisting");
 System.out.println("Genre Live after Death = " + lad.getGenre());
 System.out.println("Genre Master of Puppets = " + mop.getGenre());
 }
}

And this is the final output:

Chapter 7 Exercise Solutions

209
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Genre NonExisting not valid! Please, use one of the following genres:
Romance
Essay
Thriller
Handbook
Scifi
Genre JFA Vol 1 = Handbook
Genre JFA Vol 2 = null
Genre NonExisting not valid! Please, use one of the following genres:
Rock
Jazz
Blues
Pop
Rap
Genre Live after Death = Rock
Genre Master of Puppets = null

Solution 7.l)

The compiler will actually transform the class into something very similar to the following (the
implicit compiler entries are in bold):

import java.lang.*;

public class CompilerItsYourTurn extends Object {

 private int var;

 public CompilerItsYourTurn() {
 }

 public void setVar(int v) {
 this.var = v;
 }

 public int getVar() {
 return this.var;
 }
}

We also consider that, by extending Object, this class also inherits all
of its methods.

Solution 7.m)

The correct answer is the first one. No error to report.

Chapter 7 Exercise Solutions

210
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 7.n)

The correct answer is the first one. No error to report.

Solution 7.o)

The concept of aggregation, used several times in previous exercises, is a relationship that in-
dicates containment, which, if anything, can be considered an alternative to extension. So, the
only correct answer is the third one.

Solution 7.p)

The fourth and fifth options are both correct for the compiler. The fifth, however, has less sense
from a logic point of view (is an animal a lion? Not necessarily!).

Solution 7.q)

Even if an interface can potentially define methods of different types, it cannot declare instance
variables, but only public static constants.

Solution 7.r)

The correct statements are the numbers 1 and 3.

The equals() method is inherited from the Object class.

Solution 7.s)

Only the first answer is correct. Being the first correct, obviously the second and the third
cannot be correct. Static and default methods can be declared, but their modifiers are never
added automatically. The doubt can come for the answer 6, because before the advent of Java
8 this answer would have been right. But now we can declare in the interfaces also default and
static methods. Finally, the final modifier is implicitly added to the attributes of the interfaces
(which are also implicitly declared static and public).

Chapter 7 Exercise Solutions

211
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 7.t)

The answers are all false except the third.

Solution 7.u)

The correct answers are 1, 2 and 5.

Solution 7.v)

We could follow the following reasoning. A tennis player trains and runs differently from a
soccer palyer or a runner. In short, both the TennisPlayer class, the Runner class and the
SoccerPlayer class will redefine the doTraining() and run() methods. In the Athlete class
instead, these two methods should be defined as abstract, because, a priori, it would be difficult
to define how an athlete trains or runs, it depends on the type of athlete! At this point one might
think of defining Athlete as an interface since it uses only two abstract methods, and this is
feasible. But with the evolution of this program, it is highly probable that we will define ath-
letes’ fields as name and surname. An interface, however, cannot declare variables, and therefore
one might prefer to declare an athlete as an abstract class. Or we could create a solution where
TennisPlayer, SoccerPlayer and Runner implement the Athlete interface (which defines the
two abstract methods doTraining() and run()) and extend the abstract class Person (which
defines the attributes name, surname, etc.). In short, it will be the context of the program in
which we will settle that will lead us to implement the most correct solution.

Solution 7.w)

The correct statements are 2, 3, 4, 5. The number 1 is incorrect because the protected modifier
cannot be used with classes (there are no protected classes!). The 6 is false because the con-
structor are not inherited (even if they are public). The number 7 is incorrect for the reasons
explained in section 7.2.5.1.

Solution 7.x)

The encapsulated Contact class could be the following (in bold the changes):

public class Contact {
 protected static final String UNKNOWN = "unknown";
 private String name;
 private String phoneNumber;
 private String address;

 public Contact(String name, String phoneNumber) {

Chapter 7 Exercise Solutions

212
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 this.setName(name);
 this.setPhoneNumber(phoneNumber);
 this.setAddress(UNKNOWN);
 }

 public Contact(String name, String phoneNumber, String address) {
 this.setName(name);
 this.setPhoneNumber(phoneNumber);
 this.setAddress(address);
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getAddress() {
 return address;
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void printDetails() {
 System.out.println(name);
 System.out.println(address);
 System.out.println(phoneNumber);
 System.out.println();
 }
}

Note that we have introduced a private static constant UNKNOWN to represent an unknown ad-
dress when using the first declared constructor (in the solutions of the Exercise 4.z, the address
value was not really set, and therefore it was null).
The Singleton and encapsulated class PhoneBook could be implemented as follows (updates in
bold):

Chapter 7 Exercise Solutions

213
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class PhoneBook {
 private static PhoneBook instance;
 public Contact[] contacts;

 private PhoneBook () {
 contacts = new Contact[] {
 new Contact("Claudio De Sio Cesari", "13, Java Street",
 "131313131313"),
 new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),
 new Contact("Gennaro Capuozzo", "1, Four Days of Naples Square",
 "1111111111")
 };
 }

 public static PhoneBook getInstance() {
 if (instance == null) {
 instance = new PhoneBook();
 }
 return instance;
 }

 public Contact[] searchContactsByName(String name) {
 Contact []contactsFound = new Contact[contacts.length];
 for (int i = 0, j = 0; i < contactsFound.length; i++) {
 if (contacts[i].getName().toUpperCase().
 contains(name.toUpperCase())) {
 contactsFound[j] = contacts[i];
 j++;
 }
 }
 return contactsFound;
 }

 public Contact[] getContacts() {
 return contacts;
 }
}

Note that we have avoided creating the setter method for the contacts variable.
We then replaced within the class SearchContacts, only the line:

var phoneBook = new PhoneBook();

with the following:

var phoneBook = PhoneBook.getInstance();

And everything continued to work as it worked before.
The Special class could be implemented like this:

Chapter 7 Exercise Solutions

214
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Special extends Contact {

 private String ringtone;

 public Special(String name, String phoneNumber, String address,
 String ringtone) {
 super(name, phoneNumber, address);
 setRingtone(ringtone);
 }

 public String getRingtone() {
 return ringtone;
 }

 public void setRingtone(String ringtone) {
 this.ringtone = ringtone;
 }

 public void printDetails() {
 System.out.println(getName());
 System.out.println(getAddress());
 System.out.println(getPhoneNumber());
 System.out.println(getRingtone());
 System.out.println();
 }
}

Note that to instantiate an object of type Special, we can only use a constructor that takes as an
input four parameters: name, phoneNumber, address and ringtone (since in our abstraction, it
is the ringtone that should distinguish a special contact from a normal contact). This construc-
tor calls the constructor of the Contact superclass via the super keyword. Also note that the
printDetails() method has been redefined by adding the printout of the ringtone variable
as well.
We then updated the PhoneBook class as required (updates in bold):

public class PhoneBook {
 private static PhoneBook instance;
 public Contact[] contacts;
 public Special[] specialContacts;

 private PhoneBook () {
 contacts = new Contact[] {
 new Contact("Claudio De Sio Cesari", "13, Java Street",
 "131313131313"),
 new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),
 new Contact("Gennaro Capuozzo", "1, Four Days of Naples Square",
 "1111111111")
 };

Chapter 7 Exercise Solutions

215
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 specialContacts = new Special[] {
 new Special("Mario Ruoppolo", "Neruda Street, 3", "333333",
 "The Postman"),
 new Special("Vincenzo Malinconico", "Courts Street, 8", "888888",
 "Tuca Tuca"),
 new Special("Logan Howlett", "Canada Square, 6", "66666", "Hurt")
 };
 }

 public static PhoneBook getInstance() {
 if (instance == null) {
 instance = new PhoneBook();
 }
 return instance;
 }

 public Contact[] searchContactsByName(String name) {
 Contact []contactsFound = new Contact[contacts.length];
 for (int i = 0, j = 0; i < contactsFound.length; i++) {
 if (contacts[i].getName().toUpperCase().
 contains(name.toUpperCase())) {
 contactsFound[j] = contacts[i];
 j++;
 }
 }
 return contactsFound;
 }

 public Special[] searchSpecialContactsByName(String name) {
 Special []specialContactsFound = new Special[specialContacts.length];
 for (int i = 0, j = 0; i < specialContactsFound.length; i++) {
 if (specialContacts[i].getName().toUpperCase().
 contains(name.toUpperCase())) {
 specialContactsFound[j] = specialContacts[i];
 j++;
 }
 }
 return specialContactsFound;
 }

 public Contact[] getContacts() {
 return contacts;
 }

 public Special[] getSpecialContacts() {
 return specialContacts;
 }
}

Chapter 7 Exercise Solutions

216
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

And finally we created the following class SearchSpecialContacts:

import java.util.Scanner;

public class SearchSpecialContacts {
 public static void main(String args[]) {
 System.out.println("Search Special Contacts");
 System.out.println();
 var phoneBook = PhoneBook.getInstance();
 System.out.println("Enter name or part of the name to be searched");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.nextLine();
 Special[] specialContactsFound =
 phoneBook.searchSpecialContactsByName(input);
 System.out.println("Special Contacts found with name containing \"" +
 input + "\"");
 for (Special special : specialContactsFound) {
 if (special != null) {
 special.printDetails();
 }
 }
 }
}

Solution 7.y)

In the phonebook.data package, we decided to put the three new requested abstractions Data:

package phonebook.data;

public interface Data {
}

Identifiable:

package phonebook.data;

public interface Identifiable {
 int getId();
}

and Entity:

package phonebook.data;
import phonebook.util.Counter;

public abstract class Entity implements Data, Identifiable {
 private int id;

Chapter 7 Exercise Solutions

217
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public Entity () {
 setId(Counter.getSerialNumber());
 }

 private void setId(int id) {
 this.id = id;
 }

 public int getId() {
 return id;
 }
}

Notice how this last class uses a utility class Counter (belonging to a phonebook.util, an ad hoc
created package) that contains a static method that updates a serial number every time an entity
is instantiated (i.e. a subclass, since Entity is an abstract class). The Counter class follows:

package phonebook.util;

public class Counter {
 private static int objectCounter;

 public static int getSerialNumber() {
 return objectCounter += 1;
 }
}

As already mentioned, the serial number will be useful in future
exercises.

We decided to include the Contact and PhoneBook classes in the phonebook.data package.
With regard to the latter, we deemed it necessary to modify it as follows:

package phonebook.data;

public class PhoneBook implements Data {
 private static PhoneBook instance;
 public Contact[] contacts;
 public Special[] specialContacts;

 private PhoneBook () {
 contacts = new Contact[] {
 new Contact("Claudio De Sio Cesari", "13, Java Street",
 "131313131313"),
 new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),
 new Contact("Gennaro Capuozzo", "1, Four Days of Naples Square",
 "1111111111")
 };

Chapter 7 Exercise Solutions

218
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 specialContacts = new Special[] {
 new Special("Mario Ruoppolo", "Neruda Street, 3", "333333",
 "The Postman"),
 new Special("Vincenzo Malinconico", "Courts Street, 8", "888888",
 "Tuca Tuca"),
 new Special("Logan Howlett", "Canada Square, 6", "66666", "Hurt")
 };
 }

 public static PhoneBook getInstance() {
 if (instance == null) {
 instance = new PhoneBook();
 }
 return instance;
 }

 public Contact[] getContacts() {
 return contacts;
 }

 public Special[] getSpecialContacts() {
 return specialContacts;
 }
}

Because searchContactsByName() and searchSpecialContactsByName() are business
methods and not methods that the PhoneBook class should declare, we have removed them.
In fact, in our phone book abstraction, we refer to the concept of a phone book containing
contacts, not a phone book that can perform searches. As for the old and now no longer used
paper phone book, we mean an object similar to a notebook in which the contacts are written.
A phone book therefore represents a data container and not an object that performs business
actions, in fact we have made it implement the Data interface. To search for a certain contact in
a paper phone book, a user must browse the pages of the phone book. So, we have decided for
now to move the searchContactsByName() and searchSpecialContactsByName() methods
in a new class called User, which will perform searches in the address book:

package phonebook.business;
import phonebook.data.*;

public class User {
 public Contact[] searchContactsByName(String name) {
 Contact[]contacts = PhoneBook.getInstance().getContacts();
 Contact []contactsFound = new Contact[contacts.length];
 for (int i = 0, j = 0; i < contactsFound.length; i++) {
 if (contacts[i].getName().toUpperCase().
 contains(name.toUpperCase())) {
 contactsFound[j] = contacts[i];
 j++;
 }
 }

Chapter 7 Exercise Solutions

219
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 return contactsFound;
 }

 public Special[] searchSpecialContactsByName(String name) {
 Special[]specialContacts = PhoneBook.getInstance().getSpecialContacts();
 Special []specialContactsFound = new Special[specialContacts.length];
 for (int i = 0, j = 0; i < specialContactsFound.length; i++) {
 if (specialContacts[i].getName().toUpperCase().
 contains(name.toUpperCase())) {
 specialContactsFound[j] = specialContacts[i];
 j++;
 }
 }
 return specialContactsFound;
 }
}

Note that this class belongs to the phonebook.business package.
Summarizing, we abstract a phonebook as data, we make them implement the Data interface
and move it in the phonebook.data package, while the User class represents a business object
and belongs to the phonebook.business package.
Finally, we have modified the SearchContacts and SearchSpecialContacts classes in the
following way (updates in bold):

package phonebook.ui;

import phonebook.data.*;
import phonebook.business.User;
import java.util.Scanner;

public class SearchContacts {
 public static void main(String args[]) {
	 System.out.println("Search Contacts");
 System.out.println();
 var user = new User();
 System.out.println("Enter name or part of the name to be searched");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.nextLine();
 Contact[] foundContacts = user.searchContactsByName(input);
 System.out.println("Contacts found with name containing \"" +
 input + "\"");
 for (Contact contact : foundContacts) {
 if (contact != null) {
 contact.printDetails();
 }
 }
 }
}

Chapter 7 Exercise Solutions

220
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

package phonebook.ui;

import phonebook.data.*;
import phonebook.business.User;
import java.util.Scanner;

public class SearchSpecialContacts {
 public static void main(String args[]) {
 System.out.println("Search Special Contacts");
 System.out.println();
 var user = new User();
 System.out.println("Enter name or part of the name to be searched");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.nextLine();
 Special[] specialContactsFound =
 user.searchSpecialContactsByName(input);
 System.out.println("Special Contacts found with name containing \""
 + input +"\"");
 for (Special special : specialContactsFound) {
 if (special != null) {
 special.printDetails();
 }
 }
 }
}

Solution 7.z)

A simple and almost automatic solution, would consist in extending the User class directly, with
the two sub-classes Administrator and Clerk:

package com.claudiodesio.authentication;

public class Administrator extends User {
 public Administrator (String name, String username, String password) {
 super(name, username, password);
 }
}

and:

package com.claudiodesio.authentication;

public class Clerk extends User {
 public Clerk(String name, String username, String password) {
 super(name, username, password);
 }
}

Except that we still don’t have enough information to insert specific fields and methods for
these two classes (in fact they are empty). So for now we decide not to implement them.

221
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8
Exercises

Polimorphism

In this chapter we will simulate the construction of an IDE, in a very simplified way. Also in
this case, it will be an incremental exercise so you have to complete each exercise (and read the
solution) in order to move on to the next one.
We will create classes and interfaces step by step. In particular we will create the abstractions
of IDE, Editor, SourceFile, File, FileType and so on. The exercise is guided, so the reader is
relieved of the responsibility to decide which classes should compose our application. For this
reason, there are exercises on programming rather than analysis and design.
With the next exercises we will only have to apply the definitions we have learned so far, almost
no algorithm is required. The ultimate goal is to focus on the Object Orientation and not on the
algorithms. In addition, other types of exercises are also presented, such as those that support
preparation for Oracle certifications.

Exercise 8.a) Polymorphism for Methods, True or False:

Method overloading implies writing another method with the same name and a different
return type.

Method overloading implies writing another method with a different name and the same
list of parameters.

The signature of a method consists of the identifier - parameter list pair.

1.

2.

3.

Chapter 8 Exercises

222
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

To take advantage of method overriding, inheritance must be in place.

To take advantage of method overloading, inheritance must be in place.

Suppose that the class B, which extends the class A, inherits the following method:

public int m(int a, String b) { ... }

If in the B class, we write the following method:

public int m(int c, String b) { ... }

we are doing method overloading and not overriding.

If in the B class, we write the following method:

public int m(String a, String b) { ... }

we are doing method overloading and not overriding.

If in the B class, we write the following method:

public void m(int a, String b) { ... }

we will get a compilation error.

If in the B class, we write the following method:

protected int m(int a, String b) { ... }

we will get a compilation error.

 If in the B class, we write the following method:

public int m(String a, int c) { ... }

we are doing a method overriding.

Exercise 8.b) Polymorphism for Data, True or False:

Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

Vehicle v [] = {new Car(), new Plane(), new Plane()};

Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

Object o [] = {new Car(), new Plane(), "ciao"};

4.

5.

6.

7.

8.

9.

10.

1.

2.

Chapter 8 Exercises

223
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

Plane a [] = {new Vehicle(), new Plane(), new Car()};

Considering the classes introduced in this chapter, and if the method of the Traveler
class was the following:

public void travel(Object o) {
 o.accelerate();
}

we could pass as parameter to it an object of type Vehicle without having compilation
errors. For example:

claudio.travel(new Vehicle());

Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

ThreeDimensionalPoint ogg = new Point();

Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

ThreeDimensionalPoint ogg = (ThreeDimensionalPoint)new Point();

Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

Point ogg = new ThreeDimensionalPoint();

Considering the classes introduced in this chapter, and if the Piper class extends the
Plane class, the following snippet will not produce compilation errors:

Vehicle a = new Piper();

Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

String string = fiat500.toString();

 Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

public void payEmployee(Employee emp) {
 if (emp instanceof Employee) {
 emp.setSalary(1000);
 } else if (emp instanceof Programmer) {
 ...
 }

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 8 Exercises

224
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 8.c)

To start creating a simple IDE, create a FileType interface that defines static constants that
represent the types of source files that our IDE should manage. Certainly, one of these
constants must be called JAVA. Choose all the others as you like. Also choose the type of
constants as you like.

Exercise 8.d)

Create a File class that abstracts the concept of a generic file and defines a name and a type.

Exercise 8.e)

Create a SourceFile class that abstracts the concept of source file (extending the File class)
which also defines a string type content.

Exercise 8.f)

Add an addText() method, that adds a text string to the end of the contents of the source file.

Exercise 8.g)

Add an overloaded addText() method, that adds a text string to a specified point in the
contents of the source file (see the String class documentation).

Exercise 8.h)

Create a SourceFileTest class that tests the correct operation of the SourceFile class.

Exercise 8.i)

Create an Editor interface that abstracts the concept of text editor. You need to define methods
to open, close, save and edit a file.

Exercise 8.j)

Create an IDE interface that abstracts the concept of IDE. Please note that an IDE is also an
editor. You need to define methods to compile and execute a file.

Exercise 8.k)

Create a simple JavaIDE implementation of the IDE interface. Add an implementation for the
edit() method (and as you wish, you can re-implement all the methods that you find useful).

Chapter 8 Exercises

225
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 8.l)

Starting from the solutions of the Exercise 7.k, in which we created classes to simulate a
bookshop, perform the following steps:

Create the bookshop.data, bookshop.business, bookshop.util and
bookshop.interface packages, and move the existing classes within the packages that
are deemed most appropriate.

For the Book and Album classes, create the toString() method, which returns a one
line description of the item. The toString() method should print this informa-
tion: article_type: (isbn) - "title" by author, genre, price. For example:
Book: (2345) "The Pillars of the Earth" by Ken Follet, Romance, 18€,

Modify the ItemTest class, so that it also test the toString() methods added.

Exercise 8.m)

Starting from the solution of the previous exercise, create a ShoppingCart class, which
represents a shopping cart. This abstraction must declare the methods: add() to add an item to
the shopping cart, calculatePrice() which returns the total price of the items in the shopping
cart, toString() which prints the description of the items in the shopping cart. The shopping
cart can contain a maximum of four items (books or albums). Make sure that the add() method
prints an error when trying to add the eleventh article, and that the element is consequently
not added.
Create the ShoppingCartTest class, to test the correct functioning of the ShoppingCart class,
invoking all the defined methods, and try adding five items to verify the correct functioning of
the check implemented in the add() method.

Exercise 8.n)

Create a IDETest test class that performs file operations using IDE.

The exercise could continue extending these classes further, feel
free to do other programming iterations after completing this one.
You will have to perform three steps: provide yourself specifications,
understand how to implement them and implement them.

1.

2.

3.

Chapter 8 Exercises

226
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 8.o) Varargs, True or False:

The varargs allow you to use the methods as if they were overloads.

The following declaration can be compiled without errors:

public void myMethod(String... s, Date d) {
 ...
}

The following declaration can be compiled without errors:

public void myMethod(String... s, Date d...) {
 ...
}

Considering the following method:

public void myMethod(Object... o) {
 ...
}

the following invocation is correct:

oggetto.myMethod();

The following declaration can be compiled without errors:

public void myMethod(Object o, Object os...) {
 ...
}

Considering the following method:

public void myMethod(int i, int... is) {
 ...
}

the following invocation is correct:

object.myMethod(new Integer(1));

The rules of overriding change with the introduction of varargs.

The printf() method of the java.io.PrintStream class is based on the format()
method of the java.util.Formatter class.

The format() method of the java.util.Formatter class has no overload because it is
defined with a varargs.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Chapter 8 Exercises

227
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 In case you pass an array as varargs to the printf() method of java.io.PrintStream,
this will be treated not as a single object but as if each of its elements had been passed to
one by one.

Exercise 8.p)

Given the following hierarchy:

interface A {
 void method();
}

interface B implements A {
 static void staticMethod() {}
}

final class C implements B {}

public abstract class D implements A {
 @Override
 void method() {}
}

Choose all the true statements:

Interface C does not inherit the staticMethod() method.

Interface B cannot implement another interface.

The class C implementing B also inherits the abstract method() method of the A interface,
and since it is not declared abstract it cannot be compiled.

Class D cannot be compiled because it cannot be declared abstract. In fact, it does not
declare any abstract method.

Class D does not compile because the method it declares is not declared public.

Class D compiles only because the method is annotated with Override.

Exercise 8.q)

Which of the following statements is correct (choose all that apply):

An interface extends the class Object.

A method that takes as a parameter a reference of type Object, can take as input any
object of any type, even of an interface type.

10.

1.

2.

3.

4.

5.

6.

1.

2.

Chapter 8 Exercises

228
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

A method that takes as a parameter a reference of type Object, can take as input any
object of any type, even an array.

A method that takes as a parameter a reference of type Object, can take as an input any
object of any type, even a heterogeneous collection.

All casts of objects are evaluated at compile time

Exercise 8.r)

Consider the following classes:

public class PrintNumber {
 public void print(double number){
 System.out.print(number);
 }
}

public class PrintInteger extends PrintNumber{
 public void print(int number) {
 System.out.print(number);
 }

 public static void main(String args[]) {
 PrintNumber printNumber = new PrintInteger();
 printNumber.print(1);
 }
}

If we run the PrintInteger class, what will be the output?

1.2

1

1.0

11.2

Exercise 8.s)

Consider the following hierarchy:

public interfac7e Satellite {
 void orbit();
}

3.

4.

5.

1.

2.

3.

4.

Chapter 8 Exercises

229
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Moon implements Satellite{
 @Override
 public void orbit(){
 System.out.println("Moon is orbiting");
 }
}

public class ArtificialSatellite implements Satellite {
 @Override
 public void orbit() {
 System.out.println("Artificiale satellite is orbiting");
 }
}

And the following class of tests:

public class SatellitesTest {
 public static void main(String args[]) {
 test(new Moon(), new ArtificialSatellite());
 Satellite[] satellites = {
 new Moon(), new ArtificialSatellite()
 } ;
 test(satellites);
 test();
 // test(new Object());
 }

 public static void test(Satellite... satellites) {
 for (Satellite satellite : satellites) {
 satellite.orbit();
 }
 }
}

Choose all the correct statements:

The application compiles and runs without errors.

The application does not compile because of the instruction test(satellites); .

The application does not compile for the instruction test();.

The application does not compile for the instruction test(new Object());.

The application compiles but it, due to an exception, crashes at runtime.

Exercise 8.t)

Define the overload and the override concepts. And give an example of a subclass, which im-
plements both concepts.

1.

2.

3.

4.

5.

Chapter 8 Exercises

230
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 8.u)

Bearing in mind that Number is superclass of the Integer class, let us consider the
following hierarchy:

public abstract class SumNumber {
 public abstract Number sum(Number n1, Number n2);
}

public class SumInteger extends SumNumber{
 @Override
 public Integer sum(Number n1, Number n2) {
 return (Integer)n1 + (Integer)n2;
 }
}

Choose all the correct statements:

The SumInteger class compiles without errors.

The SumInteger class does not compile because the override is not correct: the return
types do not coincide.

The SumInteger class does not compile because it is not possible to use the + operator
except with primitive type numbers.

The SumInteger class could cause an exception at runtime.

Exercise 8.v)

Make the sum() method of the SumInteger class defined in exercise 8.u robust, so
that the runtime works without exceptions.

Exercise 8.w)

Briefly define what a polymorphic parameter is, what heterogeneous collections are, and what
a virtual call to a method is.

Exercise 8.x)

Starting from the solution of the Exercise 7.y, let’s evolve our application that simulates a phone
book:

Replace the printDetails() method with the override of the toString() method, in the
Contact and Special classes. This change is consistent, because these classes represent
application data, and therefore should not “print details”. Make sure that the toString()
method also returns the identifier (id variable).

1.

2.

3.

4.

1.

Chapter 8 Exercises

231
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

In the PhoneBook class, add the elements of the specialContacts array to the contacts
array, and delete the specialContacts variable. Modify the getContacts() and
getSpecialContacts() methods to make that the first return all contacts (both special
and ordinary contacts), while the latter returns only the special contacts.

If necessary, modify the User class to make it work consistently with the new implemen-
tation of the PhoneBook class.

Modify the SearchContacts, and SearchSpecialContacts classes, so that they work in
line with the changes made.

Exercise 8.y)

Starting from the solution of the previous exercise:

Add in the PhoneBook class a method called getOrdinaryContacts() that returns all
ordinary contacts, that is, the contacts that are not of the Special type.

Add a method called searchOrdinaryContactsByName() in the User class, which
searches by name only contacts that are not special.

Create a class SearchOrdinaryContacts, homologous to the other search classes we have
already created.

Exercise 8.z)

Starting from the solution of the previous exercise:

Until now, we have assigned the responsibility for creating Contact objects explicitly to
the class containing the main() method. So, now is the time to create a ContactFactory
class that has this responsibility, declaring one or more static methods getContact().
These methods will take as input the necessary fields to instantiate the objects.

In the User class, add a method called add() which adds a Contact object to the contacts
array. Pay attention that in the PhoneBook class, the contacts array can contain a finite
number of Contact objects. Add a number of free places in the array to be filled with new
objects.

Test with the SearchContacts class the correct functioning of the add() method of the
PhoneBook class. Create the objects to pass to the method using the ContactFactory class.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

233
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8
Exercise Solutions

Polimorphism

Solution 8.a) Polymorphism for Methods, True or False:

False, overloading a method implies writing another method with the same name and a
different list of parameters.

False, overloading a method implies writing another method with the same name and a
different list of parameters.

True.

True.

False, overloading a method implies writing another method with the same name and a
different list of parameters.

False, we are overriding. The only difference lies in the name of the identifier of a param-
eter, which is irrelevant in order to distinguish methods.

True, the parameter list of the two methods is different.

True, when overriding the return type cannot be different.

True, when overriding the rewritten method cannot be less accessible than the original
method.

 False, we will get an overload. In fact, the two parameter lists differ in positions.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 8 Exercise Solutions

234
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 8.b) Polymorphism for Data, True or False:

True.

True.

False, the Vehicle class is abstract and is not instantiable. Furthermore, it is not possible
to insert in a heterogeneous collection of planes an object of type Vehicle, which is a
Plane superclass.

False, the compilation would fail already since we tried to compile the travel()
method. In fact, it is not possible to call the accelerate() method with a reference of
type Object.

False, there is need for a casting, because the compiler does not know a priori the type to
which the reference at runtime will point.

True.

True.

True, in fact, Vehicle is a superclass of the Piper class.

True, the toString() method, belongs to all classes because it is inherited from the
superclass Object.

 True, but all employees will be paid the same way.

Solution 8.c)

The code could be the following:

public interface FileType {
 int JAVA = 1;
 int C_SHARP = 2;
 int C_PLUS_PLUS = 3;
 int C = 4;
}

Note that it is not necessary to specify modifiers for constants, since they are implicitly de-
clared public, static and final. Moreover, we have chosen the int type as the type of the
constants, but any other type would have been fine, the important thing is that the constants
have different values.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 8 Exercise Solutions

235
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

This type of use of interfaces has been in disuse for years, precisely
since enumerations were introduced in Java version 5 (see Chapter
11). However, we will still use this programming style since we have
not yet addressed the topic of enumerations.

Solution 8.d)

The code of the File class could be the following:

public abstract class File {

 private String name;

 private int type;

 public File(String name, int type) {
 this.name = name;
 this.type = type;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getType() {
 return type;
 }

 public void setType(int type) {
 this.type = type;
 }
}

Note that we have declared the class as abstract, since it is generic and created for the purpose
of extension.

Solution 8.e)

The code of SourceFile class should be as the following:

Chapter 8 Exercise Solutions

236
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class SourceFile extends File {
 private String content;

 public SourceFile(String name, int type) {
 super(name, type);
 }

 public SourceFile(String name, int type, String content) {
 this(name, type);
 this.content = content;
 }

 public String getContent() {
 return content;
 }

 public void setContent(String content) {
 this.content = content;
 }
}

Note that we have reused the superclass constructor using the super keyword, and we have also
created a constructor that is equivalent to the superclass constructor.

Solution 8.f)

The code of the requested method could be:

 public void addText(String text) {
 if (content == null) {
 content ="";
 }
 if (text != null) {
 content += text;
 }
 }

A null string “added” to another string is represented with the string “null”, that’s why we im-
plemented the first nullity check in the method.

Solution 8.g)

The code of the requested method could be:

 public void addText(String text, int position) {
 final int length = content.length();
 if (content != null && text != null && position > 0
 && position < length) {

Chapter 8 Exercise Solutions

237
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 content = content.substring(0, position) + text +
 content.substring(position);
 }
 }

We have chosen, for simplicity, not to add text if the specified position is not correct. However,
an else clause that prints an error message could be a better solution. Actually, this method can
be improved a lot... try it!

In Chapter 9 we will see how to handle exceptions in Java.

Solution 8.h)

The SourceFileTest source code could be the following:

public class SourceFileTest {
 public static void main(String args[]) {
 SourceFile sourceFile = new SourceFile("Test.java",
 FileType.JAVA, "public class MyClass {\n\r");
 System.out.println(sourceFile.getContent());
 // Test addText (String) correct
 sourceFile.addText("}");
 System.out.println(sourceFile.getContent());
 // Test addText (String,int) correct
 sourceFile.addText("//Test adding text\n\r", 23);
 System.out.println(sourceFile.getContent());
 // Test addText (String,int) incorrect
 sourceFile.addText("//Test adding text\n\r", -1);
 System.out.println(sourceFile.getContent());
 // Test addText (String,int) incorrect
 sourceFile.addText("//Test adding text\n\r", 100);
 System.out.println(sourceFile.getContent());
 }
}

The output will be the following:

public class MyClass {

public class MyClass {
}
public class MyClass {
//Test adding text
}
public class MyClass {
//Test adding text
}

Chapter 8 Exercise Solutions

238
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class MyClass {
//Test adding text
}

You could write many more test cases, and you should also make sure that each test case doesn’t
depend on the previous one, but for now it’s okay.

To perform test cases with greater convenience, the use of a tool like
JUnit is recommended. You can find a brief description of JUnit in
the sections 10.4.1 and 10.4.2.

Solution 8.i)

The code of the requested interface could be:

public interface Editor {
 default void save(SourceFile file) {
 System.out.println("File: " + file.getName() + " saved!");
 }
 default void open(SourceFile file) {
 System.out.println("File: " + file.getName() + " open!");
 }
 default void close(SourceFile file) {
 System.out.println("File: " + file.getName() + " closed!");
 }
 default void update(SourceFile file, String testo) {
 System.out.println("File: " + file.getName() + " updated!");
 }
}

We have created default methods that simulate the real execution just printing a simple
sentence.

Solution 8.j)

The code of the requested interface could be:

public interface IDE extends Editor {
 default void compile(SourceFile file) {
 System.out.println("File: " + file.getName() + " compiled!");
 }

 default void execute(SourceFile file) {
 System.out.println("File: " + file.getName() + " executed!");
 }
}

Chapter 8 Exercise Solutions

239
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Also in this case, we have created default methods that simulate the real execution just printing
a simple sentence.

Solution 8.k)

The code of the requested class could be:

public class JavaIDE implements IDE {
 @Override
 public void update(SourceFile file, String text) {
 IDE.super.update(file, text);
 file.addText(text);
 System.out.println("Content updated:\n" + file.getContent());
 }
}

Solution 8.l)

The code of the requested class could be:

public class IDETest {
 public static void main(String args[]) {
 IDE ide = new JavaIDE();
 SourceFile sourceFile = new SourceFile("Test.java",
 FileType.JAVA, "public class MyClass {\n\r");
 ide.update(sourceFile, "}");
 }
}

The output will be:

File: Test.java updated!
Content updated:
public class MyClass {

}

Solution 8.m)

We moved the Item, Album and Book classes in the bookshop.data package, the GenreUtils,
LiteraryGenreUtils and MusicalGenreUtils classes within the bookshop.util package, the
ItemsTest class within the bookshop.test package, finally we leaved the bookshop.business
package empty, since for now we don’t yet have classes that encapsulate business logic.
To create the required toString() methods in the Book and Album classes, let’s also take advan-
tage of their abstract superclass Item, which we rewrite below (changes in bold):

Chapter 8 Exercise Solutions

240
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

package bookstore.data;

public abstract class Item {
 private static final char CURRENCY = '$';
 private String id;
 private String title;
 private String name;
 private int price;
 private String genre;

 public Item(String id, String title, String name, int price, String genre) {
 super();
 setId(id);
 setTitle(title);
 setName(name);
 setPrice(price);
 setGenre(genre);
 }

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getPrice() {
 return price;
 }

 public void setPrice(int price) {
 this.price = price;
 }

Chapter 8 Exercise Solutions

241
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public String getGenre() {
 return genre;
 }

 public void setGenre(String genre) {
 this.genre = genre;
 }

 @Override
 public String toString() {
 return ": (" + getId() + ") " + getTitle() + " di " + getName() +
 ", " + getGenre() + ", " + getPrice() + " " + CURRENCY;
 }
}

Note that we have also introduced a private and static CURRENCY constant to represent the price
currency.
We can then rewrite the toString() method in the Book subclass as follows (changes in bold):

package bookstore.data;

import bookstore.util.*;

public class Book extends Item {

 public Book(String isbn, String title, String author, int price, String genre) {
 super(isbn, title, author, price, genre);
 }

 public void setGenre(String genre) {
 if (LiteraryGenreUtils.isValidGenre(genre)) {
 super.setGenre(genre);
 } else {
 LiteraryGenreUtils.printError(genre);
 }
 }

 @Override
 public String toString() {
 return "Book" + super.toString();
 }
}

And we can then rewrite the toString() method in the Album subclass in the following way
(changes in bold):

package bookstore.data;

import bookstore.util.*;

Chapter 8 Exercise Solutions

242
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Album extends Item {
 public Album(String ismn, String title, String artist, int price, String genre) {
 super(ismn, title, artist, price, genre);
 }

 public void setGenre(String genre) {
 if (MusicalGenreUtils.isValidGenre(genre)) {
 super.setGenre(genre);
 } else {
 MusicalGenreUtils.printError(genre);
 }
 }

 @Override
 public String toString() {
 return "Album" + super.toString();
 }
}

Finally let’s modify the ItemsTest class in the following way (changes in bold):

package bookstore.test;

import bookstore.data.*;
import bookstore.util.*;

public class ItemsTest {
 public static void main(String[] args) {
 Book jfaVol1 = new Book("979-12-200-4915-3",
 "Java for Aliens Vol. 1","Claudio De Sio Cesari", 25,
 LiteraryGenreUtils.HANDBOOK);
 Book jfaVol2 = new Book("979-12-200-4916-0",
 "Java for Aliens Vol. 2","Claudio De Sio Cesari", 25,"NonExisting");
// System.out.println("Genre JFA Vol 1 = " + jfaVol1.getGenre());
// System.out.println("Genre JFA Vol 2 = " + jfaVol2.getGenre());
 System.out.println(jfaVol1);
 System.out.println(jfaVol2);
 Album lad = new Album("979-0-236-44-3","Live after Death","Iron Maiden",
 25, MusicalGenreUtils.ROCK);
 Album mop = new Album("978-0-789-01-2","Master of Puppets","Metallica",
 25,"NonExisting");
// System.out.println("Genre Live after Death = "+ lad.getGenre());
// System.out.println("Genre Master of Puppets = "+ mop.getGenre());
 System.out.println(lad);
 System.out.println(mop);
 }
}

Obviously the toString() method is automatically called by the println() method. The out-

Chapter 8 Exercise Solutions

243
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

put of the previous class will be the following:

Genre NonExisting not valid! Please, use one of the following genres:
Romance
Essay
Thriller
Handbook
Scifi
Book: (979-12-200-4915-3) Java for Aliens Vol. 1 di Claudio De Sio Cesari, Handbook, 25 $
Book: (979-12-200-4916-0) Java for Aliens Vol. 2 di Claudio De Sio Cesari, null, 25 $
Genre NonExisting not valid! Please, use one of the following genres:
Rock
Jazz
Blues
Pop
Rap
Album: (979-0-236-44-3) Live after Death di Iron Maiden, Rock, 25 $
Album: (978-0-789-01-2) Master of Puppets di Metallica, null, 25 $

Solution 8.n)

We could implement the ShoppingCart class in the following way:

package bookstore.data;

import java.util.ArrayList;
import java.util.List;

public class ShoppingCart {
 private static final int ITEMS_MAX_NUMBER = 4;
 private Item[] items;

 public ShoppingCart() {
 items = new Item[ITEMS_MAX_NUMBER];
 }

 public void add(Item item) {
 for (int i = 0; i < items.length; i++) {
 if (items[i]==null) {
 items[i] = item;
 return;
 }
 }
 System.out.println("Cannot add Item: shopping cart full!");
 }

 public boolean isEmpty() {
 return items[0] == null;
 }

Chapter 8 Exercise Solutions

244
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public int calculatePrice() {
 int shoppingCartPrice = 0;
 for (Item item : items) {
 shoppingCartPrice += item.getPrice();
 }
 return shoppingCartPrice;
 }

 public String toString() {
 String shoppingCartDescription =
 "The shopping cart contains the following items:\n";
 for (Item item : items) {
 shoppingCartDescription += item + "\n";
 }
 return shoppingCartDescription;
 }
}

While we could implement the ShoppingCartTest class (within the bookshop.test package)
in the following way:

package bookstore.test;
import bookstore.data.*;
import bookstore.util.*;

public class ShoppingCartTest {
 public static void main(String[] args) {
 Book jfaVol1 = new Book("979-12-200-4915-3", "Java for Aliens Vol. 1",
 "Claudio De Sio Cesari", 25, LiteraryGenreUtils.HANDBOOK);
 Book jfaVol2 = new Book("979-12-200-4916-0","Java for Aliens Vol. 2",
 "Claudio De Sio Cesari", 25, LiteraryGenreUtils.HANDBOOK);
 Album lad = new Album("979-0-236-44-3","Live after Death","Iron Maiden",
 25, MusicalGenreUtils.ROCK);
 Album mop = new Album("978-0-789-01-2","Master of Puppets","Metallica",
 25, MusicalGenreUtils.ROCK);
 Album tt = new Album("978-0-789-01-9","Tokyo Tapes","Scorpions", 22,
 MusicalGenreUtils.ROCK);
 ShoppingCart shoppingCart = new ShoppingCart();
 System.out.println("ShoppingCart empty = " + shoppingCart.isEmpty());
 System.out.println("Adding the book " + jfaVol1);
 shoppingCart.add(jfaVol1);
 System.out.println("Adding the book " + jfaVol2);
 shoppingCart.add(jfaVol2);
 System.out.println("Adding the album " + lad);
 shoppingCart.add(lad);
 System.out.println("Adding the album " + mop);
 shoppingCart.add(mop);
 System.out.println("Adding the album " + tt);
 shoppingCart.add(tt);

Chapter 8 Exercise Solutions

245
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println("ShoppingCart Empty = " + shoppingCart.isEmpty());
 System.out.println(shoppingCart);
 }
}

The output of the ShoppingCartTest class follows:

ShoppingCart empty = true
Adding the book Book: (979-12-200-4915-3) Java for Aliens Vol. 1 di Claudio De Sio Cesari,
 Handbook, 25 $
Adding the book Book: (979-12-200-4916-0) Java for Aliens Vol. 2 di Claudio De Sio Cesari,
 Handbook, 25 $
Adding the album Album: (979-0-236-44-3) Live after Death di Iron Maiden, Rock, 25 $
Adding the album Album: (978-0-789-01-2) Master of Puppets di Metallica, Rock, 25 $
Adding the album Album: (978-0-789-01-9) Tokyo Tapes di Scorpions, Rock, 22 $
Cannot add Item: shopping cart full!
ShoppingCart Empty = false
The shopping cart contains the following items:
Book: (979-12-200-4915-3) Java for Aliens Vol. 1 di Claudio De Sio Cesari, Handbook, 25 $
Book: (979-12-200-4916-0) Java for Aliens Vol. 2 di Claudio De Sio Cesari, Handbook, 25 $
Album: (979-0-236-44-3) Live after Death di Iron Maiden, Rock, 25 $
Album: (978-0-789-01-2) Master of Puppets di Metallica, Rock, 25 $

Solution 8.o) Varargs, True or False:

True.

False.

False.

True.

True.

True.

False.

True.

False.

 True.

Solution 8.p)

The true answers are the 1, the 2, the 3 and the 5. The number 5 is true because the inherited
method is implicitly public, and redefining it without the public modifier, we are making it less

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 8 Exercise Solutions

246
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

accessible than the inherited one. In fact, by compiling class D, we will get the following error:

error: metodo() in D cannot implement method() in A
 void method () {}
 ^
 attempting to assign weaker access privileges; was public
1 error

Solution 8.q)

The correct statements are 2, 3 and 4.

Solution 8.r)

The right answer is number 3. In fact, the print() method, which takes a double as input, of
the superclass PrintNumber is always called, and this explains the format of the output. The
reason why the method in the PrintInteger subclass is not called in virtual mode, is because it
is not an override, since the type of parameter is different between the two methods. Since this
is not an override, using a superclass reference, the only method that can be called, is precisely
that of the superclass.

Solution 8.s)

The only correct answer is number 4.

Solution 8.t)

Overload: since a method is uniquely determined by its signature, in a class (or an interface)
it is possible to create multiple methods with the same identifier but with a different list of
parameters. In cases like this, we can speak of method overloading.
Override: it allows to rewrite in a subclass a method inherited from a superclass (or
interface).
We can obtain an example of a subclass, which implements both concepts, by modifying the
classes of exercise 8.r:

public class PrintNumber {
 public void print(double number){
 System.out.print(number);
 }
}

Chapter 8 Exercise Solutions

247
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class PrintInteger extends PrintNumber{
 //overload
 public void print(int number) {
 System.out.print(number);
 }
 //override
 public void print(double number) {
 System.out.print(number);
 }
}

Solution 8.u)

The correct statements are the numbers 1 and 4.
Statement 2 is not correct because the return type of the SumInteger class is covariant (see
section 8.2.3.1). Statement 3 is not correct because there is autoboxing-unboxing, which we
have already discussed in sections 3.3.2 and 4.3.4.1, and which we will further discuss in sections
12.1.2 and 13.6.
The number 4 is correct because if for example we execute this code:

SumInteger sumInteger = new SumInteger();
sumInteger.sum(1.0, 1.0);

we will get this exception at runtime:

Exception in thread "main" java.lang.ClassCastException:
 java.base/java.lang.Double cannot be cast to
 java.base/java.lang.Integer
	 at SumInteger.sum(SumInteger.java:4)
	 at SumInteger.main(SumInteger.java:9)

Much of Chapter 9 is dedicated to exception handling.

Solution 8.v)

A possible solution could be the following:

public class SumInteger extends SumNumber {
 @Override
 public Integer sum(Number n1, Number n2) {
 if (n1 == null || n2 == null) {
 System.out.println("Impossible to sum a null operand, " +
 "retrieving the default value");

Chapter 8 Exercise Solutions

248
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 return Integer.MIN_VALUE;
 } else if (!(n1 instanceof Integer && n2 instanceof Integer)){
 System.out.println("Pass integer variables only, " +
 "retrieving the default value");
 return Integer.MIN_VALUE;
 }
 return (Integer)n1 + (Integer)n2;
 }
}

By performing the following main() method in fact:

 public static void main(String args[]) {
 SumInteger sumInteger = new SumInteger();
 sumInteger.sum(1.0, 1.0);
 sumInteger.sum(null, 1.0);
 }

we will get the following output and no exceptions:

Pass integer variables only, retrieving the default value
Impossible to sum a null operand, retrieving the default value

Note that the first check on the nullity of the parameters is necessary because it is not possible
to use the cast on a null variable, nor use the + operator.

Solution 8.w)

A polymorphic parameter is a parameter of a declared method of a certain type (maybe
abstract), but that will point to an instance of its own subclass at runtime.
Heterogeneous collections are collections of different objects, such as an array of Number,
which contains objects of its subclasses such as Integer.
A virtual call to a method is obtained, when a method is invoked using a reference of a super-
class (that can be abstract) that is actually redefined in a subclass.

Solution 8.x)

Let’s rewrite the Contact and Special classes by eliminating the printDetails() method,
and replace it with the override of the toString() method. First, let’s also insert the following
toString() method within the Entity class

 @Override
 public String toString() {
 return "Id=" + getId();
 }

Let’s call this method in the toString() method of the Contact subclass in the following way:

Chapter 8 Exercise Solutions

249
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 @Override
 public String toString() {
 return super.toString() + "\nName=" + name +
 "\nPhone number=" + phoneNumber + "\nAddress=" + address;
 }

So, we can greatly simplify the toString() method of the Special class:

 @Override
 public String toString() {
 return super.toString() + "\nRingtone=" + ringtone;
 }

We could implement the PhoneBook class in the following way (changes in bold):

package phonebook.data;

public class PhoneBook implements Data {
 private static PhoneBook instance;
 public Contact[] contacts;

 private PhoneBook () {
 contacts = new Contact[]{new Contact("Claudio De Sio Cesari",
 "13, Java Street", "131313131313"),
 new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),
 new Contact("Gennaro Capuozzo", "1, Four Days of Naples Square",
 "1111111111"),
 new Special("Mario Ruoppolo", "Neruda Street, 3", "333333",
 "The Postman"),
 new Special("Vincenzo Malinconico", "Courts Street, 8", "888888",
 "Tuca Tuca"),
 new Special("Logan Howlett", "Canada Square, 6", "66666", "Hurt")
 };
 }

 public static PhoneBook getInstance() {
 if (instance == null) {
 instance = new PhoneBook();
 }
 return instance;
 }

 public Contact[] getContacts() {
 return contacts;
 }

 public Special[] getSpecialContacts() {
 Special[] specialContactsFound = new Special[contacts.length];
 for (int i = 0, j = 0; i < contacts.length; ++i) {
 System.out.println(contacts[i]);

Chapter 8 Exercise Solutions

250
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 if (contacts[i] == null) {
 break;
 }
 if (contacts[i] instanceof Special) {
 specialContactsFound[j] = (Special)contacts[i];
 j++;
 }
 }
 return specialContactsFound;
 }
}

While the User class may undergo small changes (in bold):

package phonebook.business;
import phonebook.data.*;

public class User {
 public Contact[] searchContactsByName(String name) {
 Contact[]contacts = PhoneBook.getInstance().getContacts();
 Contact []contactsFound = new Contact[contacts.length];
 for (int i = 0, j = 0; i < contactsFound.length; i++) {
 if (contacts[i] == null) {
 break;
 }
 if (contacts[i].getName().toUpperCase().contains(name.toUpperCase())) {
 contactsFound[j] = contacts[i];
 j++;
 }
 }
 return contactsFound;
 }

 public Special[] searchSpecialContactsByName(String name) {
 Special[]specialContacts = PhoneBook.getInstance().getSpecialContacts();
 Special[]specialContactsFound = new Special[specialContacts.length];
 for (int i = 0, j = 0; i < specialContacts.length; i++) {
 if (specialContacts[i] == null) {
 break;
 }
 if (specialContacts[i].getName().toUpperCase().contains(name.toUpperCase())) {
 specialContactsFound[j] = specialContacts[i];
 j++;
 }
 }
 return specialContactsFound;
 }
}

Chapter 8 Exercise Solutions

251
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Also for the classes SearchContacts and SearchSpecialContacts the changes are minimal
(in bold), and concern the printing of objects using the toString() method, instead of the
printDetails() method. The SearchContacts class follows:

package phonebook.ui;

import phonebook.data.*;
import phonebook.business.User;
import java.util.Scanner;

public class SearchContacts {
 public static void main(String args[]) {
 System.out.println("Search Contacts");
 System.out.println();
 var user = new User();
 System.out.println("Enter name or part of the name to be searched");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.nextLine();
 Contact[] foundContacts = user.searchContactsByName(input);
 System.out.println("Contacts found with name containing \"" + input
 + "\"");
 for (Contact contact : foundContacts) {
 if (contact != null) {
 System.out.println(contact + "\n");
 }
 }
 }
}

And finally, the SearchSpecialContacts class:

package phonebook.ui;
import phonebook.data.*;
import phonebook.business.User;
import java.util.Scanner;

public class SearchSpecialContacts {
 public static void main(String args[]) {
 System.out.println("Search Special Contacts");
 System.out.println();
 var user = new User();
 System.out.println("Enter name or part of the name to be searched");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.nextLine();
 Special[] specialContactsFound =
 user.searchSpecialContactsByName(input);
 System.out.println("Special Contacts found with name containing \"" +
 input + "\"");

Chapter 8 Exercise Solutions

252
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 for (Special special : specialContactsFound) {
 if (special != null) {
 System.out.println(special + "\n");
 }
 }
 }
}

Solution 8.y)

We could write the getOrdinaryContacts() method in the PhoneBook class as follows:

 public Contact[] getOrdinaryContacts() {
 Contact[] ordinaryContactsFound = new Contact[contacts.length];

 for (int i = 0, j = 0; i < contacts.length; ++i) {
 if (contacts[i] == null) {
 break;
 }
 if (!(contacts[i] instanceof Special)) {
 ordinaryContactsFound[j] = contacts[i];
 j++;
 }
 }

 return ordinaryContactsFound;
 }

While the method looks searchOrdinaryContactsByName() in the User class could be as
follows:

 public Contact[] searchOrdinaryContactsByName(String name) {
 Contact[]ordinaryContacts = PhoneBook.getInstance().getOrdinaryContacts();
 Contact[]ordinaryContactsFound = new Contact[ordinaryContacts.length];

 for (int i = 0, j = 0; i < ordinaryContacts.length; i++) {
 if (ordinaryContacts[i] == null) {
 break;
 }
 if (ordinaryContacts[i].getName().toUpperCase().contains(name.toUpperCase())) {
 System.out.println(ordinaryContacts[i]);
 ordinaryContactsFound[j] = ordinaryContacts[i];
 j++;
 }
 }

 return ordinaryContactsFound;
 }

Chapter 8 Exercise Solutions

253
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Finally, we could implement the SearchOrdinaryContacts class as follows:

package phonebook.ui;
import phonebook.data.*;
import phonebook.business.User;
import java.util.Scanner;

public class SearchOrdinaryContacts {
 public static void main(String args[]) {
 System.out.println("Search Ordinary Contacts");
 System.out.println();
 var user = new User();
 System.out.println("Enter name or part of the name to be searched");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.nextLine();
 Contact[] ordinaryContactsFound = user.searchOrdinaryContactsByName(input);
 System.out.println("Ordinary Contacts found with name containing \"" +
 input + "\"");
 for (Contact ordinary : ordinaryContactsFound) {
 if (ordinary != null) {
 System.out.println(ordinary + "\n");
 }
 }
 }
}

Solution 8.z)

We could implement the required ContactFactory class, creating an overload for the method
called getContact():

package phonebook.data;

import phonebook.data.Special;
import phonebook.data.Contact;

public class ContactFactory {

 public static Contact getContact(String name, String phoneNumber,
 String address) {
 return new Contact(name, phoneNumber, address);
 }

 public static Special getContact(String name, String phoneNumber,
 String address, String ringtone) {
 return new Special(name, phoneNumber, address, ringtone);
 }
}

Chapter 8 Exercise Solutions

254
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

We have changed the constructor of the PhoneBook class as follows (changes in bold):

 private PhoneBook () {
 contacts = new Contact[] {
 new Contact("Claudio De Sio Cesari","13, Java Street","131313131313"),
 new Contact("Stevie Wonder","10, Music Avenue","1010101010"),
 new Contact("Gennaro Capuozzo",
 "1, Four Days of Naples Square","1111111111"),
 new Special("Mario Ruoppolo","Neruda Street, 3","333333",
 "The Postman"),
 new Special("Vincenzo Malinconico","Courts Street, 8","888888",
 "Tuca Tuca"),
 new Special("Logan Howlett","Canada Square, 6","66666","Hurt"),
 null,
 null,
 null,
 null
 } ;
 }

We have modified the User class, not only by adding the required add() method, but also by
introducing the phoneBook instance variable, and a constructor that initializes it (changes in
bold):

package phonebook.business;
import phonebook.data.*;

public class User {
 private PhoneBook phoneBook;

 public User() {
 phoneBook = PhoneBook.getInstance();
 }

 public Contact[] searchContactsByName(String name) {
 Contact[]contacts = phoneBook.getContacts();
 Contact[]contactsFound = new Contact[contacts.length];
 for (int i = 0, j = 0; i < contacts.length; i++) {
 if (contacts[i] == null) {
 break;
 }
 if (contacts[i].getName().toUpperCase().
 contains(name.toUpperCase())) {
 contactsFound[j] = contacts[i];
 j++;
 }
 }
 return contactsFound;
 }

Chapter 8 Exercise Solutions

255
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public Special[] searchSpecialContactsByName(String name) {
 Special[]specialContacts = phoneBook.getSpecialContacts();
 Special[]specialContactsFound = new Special[specialContacts.length];

 for (int i = 0, j = 0; i < specialContacts.length; i++) {
 if (specialContacts[i] == null) {
 break;
 }
 if (specialContacts[i].getName().toUpperCase().
 contains(name.toUpperCase())) {
 specialContactsFound[j] = specialContacts[i];
 j++;
 }
 }

 return specialContactsFound;
 }

 public Contact[] searchOrdinaryContactsByName(String name) {
 Contact[]ordinaryContacts = phoneBook.getOrdinaryContacts();
 Contact[]ordinaryContactsFound = new Contact[ordinaryContacts.length];

 for (int i = 0, j = 0; i < ordinaryContacts.length; i++) {
 if (ordinaryContacts[i] == null) {
 break;
 }
 if (ordinaryContacts[i].getName().toUpperCase().
 contains(name.toUpperCase())) {
 System.out.println(ordinaryContacts[i]);
 ordinaryContactsFound[j] = ordinaryContacts[i];
 j++;
 }
 }

 return ordinaryContactsFound;
 }

 public void add(Contact contactToAdd) {
 Contact[] contacts = phoneBook.getContacts();
 for (int i = 0; i < contacts.length; ++i) {
 if (contacts[i] == null) {
 contacts[i] = contactToAdd;
 break;
 }
 }
 }
}

In fact, if we had not also created the instance variable and the constructor, we could have had

Chapter 8 Exercise Solutions

256
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

an unexpected situation regarding the class SearchContacts, which we decided to modify it in
the following way (changes in bold):

package phonebook.ui;

import phonebook.data.*;
import phonebook.business.User;
import java.util.Scanner;

public class SearchContacts {
 public static void main(String args[]) {
 System.out.println("Search Contacts");
 System.out.println();
 var user = new User();
 Contact newContact = ContactFactory.getContact(
 "Molly Malone", "123456789", "Suffolk St, Dublin 2, D02 KX03, Ireland");
 Special specialContact = ContactFactory.getContact(
 "Phil Lynott", "987654321", "Harry St, Dublin, Ireland", "Rosalie");
 user.add(newContact);
 user.add(specialContact);
 System.out.println("Enter name or part of the name to be searched");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.nextLine();
 Contact[] foundContacts = user.searchContactsByName(input);
 System.out.println("Contacts found with name containing \"" + input
 + "\"");
 for (Contact contact : foundContacts) {
 if (contact != null) {
 System.out.println(contact + "\n");
 }
 }
 }
}

If we had not introduced the variable and the constructor in the PhoneBook class, the objects
instantiated in the main() method newContact and specialContact, would have had id = 1
and id = 2 respectively. In fact, the getSerialNumber() method of the Counter class, called by
the constructor of the Contact class, would have been called first for these two instances, while
the getInstance() method of the PhoneBook class, which in turn would have initialized the
contact array, would have been called later. Therefore, we would have had that id of the original
contacts created in the constructor of the PhoneBook class, would have started from number 3.

257
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9
Exercises

Exceptions and assertions

Exception handling is a key topic, it is very important to learn every detail (they are not so
many). The assertions are much less used, but could be used profitably.

Exercise 9.a) Exceptions and Errors Handling, True or False:

Any exception that extends ArithmeticException is an unchecked exception.

An Error differs from an Exception because it cannot be launched; in fact, it does not
extend the Throwable class.

The following code:

int a = 10;
int b = 0;
try {
 int c = a/b;
 System.out.println(c);
}
catch (ArithmeticException exc) {
 System.out.println("Division by zero...");
}
catch (NullPointerException exc) {
 System.out.println("Null reference...");
}
catch (Exception exc) {
 System.out.println("Generic exception...");
}

1.

2.

3.

Chapter 9 Exercises

258
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

finally {
 System.out.println("Finally!");
}

will produce the following output:

Division by zero...
Generic exception...
Finally!

The following code:

int a = 10;
int b = 0;
try {
 int c = a/b;
 System.out.println(c);
}
catch (Exception exc) {
 System.out.println("Generic exception...");
}
catch (ArithmeticException exc) {
 System.out.println("Division by zero...");
}
catch (NullPointerException exc) {
 System.out.println("Null reference...");
}
finally {
 System.out.println("Finally!");
}

will cause an exception at runtime.

The throw keyword allows you to “throw” only the subclasses of Exception that are de-
fined by the programmer.

The throw keyword allows you to “throw” only the subclasses of Exception.

If a method uses the throw keyword, in the same method the exception to be thrown
must be handled, or the method itself must use a throws clause.

The Error class cannot be extended.

If a m2() method overrides a m2() method inherited from the superclass, it can declare
new exceptions with the throws clause, only if these are subclasses with respect to those
declared by the throws clause of the m2() method of the superclass.

 From version 1.4 of Java it is possible to “wrap” another exception in an exception.

4.

5.

6.

7.

8.

9.

10.

Chapter 9 Exercises

259
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 9.b) Exception Handling, True or False:

If an assertion is not verified in an application, we must talk about bugs.

An assertion that is not verified causes the JVM to launch an AssertionError.

The preconditions serve to test the correctness of the parameters of public methods.

The use of assertions is not recommended to test the correctness of data entered by a
user.

A postcondition is useful to verify that an assertion is verified at the end of a method.

An internal invariant allows to test the correctness of the flows within the methods.

A class invariant is a particular internal invariant that must be verified for all instances
of a certain class, at any time of their life cycle, except during the execution of some
methods.

An invariant on the execution flow, it is usually an assertion with a syntax like:
assert false;

It is not possible to compile a program that makes use of assertions with the JDK 1.3.

 It is not possible to run a program that makes use of assertions with the JDK 1.3.

Exercise 9.c)

Consider the classes created in the exercises of Chapter 8: File, SourceFile, Editor, IDE and
JavaIDE. We also consider the addText(String) method of the SourceFile class we created in
exercise 8.f, which we coded in the following way:

 public void addText(String text) {
 if (content == null) {
 content ="";
 }
 if (text != null) {
 content += text;
 }
 }

The control of the if clause can certainly be improved. What would you use in this case, asser-
tions or exceptions?

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 9 Exercises

260
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 9.d)

(SPOILER ALERT: next lines will reveal the solution of the previous
exercise!)

After reading the solution of the previous exercise, use the keywords throw and (possibly)
throws to handle any exceptions in the addText(String) method mentioned in the previous
exercise.

Exercise 9.e)

Now let’s consider the method addText(String, int) that we created in exercise
8.g and that we coded in the following way:

 public void addText(String text, int position) {
 final int length = content.length();
 if (content != null && text != null && position > 0
 && position < length) {
 content = content.substring(0, position) + text +
 content.substring(position);
 }
 }

Handle an exception (or multiple exceptions) using the try-catch keywords, and possibly also
the finally clause.

Exercise 9.f)

After doing the previous exercise, create a SourceFileTest test class to verify that
exception handling works correctly.

Exercise 9.g)

Consider the sources created with the exercises of Chapter 6. Create custom ex-
ceptions to handle unexpected situations. In particular, create an exception
that is triggered in the Purse class constructor when too many coins are specified, call it
FullPurseException. Handle the exception in the constructor by instantiating the object with
a limited number of elements (i.e. without changing the behavior already defined in the exer-
cise of Chapter 6). Also handle the NullPointerException (which statement could generate
this exception?).

Chapter 9 Exercises

261
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 9.h)

Consider the sources created with the exercises of Chapter 6. Use custom exception
handling to handle unexpected situations. In particular, use the FullPurseException
exception to be thrown in the add() method we defined in the following way:

 public void add(Coin coin) {
 System.out.println("Let's try adding one " +
 coin.getDescription());
 int freeIndex = firstFreeIndex();
 if (freeIndex == -1) {
 System.out.println("Purse full! The coin " +
 coin.getDescription() + " has not been added!");
 } else {
 coins[freeIndex] = coin;
 System.out.println(coin.getDescription() + " has been added");
 }
 }

Let the FullPurseException exception be thrown appropriately. Also handle any other
exceptions.

Exercise 9.i)

Consider the sources created with the exercises of Chapter 6. Create custom excep-
tions to handle unexpected situations. In particular, use the CoinNotFoundException
exception to be thrown in the withdraw() method that we defined in the following way:

 public Coin withdraw(Coin coin) {
 System.out.println("Let's try to get a " +
 coin.getDescription());
 Coin foundCoin = null;
 int foundCoinIndex = foundCoinIndex(coin);
 if (foundCoinIndex == -1) {
 System.out.println("Coin not found!");
 } else {
 foundCoin = coin;
 coins[foundCoinIndex] = null;
 System.out.println("One " + coin.getDescription() + " withdraw");
 }
 return foundCoin;
 }

Let the CoinNotFoundException exception be thrown appropriately. Also handle any other
exceptions.

Chapter 9 Exercises

262
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 9.l)

Let’s consider the sources created with the exercises created of Chapter 6. Modify
the CoinsTest class to correctly handle the FullPurseException exception.

Exercise 9.m)

Add assertions in the Purse class constructor.

Exercise 9.n)

Which of the following statements are correct?

The RuntimeException are unchecked exception.

ArithmeticException is a checked exception.

ClassCastException is an unchecked exception.

NullPointerException is a checked exception.

Exercise 9.o)

Which of the following statements are correct?

In the throws clause it is possible to declare only checked exceptions.

In the throws clause it is possible to declare only unchecked exceptions.

In the throws clause it is possible to declare a NullPointerException.

With the throw keyword it is possible to throw only checked exceptions.

With the throw clause it is possible to throw only unchecked exception.

The throws clause is mandatory if a checked exception could be launched in our
method.

A method that declares a throws clause, can only be invoked if it is handled within a
try-catch block.

Exercise 9.p)

Which of the following statements are correct?

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

7.

Chapter 9 Exercises

263
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

New exceptions can only be defined as checked exception.

If we define a subclass of NullPointerException, it can be caught as a
NullPointerException.

If we define a subclass of NullPointerException, it will be caught instead of the
NullPointerException.

If we define a subclass of ArithmeticException, it will be thrown in case there is a prob-
lem in an arithmetic operation.

Exercise 9.q)

Not taking into account the try-with-resources construct, the finally block is mandatory
(choose all valid statements):

When there are no catch blocks after a try block.

When there are no try blocks before a catch block.

When there are at least two catch blocks after a try block.

Never.

Exercise 9.r)

Considering the following method:

public void methodThatThrowsAnException() throws ArrayIndexOutOfBoundsException{
 //INSERT CODE HERE
}

Choose from the following snippets those that could be written in the method
methodThatThrowsAnException() method, so that it is valid:

throw new ArrayIndexOutOfBoundsException();

int i=0, j=0;
try {
 i = i/j;
} catch(ArithmeticException e) {
 throw new ArrayIndexOutOfBoundsException ();
}

int i = 0;

System.out.println();

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

Chapter 9 Exercises

264
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 9.s)

Considering the following class:

public class Exercise9S {
 public static void main(String args[]) throws NullPointerException {
 Exercise9S e = new Exercise9S();
 e.method();
 }

 public NullPointerException method() throws NullPointerException {
 String s = null;
 try {
 s.toString();
 } catch(ArithmeticException e) {
 throw new NullPointerException ();
 }
 return null;
 }
}

Which of the following statements are correct?

The code does not compile because the method() method cannot return
NullPointerException.

The code does not compile because the method() method returns null and not a
NullPointerException.

The code does not compile because the main() method does not declare the right excep-
tion in its throws clause.

The code compiles but at runtime ends with a NullPointerException.

The code compiles but at runtime ends with an Exception.

The code compiles but at runtime ends with an ArithmeticException.

Exercise 9.t)

Create a SlidingDoor class that declares two methods, open() and close(), where the latter
must be compatible to be called with the try-with-resources technique.

Exercise 9.u)

Considering the solution of the exercise 9.t (i.e. the SlidingDoor class): write a simple class that
tests its operation by using the try-with resource construct.

1.

2.

3.

4.

5.

6.

7.

Chapter 9 Exercises

265
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 9.v)

Let’s continue with exercise 8.u where we had verified that the following classes compile with-
out errors, but that SumInteger could throw an exception at runtime.

public abstract class SumNumber {
 public abstract Number sum(Number n1, Number n2);
}

public class SumInteger extends SumNumber{
 @Override
 public Integer sum(Number n1, Number n2) {
 return (Integer)n1 + (Integer)n2;
 }
}

In fact, with the following instructions:

SumInteger sumInteger = new SumInteger();
sumInteger.sum(1.0, 1.0);

we will get the following exception at runtime:

Exception in thread "main" java.lang.ClassCastException:
 java.base/java.lang.Double cannot be cast to
 java.base/java.lang.Integer
	 at SumInteger.sum(SumInteger.java:4)
	 at SumInteger.sum(SumInteger.java:9)

In the exercise 8.v, we asked to make the implementation of the SumInteger class robust, and
the result was the following:

public class SumInteger extends SumNumber {
 @Override
 public Integer sum(Number n1, Number n2) {
 if (n1 == null || n2 == null) {
 System.out.println("Impossible to sum a null operand, " +
 "retrieving the default value");
 return Integer.MIN_VALUE;
 } else if (!(n1 instanceof Integer && n2 instanceof Integer)) {
 System.out.println("Pass integer variables only, " +
 "retrieving the default value");
 return Integer.MIN_VALUE;
 }
 return (Integer)n1 + (Integer)n2;
 }
}

Now that we know the theory of exceptions, redesign the summarized class using exception
handling.

Chapter 9 Exercises

266
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 9.z)

Create a simple test class for the SumInteger class that we created in exercise 9.v.

267
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9
Exercise Solutions

Exceptions and assertions

Solution 9.a) Exceptions and Errors Handling, True or False:

True, because ArithmeticException is subclass of RuntimeException.

False.

False, will produce the following output:

Division by zero...
Finally!

False, will produce a compile-time error (the order of the catch blocks is not valid).

False.

False, only the subclasses of Throwable.

True.

False.

True.

 True.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 9 Exercise Solutions

268
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 9.b) Exception Handling, True or False:

True.

True.

False.

True.

True.

True.

True.

True.

True.

 True.

Solution 9.c)

As we saw in section 9.6.3.1, we should never use assertions to test the parameters of a public
method. So undoubtedly it is more correct to use exception handling.

Solution 9.d)

A possible implementation could be the following:

 public void addText(String text) throws RuntimeException {
 if (content == null) {
 content ="";
 }
 if (text != null) {
 throw new RuntimeException("text = null");
 }
 content += text;
 }

Note that we have thrown a RuntimeException, but we could have thrown any other exception
(e.g. Exception itself). Furthermore, the throws clause next to the method declaration is not
technically mandatory, but advisable.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 9 Exercise Solutions

269
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 9.e)

The code could be similar to the following:

 public void addText(String text, int position) {
 try {
 if (text != null) {
 content = content.substring(0, position) + text +
 content.substring(position);
 }
 } catch (NullPointerException exc) {
 System.out.println("The content is null : " + exc.getMessage());
 content = "" + text;
 } catch (StringIndexOutOfBoundsException exc) {
 System.out.println("The index " + position + " is not valid : " +
 exc.getMessage());
 content = (position < 0 ? text + content : content + text);
 }
 }

In this example we have only checked if the text to be added is null, in which case no opera-
tion is performed. Then we catch the NullPointerException that would occur in the case the
content variable was null. In the catch clause we printed a meaningful message and main-
tained consistency with the method previously presented.
We also handled a StringIndexOutOfBoundsException that would be thrown if the specified
position contained a negative number or a number greater than the size of the file’s contents.
Also in this case, in the catch clause we first printed a meaningful message, and then imple-
mented a solution. In particular, we have ensured that (also using a ternary operator), if the
position variable is specified with a negative value, then the text variable is placed at the
beginning before the content variable (as if value 0 had been specified). If instead it is set with
a value higher than the last index available for the content, then the text variable is added to
the end of the content.
At the end, we can avoid the use of the finally clause.

Solution 9.f)

The code of the SourceFileTest class could be the following:

public class SourceFileTest {
 public static void main(String args[]) {
 SourceFile sourceFile = new SourceFile("Test.java",
 FileType.JAVA,"public class MyClass {\n\r");
 System.out.println(sourceFile.getContent());
 // Test addText(String) correct
 sourceFile.addText("}");

Chapter 9 Exercise Solutions

270
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println(sourceFile.getContent());
 // Test addText(String,int) correct
 sourceFile.addText("//Test adding text\n\r", 23);
 System.out.println(sourceFile.getContent());
 // Test addText(String,int) incorrect
 sourceFile.addText("//Test adding text\n\r", -1);
 System.out.println(sourceFile.getContent());
 // Test addText(String,int) incorrect
 sourceFile.addText("//Test adding text\n\r", 100);
 System.out.println(sourceFile.getContent());
 SourceFile emptySourceFile = new SourceFile("EmptyFile.c",
 FileType.C);
 emptySourceFile.addText("//Test adding text\n\r", 3);
 System.out.println(emptySourceFile.getContent());
 SourceFile emptySourceFile2 = new SourceFile("EmptyFile2.cpp",
 FileType.C_PLUS_PLUS);
 emptySourceFile2.addText("//Test adding text\n\r");

 }
}

Solution 9.g)

The new implementation of the FullPurseException class, could be the following:

public class FullPurseException extends Exception {
 public FullPurseException (String message) {
 super(message);
 }
}

The Purse class constructor implementation, with the new requirements could be transformed
as follows:

 public Purse(int... values) {
 try {
 int numberOfCoins = values.length;
 for (int i = 0; i < numberOfCoins; i++) {
 if (i >= 10) {
 throw new FullPurseException (
 "Only the first 10 coins have been inserted!");
 }
 coins[i] = new Coin(values[i]);
 } catch (FullPurseException | NullPointerException exc) {
 System.out.println(exc.getMessage());
 }
 }

Chapter 9 Exercise Solutions

271
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Note that passing null as argument to the constructor, we could cause a NullPointerException
when the length variable is used.
With a multi-catch we guaranteed the functioning of the constructor without interrupting
the program, printing the message of the problem that could occur. However, it is not cor-
rect in this case to manage these two types of exception in the same way, since in the case of
NullPointerException the printed message will simply be:

null

which is not very explanatory!
It would be better to handle the two exceptions in the following way:

 public Purse(int... values) {
 try {
 int numberOfCoins = values.length;
 for (int i = 0; i < numberOfCoins; i++) {
 if (i >= 10) {
 throw new FullPurseException (
 "Only the first 10 coins have been inserted!");
 }
 coins[i] = new Coin(values[i]);
 }
 // } catch (FullPurseException | NullPointerException exc) {
 } catch (FullPurseException exc) {
 System.out.println(exc.getMessage());
 } catch (NullPointerException exc) {
 System.out.println("The purse has been created empty");
 }
 }

Solution 9.h)

The implementation of the add() method of the Purse class with the new requirements, could
be updated as follows:

 public void add(Coin coin) throws FullPurseException {
 try {
 System.out.println("Let's try adding one " +
 coin.getDescription());
 } catch (NullPointerException exc) {
 throw new NullPointerException("The added coin was null");
 }
 int freeIndex = firstFreeIndex();
 if (freeIndex == -1) {
 throw new FullPurseException("Purse full! The coin "
 + coin.getDescription() + " has not been added!");

Chapter 9 Exercise Solutions

272
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 } else {
 coins[freeIndex] = coin;
 System.out.println(coin.getDescription() + " has been added");
 }
 }

Note that we also handled the NullPointerException by capturing it and raising it with a mes-
sage better than “null”. Also in this case, the exception would occur if the argument was null, as
soon as the getDescription() method was called on the coin object (which would be null).

Solution 9.i)

The requested exception could be the following:

public class CoinNotFoundException extends Exception {
 public CoinNotFoundException(String message) {
 super(message);
 }
}

The code of the withdraw() method of the Purse class, with the new requirements, could be
updated as follows:

 public Coin withdraw(Coin coin) throws CoinNotFoundException {
 try {
 System.out.println("Let's try to get a " +
 coin.getDescription());
 } catch (NullPointerException exc) {
 throw new NullCoinException();
 }
 Coin foundCoin = null;
 int foundCoinIndex = foundCoinIndex(coin);
 if (foundCoinIndex == -1) {
 throw new CoinNotFoundException("Coin not found!");
 } else {
 foundCoin = coin;
 coins[foundCoinIndex] = null;
 System.out.println("One " + coin.getDescription() + " withdrawn");
 }
 return foundCoin;
 }

Note that we also handled the NullPointerException by capturing it and raising it with a mes-
sage better than “null”. Also in this case, the exception would occur if the argument was null, as
soon as the getDescription() method is called on the coin object (which would be null). We
can improve this mechanism by creating another custom exception:

Chapter 9 Exercise Solutions

273
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class NullCoinException extends RuntimeException {
 public NullCoinException() {
 super("The passed coin was null");
 }
}

Note that NullCoinException extends RuntimeException, and therefore it is an unchecked
exception that does not need to be declared in the throws clause of the method that launches
it. And then the add() method can be changed as follows

 public void add(Coin coin) throws FullPurseException {
 try {
 System.out.println("Let's try adding one " +
 coin.getDescription());
 } catch (NullPointerException exc) {
 throw new NullCoinException();
 }
 int freeIndex = firstFreeIndex();
 if (freeIndex == -1) {
 throw new FullPurseException("Purse full! The coin "
 + coin.getDescription() + " has not been added!");
 } else {
 coins[freeIndex] = coin;
 System.out.println(coin.getDescription() + " has been added");
 }
 }

Solution 9.l)

As the previous exercise, the required code could be the following:

/**
 * Test classe for the Coin and Purse classes.
 *
 * @author Claudio De Sio Cesari
*/
public class CoinsTest {

 public static void main(String args[]) {

 Coin twentyCentsCoin = new Coin(20);
 Coin oneCentCoin = new Coin(1);
 Coin oneEuroCoin = new Coin(100);
 // Creation of a Purse with 11 coins
 Purse purseToFail = new Purse(2, 5, 100, 10, 50, 10, 100, 200, 10, 5, 2);
 // Creation of a Purse with 8 coins
 Purse purse = new Purse(2, 5, 100, 10, 50, 10, 100, 200);
 purse.state();

Chapter 9 Exercise Solutions

274
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 try {
 // we add a 20 cents coin
 purse.add(twentyCentsCoin);
 } catch (FullPurseException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }

 try {
 // we add a 1 cents coin
 purse.add(oneCentCoin);
 } catch (FullPurseException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }

 try {
 // We add the eleventh coin (we should get an error and the
 // coin will not be added)
 purse.add(oneEuroCoin);
 } catch (FullPurseException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }

 // We evaluate the status of the purse
 purse.state();

 try {
 // we withdraw 20 cents
 purse.withdraw(twentyCentsCoin);
 } catch (CoinNotFoundException exc) {
 System.out.println(exc.getMessage());
 }

 try {
 // Let's add the tenth coin again
 purse.add(oneEuroCoin);
 } catch (FullPurseException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }

 // We evaluate the status of the purse
 purse.state();

 try {
 // We withdraw a non-existent currency (we should get an error)
 purse.withdraw(new Coin(7));
 } catch (CoinNotFoundException exc) {
 System.out.println(exc.getMessage());
 }

Chapter 9 Exercise Solutions

275
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 try {
 //We try to add null
 purse.add(null);
 } catch (FullPurseException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }

 try {
 //We try to withdraw null
 purse.withdraw(null);
 } catch (CoinNotFoundException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }
 //we test the passage of the null value to the purse constructor
 Purse purseWithNullPointerException = new Purse(null);
 purse.state();
 }
}

whose output will be:

Created a coin of 20 cents of EURO
Created a coin of 1 cent of EURO
Created a coin of 1 EURO
Created a coin of 2 cents of EURO
Created a coin of 5 cents of EURO
Created a coin of 1 EURO
Created a coin of 10 cents of EURO
Created a coin of 50 cents of EURO
Created a coin of 10 cents of EURO
Created a coin of 1 EURO
Created a coin of 2 EURO
Created a coin of 10 cents of EURO
Created a coin of 5 cents of EURO
Only the first 10 coins have been inserted!
Created a coin of 2 cents of EURO
Created a coin of 5 cents of EURO
Created a coin of 1 EURO
Created a coin of 10 cents of EURO
Created a coin of 50 cents of EURO
Created a coin of 10 cents of EURO
Created a coin of 1 EURO
Created a coin of 2 EURO
The purse contains:
One coin of 2 cents of EURO
One coin of 5 cents of EURO
One coin of 1 EURO
One coin of 10 cents of EURO
One coin of 50 cents of EURO
One coin of 10 cents of EURO
One coin of 1 EURO
One coin of 2 EURO

Chapter 9 Exercise Solutions

276
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Let's try adding one coin of 20 cents of EURO
coin of 20 cents of EURO has been added
Let's try adding one coin of 1 cent of EURO
coin of 1 cent of EURO has been added
Let's try adding one coin of 1 EURO
Purse full! The coin coin of 1 EURO has not been added!
The purse contains:
One coin of 2 cents of EURO
One coin of 5 cents of EURO
One coin of 1 EURO
One coin of 10 cents of EURO
One coin of 50 cents of EURO
One coin of 10 cents of EURO
One coin of 1 EURO
One coin of 2 EURO
One coin of 20 cents of EURO
One coin of 1 cent of EURO
Let's try to get a coin of 20 cents of EURO
One coin of 20 cents of EURO withdrawn
Let's try adding one coin of 1 EURO
coin of 1 EURO has been added
The purse contains:
One coin of 2 cents of EURO
One coin of 5 cents of EURO
One coin of 1 EURO
One coin of 10 cents of EURO
One coin of 50 cents of EURO
One coin of 10 cents of EURO
One coin of 1 EURO
One coin of 2 EURO
One coin of 1 EURO
One coin of 1 cent of EURO
Created a coin of 7 cents of EURO
Let's try to get a coin of 7 cents of EURO
Coin not found!
The passed coin was nulll
The passed coin was nulll
The purse has been created empty
The purse contains:
One coin of 2 cents of EURO
One coin of 5 cents of EURO
One coin of 1 EURO
One coin of 10 cents of EURO
One coin of 50 cents of EURO
One coin of 10 cents of EURO
One coin of 1 EURO
One coin of 2 EURO
One coin of 1 EURO
One coin of 1 cent of EURO

Solution 9.m)

We could modify the Purse code in the following way:

Chapter 9 Exercise Solutions

277
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Purse {

 private static final int DIMENSION = 10;
 private final Coin[] coins = new Coin[DIMENSION];

 public Purse(int... values) {
 assert coins.length == DIMENSION;
 try {
 int numberOfCoins = values.length;
 for (int i = 0; i < numberOfCoins; i++) {
 if (i >= 10) {
 throw new FullPurseException (
 "Only the first 10 coins have been inserted!");
 }
 coins[i] = new Coin(values[i]);
 }
 // } catch (FullPurseException | NullPointerException exc) {
 } catch (FullPurseException exc) {
 System.out.println(exc.getMessage());
 } catch (NullPointerException exc) {
 System.out.println("The purse has been created empty");
 }
 assert coins.length == DIMENSION;
 }
//...

Note that we have defined the constant DIMENSION initialized to 10. Then, as assertions we
used a pre-condition and a post-condition. In both cases we have stated the same concept: the
length of the coins array is equal to the DIMENSION value. Note also that with these simple
assertions we are reinforcing the logic of the constructor, it is as if we were saying “whatever
happens, the value of the length of the array cannot change”. In this way our code will remain
consistent with this assertion through all the changes that will be made later.

Solution 9.n)

Only statement number 3 is correct.

Solution 9.o)

The statements number 3 and number 6 are correct. In fact, the throws clause and the throw
command can be used for every type of exception, and this excludes that the statements 1, 2,
4 and 5 are correct. Statement 7 is incorrect because the method that invokes a method that
declares a throws clause, could in turn declare the throws clause!

Chapter 9 Exercise Solutions

278
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 9.p)

None of the statements is correct.

Solution 9.q)

Only the first statement is correct.

Solution 9.r)

All snippets are valid because, in the throws clause, the ArrayIndexOutOfBoundsException
is declared which is an unchecked exception, and which is therefore not explicitly man-
datory. Note that answer 2 throws an ArithmeticException, handles it and raises an
ArrayIndexOutOfBoundsException.

Solution 9.s)

The only correct statement is 3. Its correctness excludes the correctness of statements 4, 5 and
6. The 1 and 2 are false because NullPointerException is still a class.

Solution 9.t)

A simple implementation could be the following:

public class SlidingDoor implements AutoCloseable {
 public void close(){
 System.out.println("The door is closing");
 }

 public void open(){
 System.out.println("The door is opening");
 }
}

Solution 9.u)

The solution could be as simple as the following:

public class Exercise9U {
 public static void main(String args[]) {
 try (SlidingDoor slidingDoor = new SlidingDoor();) {
 slidingDoor.open();
 }
 }
}

Chapter 9 Exercise Solutions

279
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

whose output, once executed, will be:

The door is opening
The door is closing

Solution 9.v)

The solution with exception handling is undoubtedly simpler and more elegant:

public class SumInteger extends SumNumber {
 @Override
 public Integer sum(Number n1, Number n2) {
 Integer result = null;
 try {
 result = (Integer)n1 + (Integer)n2;
 } catch (NullPointerException e) {
 System.out.println("Impossible to sum a null operand");
 } catch (ClassCastException e) {
 System.out.println("Pass only integer variables");
 }
 return result;
 }
}

Solution 9.z)

With the following test class:

public class Exercise9Z {
 private static final String FIRST_PART_OF_THE_STRING ="The result is ";
 public static void main(String args[]) {
 SumInteger sumInteger = new SumInteger();
 System.out.println(FIRST_PART_OF_THE_STRING + sumInteger.sum(1.0, 1.0));
 System.out.println(FIRST_PART_OF_THE_STRING + sumInteger.sum(1, null));
 System.out.println(FIRST_PART_OF_THE_STRING + sumInteger.sum(1, 25));
 }
}

we can verify the expected results.

281
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10
Exercises

A Guided Example to
Object-Oriented Programming

For this chapter we have reserved summary exercises about all the topics that we have studied
so far. All exercises include programming. In particular, in the first part we will create an appli-
cation starting from the Point class that we defined in the Chapter 10, up to graphically drawing
polylines on a Cartesian plane. Then we will create an application that is capable of converting
the values expressed in the Kelvin, Celsius and Fahrenheit scale. Finally, we will create an ap-
plication that simulates a configurable and multi-user text game. From the next chapter on, we
will study more complex topics starting the third part about the “Advanced language features”,
so this is the time to reinforce our programming bases.

Exercise 10.a)

Create:

The Point class with x and y coordinates, the setter and getter methods, a constructor and
a toString() method (which is a method inherited from the Object class, and therefore
inherited in all classes).

The Ruler class declaring a method getDistance() which takes two objects of type Point
as input, and returns the value of the geometric distance as double type. Read the docu-
mentation and take advantage of the methods of the Math class to perform the calcula-
tions. Also consider whether to declare the method as static or not.

1.

2.

Chapter 10 Exercises

282
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Create an Exercise10A class, which prints the distance of two points and check if the
result is correct, using an assertion as seen in chapter 9.

In order to use the assertions, you must enable them at the time of ex-
ecution using the -ea option (see Section 9.4.2). If you use EJE, asser-
tions should already be enabled by default. You can check inside the
EJE options as shown in figure 10.a.1. If you use another IDE instead,
please consult the IDE documentation.

Figure 10.a.1 – Assertions enabling in EJE.

Exercise 10.b)

Starting from the previous exercise, create the Exercise10B class. This time we parameterize
the application using the array of strings args, the input parameter of the main() method. In
particular, when we launch the Exercise10B class, we need to enter the four coordinates of the
two points. For example:

java Exercise10B 2 1 1 2

Since these variables within the main() method will be of the String type, using the documen-
tation of the Integer class, find the correct method that will allow us to transform a string into
an integer, and manage any exception.

The check made with the assertions in the previous exercise is not
required, because we cannot know in advance the values of the coor-
dinates that will be passed as input to the main() method.

3.

Chapter 10 Exercises

283
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 10.c)

Starting from the solution of the previous exercise, create the Exercise10C class using the
Scanner class, to acquire the coordinates of the two points from the command line. This class
must:

Request the insertion of the coordinates (one at a time) to the user.

Acquire the coordinates using the most appropriate Scanner class method (consult the
documentation).

If the user enters a coordinate in an incorrect format (remember that the coordinates
must be integer numbers), the program must manage the exception, print an error
message and terminate.

Below is an example of the output that the application should generate:

Enter the x coordinate of the first point
2
Enter the y coordinate of the first point
1
Point created:(2,1)
Enter the x coordinate of the second point
1
Enter the y coordinate of the second point
2
Point created:(1,2)
Distance between two points: (2,1) and (1,2) = 1.4142135623730951

Exercise 10.d)

Starting from the solution of the previous exercise, create the Exercise10d class, performing
a refactoring on the Exercise10C class, trying to limit the duplicate code and make it more
readable.

Exercise 10.e)

Starting from the solution of the previous exercise, create the class Exercise10E,
making sure that, if the user enters a coordinate with a wrong format (for example
by entering a letter), the application must report the error to allow the user to re-enter the
coordinate. The program must end only when all the coordinates are entered correctly and the
distance is printed. Below is an example of output that could generate the application:

Enter the coordinate x of point 1

1.

2.

3.

Chapter 10 Exercises

284
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

f
Invalid coordinate f! All coordinates must be integers!
 Please enter only integers
2
Enter the coordinate y of point 1
1
Point created: (2,1)
Enter the coordinate x of point 2
1
Enter the coordinate y of point 2
y
Invalid coordinate y! All coordinates must be integers!
 Please enter only integers
foo
Invalid coordinate foo! All coordinates must be integers!
 Please enter only integers
3
Point created: (1,3)
Distance between two points: (2,1) and (1,3) = 2.23606797749979

Exercise 10.f)

Starting from the solution of the previous exercise:

create the Segment class, which abstracts the concept of a straight line between two points.
This class must declare the two extreme points and the length as instance variables. Also
create the setter and getter methods you think you need to implement, a constructor and
a toString() method.

Create the Exercise10F class, similar to the Exercise10E class, which asks for the
coordinates of the two extreme points of the segment and prints its length.

Below is an example of output that could generate the application:

Please define a segment specifying its extreme points:
Edit coordinate x of the extreme point 1
2
Edit coordinate y of the extreme point 1
foo
Invalid coordinate foo! All coordinates must be integers!
 Please enter only integers
3
Point created: (2,3)
Edit coordinate x of the extreme point 2
1
Edit coordinate y of the extreme point 2
1
Point created: (1,1)
Segment from P1(2,3) to P2(1,1) with length = 2.23606797749979

1.

2.

Chapter 10 Exercises

285
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 10.g)

In this exercise we will use a class called CartesianPlane, which will allow us to view our points
on a Cartesian plane.
Unfortunately, unless you have already studied all the chapters in this book, you shouldn’t be
able to understand all the code. However, for the sake of completeness, we report the following
code (in any case, find the class ready in the exercises file in the folder 10.g):

import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Dimension;
import java.util.*;

public class CartesianPlane {
 private final static int LENGTH = 600;
 private final static int MID_LENGTH = LENGTH/2;
 private final static int GAP = LENGTH/10;
 private JFrame frame;
 private JPanel panel;
 private ArrayList<Point> points;

 public CartesianPlane() {
 frame = new JFrame("Cartesian Plane");
 panel = new CartesianPlanePanel();
 points = new ArrayList<>();
 setup();
 addDetails();
 }

 private void setup() {
 frame.add(panel);
 }

 private void addDetails() {
 frame.getContentPane().setPreferredSize(new Dimension(LENGTH , LENGTH));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 }

 public void drawPoint(Point point) {
 points.add(point);

Chapter 10 Exercises

286
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 panel.repaint();
 }

 private class CartesianPlanePanel extends JPanel {
 public CartesianPlanePanel() {
 setBackground(Color.lightGray);
 }

 protected void paintComponent(Graphics g) {
 super.paintComponent(g);
 drawAxes(g);
 g.setColor(Color.RED);
 drawPoints(g);
 }

 private void drawPoints(Graphics g) {
 for (Point point : points) {
 drawPoint(point, g);
 }
 }

 private void drawPoint(Point point, Graphics g) {
 int x = getX(point.getX(), 2);
 int y = getY(point.getY(), 2);
 g.drawOval(x,y,5,5);
 g.fillOval(x,y,5,5);
 g.drawString(point.toString(), x-15, y-8);
 }

 private int getX(int x, int delta) {
 return MID_LENGTH + (gap(x)-delta);
 }

 private int getY(int y, int delta) {
 return MID_LENGTH - (gap(y)+delta);
 }

 private void drawAxes(Graphics g) {
 drawReferencePoints(g);
 g.setColor(Color.BLACK);
 g.drawLine(MID_LENGTH, 0, MID_LENGTH, LENGTH);
 g.drawLine(0, MID_LENGTH, LENGTH, MID_LENGTH);
 }

 private void drawReferencePoints(Graphics g) {
 g.setColor(Color.YELLOW);
 for(int i = 1; i < 10; i++) {
 g.drawLine(GAP*i, 0, GAP*i, LENGTH);
 }

Chapter 10 Exercises

287
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure 10.a.2 – The application in action.

 for(int i = 1; i < 10; i++) {
 g.drawLine(0, GAP*i, LENGTH, GAP*i);
 }
 }

 private int gap(int value) {
 return value*GAP;
 }
 }

 public static void main(String args[]) {
 SwingUtilities.invokeLater(() -> new CartesianPlane());
 }
}

This is the first programming exercise where you will see an application that uses graphics
(the last two chapters of the book are dedicated to this topic). In any case, the purpose of our
exercise is not to understand the CartesianPlane class code, but to use this class by creating
the Exercise10G class starting from the Exercise10F class. The Exercise10G class will have to
open the window containing the Cartesian plane with the following instruction:

SwingUtilities.invokeLater(() -> cartesianPlane = new CartesianPlane());

(also import javax.swing.SwingUtilities).

Chapter 10 Exercises

288
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Also, will have to:

add a new instance variable name to the Point class, with its setter and getter methods and
a new constructor.

Build a point with the coordinates entered by the user. Also set the name of the point,
with an automatic mechanism (for example the first point must be called P1, the second
P2, the third P3, and so on).

Instead of printing the point details on the console, the class must invoke the drawPoint()
method of the CartesianPlane class.

Check that the points are correctly displayed on the Cartesian plane (see Figure 10.a.2).

Exercise 10.h)

Starting from the previous exercise, evolve the Exercise10G class into the Exercise10H class.
This must continue to ask the user to enter the coordinates of a point indefinitely, until the ap-
plication is closed by closing the Cartesian plane window. In this way the user can view multiple
points on the Cartesian axis.

The resolution of this exercise is very simple.

Exercise 10.i)

Starting from the previous exercise, and using the Segment class created in Exercise
10.f, we provide a new version of the CartesianPlane class, to which we have added
the functionality of being able to display segments (just invoke the drawSegment() method).
The new CartesianPlane class is shown below with the changes in bold (however, find the class
ready in the exercises file in folder 10.i):

import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Dimension;
import java.util.*;

1.

2.

3.

4.

Chapter 10 Exercises

289
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class CartesianPlane {
 private final static int LENGTH = 600;
 private final static int MID_LENGTH = LENGTH/2;
 private final static int GAP = LENGTH/10;
 private JFrame frame;
 private JPanel panel;
 private ArrayList<Point> points;
 private ArrayList<Segment> segments;

 public CartesianPlane() {
 frame = new JFrame("Cartesian Plane");
 panel = new CartesianPlanePanel();
 points = new ArrayList<>();
 segments = new ArrayList<>();
 setup();
 addDetails();
 }

 private void setup() {
 frame.add(panel);
 }

 private void addDetails() {
 frame.getContentPane().setPreferredSize(new Dimension(LENGTH , LENGTH));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 }

 public void drawPoint(Point point) {
 points.add(point);
 panel.repaint();
 }

 public void drawSegment(Segment segment) {
 segments.add(segment);
 panel.repaint();
 }

 private class CartesianPlanePanel extends JPanel {
 public CartesianPlanePanel() {
 setBackground(Color.lightGray);
 }

 protected void paintComponent(Graphics g) {
 super.paintComponent(g);
 drawAxes(g);
 g.setColor(Color.RED);

Chapter 10 Exercises

290
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 drawPoints(g);
 g.setColor(Color.BLUE);
 drawSegments(g);
 }

 private void drawSegments(Graphics g) {
 for (Segment segment : segments) {
 Point extremePoint1 = segment.getExtremePoint1();
 drawPoint(extremePoint1, g);
 Point extremePoint2 = segment.getExtremePoint2();
 drawPoint(extremePoint2, g);
 g.setColor(Color.BLUE);
 g.drawLine(getX(extremePoint1.getX()),
 getY(extremePoint1.getY()), getX(extremePoint2.getX()),
 getY(extremePoint2.getY()));
 }
 }

 private void drawPoints(Graphics g) {
 for (Point point : points) {
 drawPoint(point, g);
 }
 }

 private void drawPoint(Point point, Graphics g) {
 int x = getX(point.getX(), 2);
 int y = getY(point.getY(), 2);
 g.drawOval(x,y,5,5);
 g.fillOval(x,y,5,5);
 g.drawString(point.toString(), x-15, y-8);
 }

 private int getX(int x) {
 return getX(x, 0);
 }

 private int getY(int y) {
 return getY(y, 0);
 }

 private int getX(int x, int delta) {
 return MID_LENGTH + (gap(x)-delta);
 }

 private int getY(int y, int delta) {
 return MID_LENGTH - (gap(y)+delta);
 }

 private void drawAxes(Graphics g) {

Chapter 10 Exercises

291
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 drawReferencePoints(g);
 g.setColor(Color.BLACK);
 g.drawLine(MID_LENGTH, 0, MID_LENGTH, LENGTH);
 g.drawLine(0, MID_LENGTH, LENGTH, MID_LENGTH);
 }

 private void drawReferencePoints(Graphics g) {
 g.setColor(Color.YELLOW);
 for(int i = 1; i < 10; i++) {
 g.drawLine(GAP*i, 0, GAP*i, LENGTH);
 }
 for(int i = 1; i < 10; i++) {
 g.drawLine(0, GAP*i, LENGTH, GAP*i);
 }
 }

 private int gap(int value) {
 return value*GAP;
 }
 }

 public static void main(String args[]) {
 SwingUtilities.invokeLater(() -> new CartesianPlane());
 }
}

Create an Exercise10I class, similar to the Exercise10H class, that allows the user to specify
the extremes points of segments that must be displayed on the Cartesian plane.

Exercise 10.j)

Starting from the solution of the previous exercise, create a Polyline class, which
abstracts the concept of polyline. This must declare an ArrayList of segments. A
polyline has the constraint that the second extreme point of a segment must coincide with the
first extreme point of the next segment. Note that a polyline always consists of at least two seg-
ments. Then create one or more constructors, the addSegment() method which allows you to
add a segment to the polyline, and the toString() method. Handle any problems with excep-
tions, as studied in Chapter 9.
Also create a test class called PolylineTest which will have the following main() method:

 public static void main(String args[]) {
 testCorrectPolyline();
 testCorrectPolylineWithFourPoints();
 testPolylineWithoutSegments();
 testPolylineWithOneSegment();
 testPolylineWithTwoNonConsecutiveSegmentsInConstructor();

Chapter 10 Exercises

292
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 testPolylineWithThreeNonConsecutiveSegmentsInConstructor();
 testCorrectPolylineAddingAConsecutiveSegment();
 testInvalidPolylineAddingANonConsecutiveSegment();
 }

Implement these methods with assertions (if the test fails, an error must be thrown through an
assertion).

Exercise 10.k)

In Section 10.4.2, we ran this test with JUnit:

import org.junit.Assert;
import org.junit.Test;

public class PointTest {
 @Test
 public void testDistanceOnX() {
 Point p1 = new Point(1,1);
 Point p2 = new Point(1,2);
 double distance = p1.distance(p2);
 Assert.assertTrue(distance == 1);
 }

 @Test
 public void testDistanceWithNull() {
 Point p1 = new Point(1,1);
 Point p2 = null;
 double distance = p1.distance(p2);
 Assert.assertTrue(distance == -1);
 }

 @Test
 public void testDistanceFromTheSamePoint() {
 Point p1 = new Point(1,1);
 Point p2 = new Point(1,1);
 double distance = p1.distance(p2);
 Assert.assertTrue(distance == 0);
 }

 @Test
 public void testDistanceFromAThreeDimensionalPoint() {
 Point p1 = new Point(1,1);
 Point p2 = new ThreeDimensionalPoint(1,2,2);
 double distance = p1.distance(p2);
 Assert.assertTrue(distance == -1);
 }
}

Chapter 10 Exercises

293
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

for the Point class:

public class Point {
 private int x, y;

 public Point() {
 //Constructor without parameters
 }

 public Point(int x, int y) {
 this.setXY(x, y); //this is optional
 //code reuse
 }

 public void setX(int x) {
 this.x = x; //this is mandatory
 }

 public void setY(int y) {
 this.y = y; //this is mandatory
 }

 public void setXY(int x, int y) {
 this.setX(x); //this is optional
 this.setY(y);
 }

 public int getX() {
 return this.x; //this is optional
 }

 public int getY() {
 return this.y; //this is optional
 }

 public double distance(Point p) {
 //square of the difference of the x of the two points
 int tmp1 = (x - p.x)*(x - p.x);
 //square of the difference of the y of the two points
 int tmp2 = (y - p.y)*(y - p.y);
 //square root of the sum of the two squares
 return Math.sqrt(tmp1 + tmp2);
 }
}

and for the ThreeDimensionalPoint class:

public class ThreeDimensionalPoint extends Point {
 private int z;

Chapter 10 Exercises

294
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public ThreeDimensionalPoint() {
 //Constructor without parameters
 }

 public ThreeDimensionalPoint(int x, int y, int z) {
 this.setXYZ(x, y, z); //Code reuse
 }

 public void setZ(int z) {
 this.z = z; //this is mandatory
 }

 public void setXYZ(int x, int y, int z) {
 this.setXY(x, y); ///Code reuse
 this.setZ(z); //this is optional
 }

 public int getZ() {
 return this.z; //this is optional
 }

 @Override
 public double distance(Point p) {
 if (p instanceof ThreeDimensionalPoint) {
 //Call to a private method using casting
 return this.calculateDistance((ThreeDimensionalPoint)p);
 }
 else {
 return -1; //distance not valid!
 }
 }

 private double calculateDistance(ThreeDimensionalPoint p1) {
 //square of the difference of the x of the two points
 int tmp1=(getX()-p1.getX())*(getX()-p1.getX());
 //square of the difference of the y of the two points
 int tmp2=(getY()-p1.getY())*(getY()-p1.getY());
 //square of the difference of the z of the two points
 int tmp3=(z-p1.z)*(z-p1.z);
 //square root of the sum of the three squares
 return Math.sqrt(tmp1+tmp2+tmp3);
 }

 /* @Override
 public double distance (ThreeDimensionalPoint p) {
 //square of the difference of the x of the two points
 int tmp1=(getX()-p.getX())*(getX()-p.getX());
 //square of the difference of the y of the two points
 int tmp2=(getY()-p.getY())*(getY()-p.getY());

Chapter 10 Exercises

295
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 //square of the difference of the z of the two points
 int tmp3=(z-p.z)*(z-p.z);
 //square root of the sum of the three squares
 return Math.sqrt(tmp1+tmp2+tmp3);
 } */

 /* @Override
 public double distance(Point p) {
 if (p instanceof ThreeDimensionalPoint) {
 //square of the difference of the x of the two points
 int tmp1=(getX()-p1.getX())*(getX()-p1.getX());
 //square of the difference of the y of the two points
 int tmp2=(getY()-p1.getY())*(getY()-p1.getY());
 //square of the difference of the z of the two points
 int tmp3=(z-p1.z)*(z-p1.z);
 //square root of the sum of the three squares
 return Math.sqrt(tmp1+tmp2+tmp3);
 }
 else {
 return -1; //distance not valid!
 }
 } */
}

achieving failure in 50% of tests. In this exercise we will modify the PointTest class, solving the
problems highlighted by the test.

To make things easier, we recommend using an IDE such as Eclipse
which already integrates the JUnit tool.

Exercise 10.l)

Starting from the solution of Exercise 10.j, transform the PolylineTest class, using the JUnit
tool instead of the assertions.

To make things easier, we recommend using an IDE such as Eclipse
which already integrates the JUnit tool.

Chapter 10 Exercises

296
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 10.m)

Starting from the solution of Exercise 10.i, and adding the Polyline and
InvalidPolylineException classes defined in Exercise 10.j, create along the lines
of the Exercise10I class, the Exercise10M class that allows the user to create polylines on
the Cartesian plane. The application will have to request the user to insert point by point the
ends of the segments that make up a polyline (which in the meantime will be displayed by the
CartesianPlane class). Only for the first segment the first extreme point must be specified,
while for the following, it is assumed that the first extreme point coincides with the second
extreme point of the previous segment.
Below is an example of the output that will generate our application:

Let's define the first two segments of a polyline:
Define the first extreme point of the first segment of the polyline:
Edit coordinate x of the extreme point P1
1
Edit coordinate y of the extreme point P1
2
Point created: (1,2)
Define the second extreme point of the first segment of the polyline:
Edit coordinate x of the extreme point P2
3
Edit coordinate y of the extreme point P2
4
Point created: (3,4)
Define the second extreme point of the second segment of the polyline:
Edit coordinate x of the extreme point P3
5
Edit coordinate y of the extreme point P3
6
Point created: (5,6)
Edit coordinate x of the extreme point P4
3
Edit coordinate y of the extreme point P4
3
Point created: (3,3)
Edit coordinate x of the extreme point P5

Exercise 10.n)

By testing the solution of Exercise 10.m, we noticed that by specifying a segment
of coincident extreme points, the system draws two points one above the other,
therefore we should not have to consider it as a segment. So, manage the exception so that the
system does not allow you to create segments with two coincident extreme points.

Chapter 10 Exercises

297
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 10.o)

Let’s create the Exercise10O class which will represent a converter from the Kelvin scale to the
Celsius and Fahrenheit scales. Our application must ask the user to enter a value in Kelvin, and
the program will have to convert the entered value into Celsius and Fahrenheit degrees.
Here is an example of output that our application will generate:

Enter a Kelvin value
0
0.0 Kelvin equals:
-273.15 Celsius
-459.66998 Fahrenheit

Use the float type to do all the calculations.

Recall that the formula for converting Kelvin degrees (which we rep-
resent with “K”) to Celsius (which we represent with “C”) is: 0 K - 273,15
= -273,1 C. Recall that the formula for converting degrees Kelvin in
Fahrenheit (which we represent with “F”) is: (0 K - 273,15) × 9/5 + 32 =
-459,7 F.

Exercise 10.p)

The output of the previous exercise does not satisfy us, as the use of the float type does not al-
low us to define a unique format. Evolve the Exercise10O class to the Exercise10P class, using
the BigDecimal class, so that the values are formatted by specifying only the first two decimal
places. You need to study the documentation of the BigDecimal class.
Below is an example of output that our application will generate:

Enter a Kelvin value
0
0 Kelvin equals:
-273.15 Celsius
-459.67 Fahrenheit

Exercise 10.q)

Evolve the Exercise10P class into the Exercise10Q class, so that the user can start from any
scale and get to the other scales.
Below is an example of output that our application will generate:

Chapter 10 Exercises

298
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Enter a value in Kelvin (for example 12K), Celsius (25C) or Fahrenheit (451F)
0k
0 Kelvin equals:
-273.15 Celsius
-459.67 Fahrenheit

or:

Enter a value in Kelvin (for example 12K), Celsius (25C) or Fahrenheit (451F)
25c
25 Celsius equals:
298.15 Kelvin
77.00 Fahrenheit

or also:

Enter a value in Kelvin (for example 12K), Celsius (25C) or Fahrenheit (451F)
500F
500 Fahrenheit equals:
260.00 Celsius
533.15 Kelvin

Exercise 10.r)

Evolve the Exercise10Q class into the Exercise10R class, trying to improve the abstraction
of our code. So, let’s create a Converter class that will be responsible for performing all the
arithmetic conversions. It will therefore declare all the (static) methods that are used to
convert one scale into another. For example, here is the declaration of the Kelvin to Fahrenheit
conversion method:

public static BigDecimal convertKelvinToFahrenheit(BigDecimal kelvin) {
 //your code here
}

Obviously the Exercise10R class will now have to use the methods of the Converter class.

Exercise 10.s)

Evolve the Exercise10R class into the Exercise10S class, trying to improve the abstraction of
our code. So, let’s create a Printer class that will be responsible for printing all the messages.
It will then declare all the (static) methods needed to print the messages. For example, here is
the declaration of the method that prints the error message when inserting an invalid symbol
to choose the scale of the entered value:

Chapter 10 Exercises

299
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public static void printInvalidScale (String scale) {
 //your code here
}

Obviously the Exercise10S class will now have to use the methods of the Printer class.

Exercise 10.t)

In this exercise we will try to use the java.logging API for the first time. Unlike what is seen in
Section 10.4.3, we are going to configure our logging via the following configuration file (found
in the 10.t folder of the book code):

handlers=java.util.logging.FileHandler
.level=ALL
java.util.logging.FileHandler.pattern=./exercise10t.log
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter
Exercise10T.level=ALL

Where it is specified that the log will be generated within a file in the same folder
called exercise10t.log. It also specifies that all log messages will be printed at any level
(Exercise10T.level = ALL statement).
Add the following method only within the Exercise10T file (evolution of the Exercise10S
file):

 private static void initLogging() {
 try {
 logManager.readConfiguration(
 new FileInputStream("logging.properties"));
 } catch (IOException exception) {
 LOGGER.log(Level.SEVERE,
 "Problem reading configuration file",exception);
 }
 }

and invoke it in the first statement of the main() method, so that the configuration via file is
correctly performed. Also insert some log instructions with different levels, as you like. Test
that everything works correctly launching the application and checking the log file. Test the
application several times by specifying in the configuration file, in place of the word ALL, other
configuration levels such as SEVERE, INFO, etc. checking that only messages with the log levels
allowed by the configuration are printed.

Exercise 10.u)

Now, we will implement a simple game after all this math and physics! Our applica-
tion will ask the user to guess a random number between 1 and 100 counting the

Chapter 10 Exercises

300
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

number of attempts.
An example of the output that must be generated by this application is the following:

I'm thinking of a number between 1 and 100, guess what!
50
Too high, try again
25
Too high, try again
13
Too high, try again
8
Too high, try again
4
Too high, try again
2
Too low, try again
3
Yes! You guessed it after 7 attempts

Create the GuessNumber class which contains a single static method that generates the random
number between 1 and the maximum number that is passed to it as input. Here is the method
declaration:

public static int generateRandomNumber(int max) {
 //your code here
}

Then, given the following interface:

public interface Game {
 public void init();
 public void start();
 public void play();
 public void end();
}

implement it in a class called GuessNumberGame, which implements the interface methods in
the most appropriate way. In the same class we can also put the main() method that will start
the application.

Exercise 10.v)

The solution of the previous exercise, however, did not take into account the possibility that
the user enters invalid data. Then evolve the GuessNumberGame class, in order to manage any
incorrect user input.
An example of the output that must be generated by this application is the following:

Chapter 10 Exercises

301
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

I'm thinking of a number between 1 and 100, guess what!
u
Invalid input 'u'. You can only enter integer numbers, please try again

Exercise 10.w)

Let’s begin to modify our application to make it a multi-player game. So, let’s create
the Player class that needs to define:

the instance variables name and id (which will be used to uniquely identify a player even
in case of coincidence of names).

A single constuctor.

A simple toString() method.

Defining an abstract class MultiPlayerGame that implements the Game interface defined in
Exercise 10.u, and which defines:

as an instance variable, an ArrayList of Player objects called players.

The getPlayers() getter method, which returns the players instance variable.

The addPlayer() and removePlayer() methods that add or remove a Player type object
from the players instance variable.

A getPlayer() method which takes the index of the player as input into the players list,
and which returns the corresponding Player object, or throws a PlayerException (to be
created too), in cases the index is not valid .

A getPlayer() method that takes as input the name of a player present in the players
list, and that returns the corresponding Player object, or throws a PlayerException, in
cases where the player with the specified name is not found , or if there are multiple play-
ers with the same name on the list.

Create a concrete MultiPlayerGameImpl (“Impl” stands for implementation) class that
extends MultiPlayerGame, and defines a new printPlayers() method that prints the
details of all players in the players list.

Finally create a MultiPlayerGameTest test class that instantiates an object from
MultiPlayerGameImpl, and all tests all the methods defined by MultiPlayerGame.

1.

2.

3.

1.

2.

3.

4.

5.

6.

7.

Chapter 10 Exercises

302
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 10.x)

Considering the classes implemented in the solution of Exercise 10.w (excluding
MultiPlayerGameImpl), and the following interface:

public interface Configurator {
 public void config();
}

The goal of this exercise is to create an implementation of the Configurator interface called
MultiPlayerGameConfigurator. This class must have the responsibility of allowing the con-
figuration of a game to become multiplayer. In particular, it must allow the user to enter the
names of the players who must participate in the game, assigning each of them a progressive
ID. This class must declare at least one MultiPlayerGameImpl type object as an instance vari-
able, to which players must be added.
Then launching the following class:

public class MultiPlayerGameConfiguratorTest {
 public static void main(String args[]) {
 new MultiPlayerGameConfigurator();
 }
}

we want our program output to look like this:

Enter player name 1
Claudio
Enter player name 2 Or 'i' to start playing
Foo
Enter player name 3 Or 'i' to start playing
i
Players list:
Player 1: Claudio
Player 2: Foo

Exercise 10.y)

Now after realizing implementations of the MultiPlayer and Configurator in-
terfaces, we just have to combine everything and evolve our application defined
in Exercise 10.v, into a multi-user and configurable game. So first, let’s make the Player class
abstract by adding the following play() abstract method to it:

public abstract boolean play();

on the other hand, a player who does not define a play() method does not make much sense!

Chapter 10 Exercises

303
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Then define the implementation of the Player class for our game, which we will call
GuessNumberPlayer. It must be responsible for:

count the number of attempts made to guess the number.

Implement the play() method along the lines of the GuessNumberGame class play()
method. In fact, now the player will play, and therefore must implement the code that
allows him to play. The play() method must return true, only when the player guesses
the number.

Furthermore, the GuessNumberGame class must be redefined, so that it implements the
Configurator interface, and manages the game in a multi-player way using objects of the
GuessNumberPlayer type. In particular it must:

redefine the config() method to manage the application configuration.

Redefine the play() method to take advantage of the play() method of the objects of
type GuessNumberGame.

Exercise 10.z)

In this last exercise, the only goal is to place each class in a package with a meaningful name,
in order to make the architectural structure of our application evident. All the application
packages are listed below:

games.generic.exceptions

games.generic.data

games.guessnumber.data

games.guessnumber.business

games.guessnumber.util

games.generic.business

games.generic.business

your job is therefore to assign the right package to the right type.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

7.

305
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10
Exercise Solutions

A Guided Example to
Object-Oriented Programming

Solution 10.a)

We could implement the Point class in the following way:

public class Point {
 private int x;
 private int y;

 public Point (int x, int y) {
 setX(x);
 setY(y);
 }

 private void setY(int y) {
 this.y = y;
 }

 public int getY() {
 return y;
 }

 private void setX(int x) {
 this.x = x;
 }

Chapter 10 Exercise Solutions

306
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public int getX() {
 return x;
 }

 public String toString() {
 return "(" +x+ "," + y + ")";
 }
}

The Ruler class follows (note that we have chosen to declare the method as static, since it de-
pends only on the input parameters and not on any instance variables):

import static java.lang.Math.*;

public class Ruler {
 public static double getDistance(Point p1, Point p2) {
 return sqrt(pow(p1.getX()-p2.getX(), 2) + pow(p1.getY()-p2.getY(), 2));
 }
}

Finally follows the Exercise10A class, which instantiates two points, calculates the distance and
uses an assertion as requested:

public class Exercise10A {
private final static double CORRECT_RESULT = 2;
 public static void main(String args[]) {
 Point p1 = new Point(0,0);
 Point p2 = new Point(2,0);
 double distance = Ruler.getDistance(p1,p2);
 System.out.println("Distance between points: " + p1 + " e " + p2
 + " = " + distance);
 assert distance == CORRECT_RESULT : "Error! The result should be "
 + CORRECT_RESULT;
 System.out.println("Correct distance!");
 }
}

Solution 10.b)

The code of the Exercise10B class is as follows:

public class Exercise10B {
 public static void main(String args[]) {
 if (args.length != 4) {
 System.out.println("Insert 4 coordinates to calculate the distance"
 + " between two points");
 }

Chapter 10 Exercise Solutions

307
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 try {
 Point p1 = new Point(Integer.parseInt(args[0]),
 Integer.parseInt(args[1]));
 Point p2 = new Point(Integer.parseInt(args[2]),
 Integer.parseInt(args[3]));
 System.out.println("Distance between two points: " + p1 + " and "
 + p2 + " = " + Ruler.getDistance(p1, p2));
 } catch (NumberFormatException exc) {
 System.out.println("All coordinates must be integers! Error: "
 + exc.getMessage());
 }
 }
}

By launching the application with the following command:

java Exercise 10B 2 1 1 2

we will get the output:

Distance between two points: (2,1) and (1,2) = 1.4142135623730951

Solution 10.c)

Following is the code of the Exercise10C class:

import java.util.Scanner;
import java.util.InputMismatchException;

public class Exercise10C {
 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 try {
 System.out.println("Enter the x coordinate of the first point");
 int x1 = scanner.nextInt();
 System.out.println("Enter the y coordinate of the first point");
 int y1 = scanner.nextInt();
 Point p1 = new Point(x1, y1);
 System.out.println("Point created:" + p1);
 System.out.println("Enter the x coordinate of the second point");
 int x2 = scanner.nextInt();
 System.out.println("Enter the y coordinate of the second point");
 int y2 = scanner.nextInt();
 Point p2 = new Point(x2, y2);
 System.out.println("Point created:" + p2);
 System.out.println("Distance between two points: " + p1 + " and "
 + p2 + " = " + Ruler.getDistance(p1,p2));

Chapter 10 Exercise Solutions

308
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 } catch (InputMismatchException exc) {
 System.out.println("All coordinates must be integers!");
 }
 }
}

Solution 10.d)

Following is the code of the Exercise10D class, refactoring of the Exercise10C class:

import java.util.Scanner;
import java.util.InputMismatchException;

public class Exercise10D {
 private Scanner scanner;

 public Exercise10D () {
 scanner = new Scanner(System.in);
 }

 public void start() {
 try {
 Point p1 = getPoint("1");
 Point p2 = getPoint("2");
 printDistance(p1, p2) ;
 }
 catch (InputMismatchException exc) {
 System.out.println("All coordinates must be integers!");
 }
 }

 private int getCoordinate(String coordinateName, String pointName) {
 System.out.println("Enter the coordinate " + coordinateName
 + " of point " + pointName);
 return scanner.nextInt();
 }

 private Point getPoint(String pointName) {
 int x = getCoordinate("x", pointName);
 int y = getCoordinate("y", pointName);
 Point p = new Point(x,y);
 System.out.println("Point created: " + p);
 return p;
 }

 public void printDistance(Point p1, Point p2) {
 System.out.println("Distance between two points: " + p1 + " and " + p2
 + " = " + Ruler.getDistance(p1,p2));
 }

Chapter 10 Exercise Solutions

309
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void main(String args[]) {
 Exercise10D exercise10D = new Exercise10D();
 exercise10D.start();
 }
}

Solution 10.e)

A possible implementation of the Exercise10E class follows:

import java.util.Scanner;

public class Exercise10E {
 private Scanner scanner;

 public Exercise10E () {
 scanner = new Scanner(System.in);
 }

 public void start() {
 Point p1 = getPoint("1");
 Point p2 = getPoint("2");
 printDistance(p1, p2) ;
 }

 private int getCoordinate(String coordinateName, String pointName) {
 System.out.println("Enter the coordinate " + coordinateName
 + " of point " + pointName);
 while (scanner.hasNext()) {
 if (scanner.hasNextInt()) {
 return scanner.nextInt();
 } else {
 System.out.println("Invalid coordinate " + scanner.next()
 + "! All coordinates must be integers! "
 + "Please enter only integers");
 }
 }
 return -1;
 }

 private Point getPoint(String pointName) {
 int x = getCoordinate("x", pointName);
 int y = getCoordinate("y", pointName);
 Point p = new Point(x,y);
 System.out.println("Point created: " + p);
 return p;
 }

Chapter 10 Exercise Solutions

310
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void printDistance(Point p1, Point p2) {
 System.out.println("Distance between two points: " + p1 + " and " + p2
 + " = " + Ruler.getDistance(p1,p2));
 }

 public static void main(String args[]) {
 Exercise10E exercise10E = new Exercise10E();
 exercise10E.start();
 }
}

Solution 10.f)

The code of our Segment class could be the following:

public class Segment {
 private Point extremePoint1;
 private Point extremePoint2;

 private double length;

 public Segment(Point extremePoint1, Point extremePoint2) {
 this.extremePoint1 = extremePoint1;
 this.extremePoint2 = extremePoint2;
 setLength();
 }

 public Point getExtremePoint1() {
 return extremePoint1;
 }

 public Point getExtremePoint2() {
 return extremePoint2;
 }

 private void setLength() {
 this.length = Ruler.getDistance(extremePoint1, extremePoint2);
 }

 public String toString() {
 return "Segment from P1" +extremePoint1+ " to P2" +extremePoint2
 + " with length = " + length;
 }
}

Finally, we implemented the Exercise10F class as follows:

import java.util.*;

Chapter 10 Exercise Solutions

311
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Exercise10F {
 private Scanner scanner;

 public Exercise10F () {
 scanner = new Scanner(System.in);
 }

 public void start() {
 System.out.println("Please define a segment specifying its extreme"
 + " points:");
 Point p1 = getPoint("1");
 Point p2 = getPoint("2");
 print(new Segment(p1, p2));
 }

 private int getCoordinate(String coordinateName, String pointName) {
 System.out.println("Edit coordinate " + coordinateName
 + " of the extreme point " + pointName);
 while (scanner.hasNext()) {
 if (scanner.hasNextInt()) {
 return scanner.nextInt();
 } else {
 System.out.println("Invalid coordinate " + scanner.next()
 + "! All coordinates must be integers! "
 + "Please enter only integers");
 }
 }
 return -1;
 }

 private Point getPoint(String pointName) {
 int x = getCoordinate("x", pointName);
 int y = getCoordinate("y", pointName);
 Point p = new Point(x,y);
 System.out.println("Point created: " + p);
 return p;
 }

 public void print(Segment segment) {
 System.out.println(segment);
 }

 public static void main(String args[]) {
 Exercise10F exercise10F = new Exercise10F();
 exercise10F.start();
 }
}

Chapter 10 Exercise Solutions

312
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 10.g)

We have modified the Point class as follows (changes in bold):

public class Point {
 private String name;
 private int x;
 private int y;

 public Point (String name, int x, int y) {
 setName(name);
 setX(x);
 setY(y);
 }

 public Point (int x, int y) {
 this("", x, y);
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 private void setY(int y) {
 this.y = y;
 }

 public int getY() {
 return y;
 }

 private void setX(int x) {
 this.x = x;
 }

 public int getX() {
 return x;
 }

 public String toString() {
 return name + "(" +x+ "," + y + ")";
 }
}

Finally, we implemented the Exercise10G class as follows:

Chapter 10 Exercise Solutions

313
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import java.util.*;
import javax.swing.*;

public class Exercise10G {
 private Scanner scanner;
 private CartesianPlane cartesianPlane;

 public Exercise10G () {
 scanner = new Scanner(System.in);
 }

 public void start() {
 SwingUtilities.invokeLater(() -> cartesianPlane = new CartesianPlane());
 Point p1 = getPoint("P1");
 cartesianPlane.drawPoint(p1);
 }

 private int getCoordinate(String coordinateName, String pointName) {
 System.out.println("Edit coordinate " + coordinateName
 + " of the extreme point " + pointName);
 while (scanner.hasNext()) {
 if (scanner.hasNextInt()) {
 return scanner.nextInt();
 } else {
 System.out.println("Invalid coordinate " + scanner.next()
 + "! All coordinates must be integers! "
 + "Please enter only integers");
 }
 }
 return -1;
 }

 private Point getPoint(String pointName) {
 int x = getCoordinate("x", pointName);
 int y = getCoordinate("y", pointName);
 Point p = new Point(x,y);
 System.out.println("Point created: " + p);
 return p;
 }

 public static void main(String args[]) {
 Exercise10G exercise10G = new Exercise10G();
 exercise10G.start();
 }
}

Chapter 10 Exercise Solutions

314
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 10.h)

The code of the Exercise10H class is as follows:

import java.util.*;
import javax.swing.*;

public class Exercise10H {
 private Scanner scanner;
 private CartesianPlane cartesianPlane;
 private static int counter = 1;

 public Exercise10H () {
 scanner = new Scanner(System.in);
 }

 public void start() {
 SwingUtilities.invokeLater(() -> cartesianPlane = new CartesianPlane());
 while(true) {
 Point p1 = getPoint("P" +(counter++));
 cartesianPlane.drawPoint(p1);
 }
 }

 private int getCoordinate(String coordinateName, String pointName) {
 System.out.println("Edit coordinate " + coordinateName
 + " of the extreme point " + pointName);
 while (scanner.hasNext()) {
 if (scanner.hasNextInt()) {
 return scanner.nextInt();
 } else {
 System.out.println("Invalid coordinate " + scanner.next()
 + "! All coordinates must be integers! "
 + "Please enter only integers");
 }
 }
 return -1;
 }

 private Point getPoint(String pointName) {
 int x = getCoordinate("x", pointName);
 int y = getCoordinate("y", pointName);
 Point p = new Point(x,y);
 System.out.println("Point created: " + p);
 return p;
 }

 public static void main(String args[]) {
 Exercise10H exercise10H = new Exercise10H();

Chapter 10 Exercise Solutions

315
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 exercise10H.start();
 }
}

Solution 10.i)

Follows the Exercise10I: class:

import java.util.*;
import javax.swing.*;

public class Exercise10I {
 private Scanner scanner;
 private CartesianPlane cartesianPlane;
 private static int counter = 1;

 public Exercise10I () {
 scanner = new Scanner(System.in);
 }

 public void start() {
 SwingUtilities.invokeLater(() -> cartesianPlane = new CartesianPlane());
 while(true) {
 System.out.println("Define a segment");
 Point p1 = getPoint("P" +(counter++));
 Point p2 = getPoint("P" +(counter++));
 Segment s1 = new Segment(p1, p2);
 cartesianPlane.drawSegment(s1);
 }
 }

 private int getCoordinate(String coordinateName, String pointName) {
 System.out.println("Edit coordinate " + coordinateName
 + " of the extreme point " + pointName);
 while (scanner.hasNext()) {
 if (scanner.hasNextInt()) {
 return scanner.nextInt();
 } else {
 System.out.println("Invalid coordinate " + scanner.next()
 + "! All coordinates must be integers! Please enter only"
 + " integers");
 }
 }
 return -1;
 }

 private Point getPoint(String pointName) {
 int x = getCoordinate("x", pointName);

Chapter 10 Exercise Solutions

316
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 int y = getCoordinate("y", pointName);
 Point p = new Point(x,y);
 System.out.println("Point created: " + p);
 return p;
 }

 public static void main(String args[]) {
 Exercise10I exercise10I = new Exercise10I();
 exercise10I.start();
 }
}

Solution 10.j)

We have implemented the Polyline class in the following way:

import java.util.*;

public class Polyline {
 private List<Segment> segmentList;

 public Polyline (Segment... segments) throws InvalidPolylineException {
 this.segmentList = new ArrayList(Arrays.asList(segments));
 if (segments.length < 2 || !checkConsecutiveSegments()) {
 throw new InvalidPolylineException(segmentList);
 }
 }

 public void addSegment(Segment newSegment) throws InvalidPolylineException {
 Segment lastSegment = segmentList.get(segmentList.size()-1);
 Point lastSegmentExtremePoint2 = lastSegment.getExtremePoint2();
 Point newSegmentExtremePoint1 = newSegment.getExtremePoint1();
 segmentList.add(newSegment);
 if (!equal(newSegmentExtremePoint1, lastSegmentExtremePoint2)) {
 throw new InvalidPolylineException(segmentList);
 }
 }

 private boolean checkConsecutiveSegments() {
 int segmentListSize = segmentList.size();
 for (int i = 0; i < segmentListSize-1;) {
 Point previousSegmentExtremePoint2 =
 segmentList.get(i++).getExtremePoint2();
 Point nextSegmentExtremePoint1 =
 segmentList.get(i).getExtremePoint1();
 if (!equal(previousSegmentExtremePoint2,nextSegmentExtremePoint1)) {
 return false;
 }

Chapter 10 Exercise Solutions

317
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 }
 return true;
 }

 private boolean equal(Point p1, Point p2) {
 return p1.getX()==p2.getX() && p1.getY()== p2.getY();
 }

 public String toString() {
 String descrizione ="Polyline defined by:\n";
 for (Segment segment : segmentList) {
 descrizione += segment + "\n";
 }
 return descrizione;
 }
}

Where the InvalidPolylineException class is implemented as follows:

import java.util.List;

public class InvalidPolylineException extends Exception {
 public InvalidPolylineException (List<Segment> segments) {
 super(segments.size() < 2 ?
 "A polyline must consist of at least 2 segments"
 : "These segments " + segments + " do not constitute a polyline");
 }

 public String toString() {
 return "Invalid polyline:\n" + getMessage();
 }
}

Finally, the implementation of the PolylineTest class is not simple:

public class PolylineTest {
 private static final String TEST_OK ="TEST OK:\n";
 private static final String TEST_KO ="TEST FAILED: ";

 public static void main(String args[]) {
 testCorrectPolyline();
 testCorrectPolylineWithFourPoints();
 testPolylineWithoutSegments();
 testPolylineWithOneSegment();
 testPolylineWithTwoNonConsecutiveSegmentsInConstructor();
 testPolylineWithThreeNonConsecutiveSegmentsInConstructor();
 testCorrectPolylineAddingAConsecutiveSegment();
 testInvalidPolylineAddingANonConsecutiveSegment();
 }

Chapter 10 Exercise Solutions

318
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void testCorrectPolyline() {
 try {
 System.out.println("testCorrectPolyline:");
 Point p1 = new Point(0,0);
 Point p2 = new Point(1,1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1,2);
 Segment s2 = new Segment(p2, p3);
 Polyline pol1 = new Polyline(s1, s2);
 System.out.println(TEST_OK + pol1);
 } catch (Exception exc) {
 assert false : TEST_KO + exc.getMessage();
 }
 }

 public static void testCorrectPolylineWithFourPoints() {
 try {
 System.out.println("testCorrectPolylineWithFourPoints:");
 Point p1 = new Point(0,0);
 Point p2 = new Point(1,1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1,1);
 Point p4 = new Point(2,3);
 Segment s2 = new Segment(p3, p4);
 Polyline pol1 = new Polyline(s1, s2);
 System.out.println(TEST_OK + pol1);
 } catch (Exception exc) {
 assert false : TEST_KO + exc.getMessage();
 }
 }

 public static void testPolylineWithoutSegments() {
 try {
 System.out.println("testPolylineWithoutSegments:");
 Polyline pol1 = new Polyline();
 System.out.println(TEST_KO + pol1);
 assert false :"A polyline without segments has been created!";
 } catch (Exception exc) {
 System.out.println(TEST_OK + exc.getMessage());
 System.out.println();
 }
 }

 public static void testPolylineWithOneSegment() {
 try {
 System.out.println("testPolylineWithOneSegment:");
 Point p1 = new Point(0,0);
 Point p2 = new Point(1,1);
 Segment s1 = new Segment(p1, p2);

Chapter 10 Exercise Solutions

319
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Polyline pol1 = new Polyline(s1);
 System.out.println(TEST_KO + pol1);
 assert false :"A polyline with a single segment has been created!";
 } catch (Exception exc) {
 System.out.println(TEST_OK + exc.getMessage());
 System.out.println();
 }
 }

 public static void testPolylineWithTwoNonConsecutiveSegmentsInConstructor() {
 try {
 System.out.println(
 "testPolylineWithTwoNonConsecutiveSegmentsInConstructor:");
 Point p1 = new Point(0,0);
 Point p2 = new Point(1,1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1,2);
 Point p4 = new Point(2,2);
 Segment s2 = new Segment(p3, p4);
 Polyline pol1 = new Polyline(s1, s2);
 System.out.println(TEST_KO+ pol1);
 assert false :"A polyline with two non-consecutive segments "
 + "has been created (in the constructor)!";
 } catch (Exception exc) {
 System.out.println(TEST_OK + exc.getMessage());
 System.out.println();
 }
 }

 public static void testPolylineWithThreeNonConsecutiveSegmentsInConstructor() {
 try {
 System.out.println(
 "testPolylineWithThreeNonConsecutiveSegmentsInConstructor:");
 Point p1 = new Point(0,0);
 Point p2 = new Point(1,1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1,1);
 Point p4 = new Point(2,2);
 Segment s2 = new Segment(p3, p4);
 Point p5 = new Point(2,3);
 Point p6 = new Point(3,2);
 Segment s3 = new Segment(p5, p6);
 Polyline pol1 = new Polyline(s1, s2, s3);
 System.out.println(TEST_KO+ pol1);
 assert false :"A polyline with three non-consecutive segments"
 + " has been created (in the constructor)!";
 } catch (Exception exc) {
 System.out.println(TEST_OK + exc.getMessage());
 System.out.println();

Chapter 10 Exercise Solutions

320
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 }
 }

 public static void testCorrectPolylineAddingAConsecutiveSegment() {
 try {
 System.out.println("testCorrectPolylineAddingAConsecutiveSegment:");
 Point p1 = new Point(0,0);
 Point p2 = new Point(1,1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1,2);
 Segment s2 = new Segment(p2, p3);
 Polyline pol1 = new Polyline(s1, s2);
 Point p4 = new Point(3,2);
 Segment s3 = new Segment(p3, p4);
 pol1.addSegment(s3);
 System.out.println(TEST_OK+ pol1);
 } catch (Exception exc) {
 assert false : TEST_KO + exc.getMessage();
 }
 }

 public static void testInvalidPolylineAddingANonConsecutiveSegment() {
 try {
 System.out.println(
 "testInvalidPolylineAddingANonConsecutiveSegment:");
 Point p1 = new Point(0,0);
 Point p2 = new Point(1,1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1,2);
 Segment s2 = new Segment(p2, p3);
 Polyline pol1 = new Polyline(s1, s2);
 Point p4 = new Point(3,2);
 Point p5 = new Point(3,3);
 Segment s3 = new Segment(p4, p5);
 pol1.addSegment(s3);
 System.out.println(TEST_KO+ pol1);
 assert false :
 "A polyline with a non-consecutive segment has been created!";
 } catch (Exception exc) {
 System.out.println(TEST_OK + exc.getMessage());
 }
 }
}

Solution 10.k)

Actually, the errors highlighted by our test were mostly due to errors in the test itself! This
is to underline that we can create bugs even in tests! So, you have to be very careful. In

Chapter 10 Exercise Solutions

321
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

fact in the testDistanceWithNull() it is correct that a NullPointerException is thrown
(although it would be the case to create a custom exception to handle this problem), while in the
testDistanceFromAThreeDimensionalPoint() method, we had expected that the result of the
distance would have been -1, but obviously the value of a distance cannot coincide with a nega-
tive number! In this case we solved it by changing the sign, since we had decided to allow this
type of operation (we could also have implemented a solution that would throw another cus-
tom exception since we could have assumed that it is not possible to calculate the distance be-
tween a point that is on a two-coordinate reference, from a point that is on a three-coordinate
reference). In any case, we report below the new PointTest class, with the changes in bold.

import org.junit.Assert;
import org.junit.Test;

public class PointTest {
 @Test
 public void testDistanceOnX() {
 Point p1 = new Point(1,1);
 Point p2 = new Point(1,2);
 double distance = p1.distance(p2);
 Assert.assertTrue(distance == 1);
 }
 @Test(expected = NullPointerException.class)
 public void testDistanceWithNull() {
 Point p1 = new Point(1,1);
 Point p2 = null;
 double distance = p1.distance(p2);
// Assert.assertTrue(distance == -1);
 }
 @Test
 public void testDistanceFromTheSamePoint() {
 Point p1 = new Point(1,1);
 Point p2 = new Point(1,1);
 double distance = p1.distance(p2);
 Assert.assertTrue(distance == 0);
 }
 @Test
 public void testDistanceFromAThreeDimensionalPoint() {
 Point p1 = new Point(1,1);
 Point p2 = new ThreeDimensionalPoint(1,2,2);
 double distance = p1.distance(p2);
 Assert.assertTrue(distance == 1);
 }
}

Chapter 10 Exercise Solutions

322
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 10.l)

The implementation of the new PolylineTest class follows (among the book code file, you will
find the entire project to be imported into Eclipse):

import org.junit.Assert;
import org.junit.Test;
import static org.junit.jupiter.api.Assertions.assertThrows;

public class PolylineTest {
 private static final String TEST_OK = "TEST OK:\n";
 private static final String TEST_KO = "TEST FALLITO: ";

// public static void main(String args[]) {
// testCorrectPolyline();
// testCorrectPolylineWithFourPoints();
// testPolylineWithoutSegments();
// testPolylineWithOneSegment();
// testPolylineWithTwoNonConsecutiveSegmentsInConstructor();
// testPolylineWithThreeNonConsecutiveSegmentsInConstructor();
// testCorrectPolylineAddingAConsecutiveSegment();
// testInvalidPolylineAddingANonConsecutiveSegment();
// }

 @Test
 public void testCorrectPolyline() {
 try {
 System.out.println("testCorrectPolyline:");
 Point p1 = new Point(0, 0);
 Point p2 = new Point(1, 1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1, 2);
 Segment s2 = new Segment(p2, p3);
 Polyline pol1 = new Polyline(s1, s2);
 Assert.assertNotNull(pol1);
 } catch (Exception exc) {
 exc.printStackTrace();
 }
 }

 @Test
 public void testCorrectPolylineWithFourPoints() {
 try {
 System.out.println("testCorrectPolylineWithFourPoints:");
 Point p1 = new Point(0, 0);
 Point p2 = new Point(1, 1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1, 1);
 Point p4 = new Point(2, 3);

Chapter 10 Exercise Solutions

323
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Segment s2 = new Segment(p3, p4);
 Polyline pol1 = new Polyline(s1, s2);
 Assert.assertNotNull(pol1);
 } catch (Exception exc) {
 exc.printStackTrace();
 }
 }

 @Test
 public void testPolylineWithoutSegments() {
 try {
 System.out.println("testPolylineWithoutSegments:");
 Polyline pol1 = new Polyline();
 assert false : "A polyline without segments has been"
 + " created!";
 } catch (Exception exc) {
 Assert.assertNotNull(exc);
 System.out.println(TEST_OK + exc.getMessage());
 System.out.println();
 }
 }

 @Test
 public void testPolylineWithOneSegment() {
 try {
 System.out.println("testPolylineWithOneSegment:");
 Point p1 = new Point(0, 0);
 Point p2 = new Point(1, 1);
 Segment s1 = new Segment(p1, p2);
 Polyline pol1 = new Polyline(s1);
 System.out.println(TEST_KO + pol1);
 assert false : "A polyline with a single segment has"
 + " been created!";
 } catch (Exception exc) {
 Assert.assertNotNull(exc);
 System.out.println(TEST_OK + exc.getMessage());
 System.out.println();
 }
 }

 public void testPolylineWithTwoNonConsecutiveSegmentsInConstructor() {
 try {
 System.out.println(
 "testPolylineWithTwoNonConsecutiveSegmentsInConstructor:");
 Point p1 = new Point(0, 0);
 Point p2 = new Point(1, 1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1, 2);
 Point p4 = new Point(2, 2);

Chapter 10 Exercise Solutions

324
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Segment s2 = new Segment(p3, p4);
 Polyline pol1 = new Polyline(s1, s2);
 System.out.println(TEST_KO + pol1);
 assert false : "A polyline with two non-consecutive"
 + " segments has been created (in the constructor)";
 } catch (Exception exc) {
 Assert.assertNotNull(exc);
 System.out.println(TEST_OK + exc.getMessage());
 System.out.println();
 }
 }

 public void testPolylineWithThreeNonConsecutiveSegmentsInConstructor() {
 try {
 System.out.println(
 "testPolylineWithThreeNonConsecutiveSegmentsInConstructor:");
 Point p1 = new Point(0, 0);
 Point p2 = new Point(1, 1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1, 1);
 Point p4 = new Point(2, 2);
 Segment s2 = new Segment(p3, p4);
 Point p5 = new Point(2, 3);
 Point p6 = new Point(3, 2);
 Segment s3 = new Segment(p5, p6);
 Polyline pol1 = new Polyline(s1, s2, s3);
 System.out.println(TEST_KO + pol1);
 assert false : "A polyline with three non-consecutive"
 + " segments has been created (in the constructor)!";
 } catch (Exception exc) {
 Assert.assertNotNull(exc);
 System.out.println(TEST_OK + exc.getMessage());
 System.out.println();
 }
 }

 @Test
 public void testCorrectPolylineAddingAConsecutiveSegment() {
 try {
 System.out.println(
 "testCorrectPolylineAddingAConsecutiveSegment:");
 Point p1 = new Point(0, 0);
 Point p2 = new Point(1, 1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1, 2);
 Segment s2 = new Segment(p2, p3);
 Polyline pol1 = new Polyline(s1, s2);
 Point p4 = new Point(3, 2);
 Segment s3 = new Segment(p3, p4);

Chapter 10 Exercise Solutions

325
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 pol1.addSegment(s3);
 System.out.println(TEST_OK + pol1);
 } catch (Exception exc) {
 exc.printStackTrace();
 }
 }

 @Test
 public void testInvalidPolylineAddingANonConsecutiveSegment() {
 try {
 System.out.println(
 "testInvalidPolylineAddingANonConsecutiveSegment:");
 Point p1 = new Point(0, 0);
 Point p2 = new Point(1, 1);
 Segment s1 = new Segment(p1, p2);
 Point p3 = new Point(1, 2);
 Segment s2 = new Segment(p2, p3);
 Polyline pol1 = new Polyline(s1, s2);
 Point p4 = new Point(3, 2);
 Point p5 = new Point(3, 3);
 Segment s3 = new Segment(p4, p5);
 pol1.addSegment(s3);
 System.out.println(TEST_KO + pol1);
 assert false : "A polyline with a non-consecutive segment "
 + "has been created!";
 } catch (Exception exc) {
 Assert.assertNotNull(exc);
 System.out.println(TEST_OK + exc.getMessage());
 }
 }
}

Solution 10.m)

The implementation of the Exercise10M class follows (changes compared to the Exercise10I
class in bold):

import java.util.*;
import javax.swing.*;

public class Exercise10M {
 private Scanner scanner;
 private CartesianPlane cartesianPlane;
 private static int counter = 1;

 public Exercise10M () {
 scanner = new Scanner(System.in);
 }

Chapter 10 Exercise Solutions

326
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void start() {
 SwingUtilities.invokeLater(() -> cartesianPlane = new CartesianPlane());
 System.out.println("Let's define the first two segments of a "
 + " polyline:");
 System.out.println("Define the first extreme point of the first"
 + " segment of the polyline:");
 Point p1 = getPoint("P" +(counter++));
 System.out.println("Define the second extreme point of the first"
 + " segment of the polyline:");
 Point p2 = getPoint("P" +(counter++));
 Segment s1 = new Segment(p1, p2);
 cartesianPlane.drawSegment(s1);
 System.out.println("Define the second extreme point of the"
 + " second segment of the polyline:");
 Point p3 = getPoint("P" +(counter++));
 Segment s2 = new Segment(p2, p3);
 cartesianPlane.drawSegment(s2);
 Point lastExtreme = p3;
 while(true) {
 Point nextExtreme = getPoint("P" +(counter++));
 Segment nextSegment = new Segment(lastExtreme, nextExtreme);
 cartesianPlane.drawSegment(nextSegment);
 lastExtreme = nextExtreme;
 }
 }

 private int getCoordinate(String coordinateName, String pointName) {
 System.out.println("Edit coordinate " + coordinateName
 + " of the extreme point " + pointName);
 while (scanner.hasNext()) {
 if (scanner.hasNextInt()) {
 return scanner.nextInt();
 } else {
 System.out.println("Invalid coordinate " + scanner.next()
 + "! All coordinates must be integers! Please enter only"
 + " integers");
 }
 }
 return -1;
 }

 private Point getPoint(String pointName) {
 int x = getCoordinate("x", pointName);
 int y = getCoordinate("y", pointName);
 Point p = new Point(x,y);
 System.out.println("Point created: " + p);
 return p;
 }

Chapter 10 Exercise Solutions

327
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void main(String args[]) {
 Exercise10M exercise10M = new Exercise10M();
 exercise10M.start();
 }
}

Solution 10.n)

Let’s first create a simple exception for the incorrect creation of a segment in this way:

public class InvalidSegmentException extends Exception {

 public String toString() {
 return "The extreme points of a segment cannot coincide!";
 }
}

Then let’s throw this exception in the Segment class in case there is a coincidence of the two
extreme point (changes in bold):

public class Segment {
 private Point extremePoint1;
 private Point extremePoint2;

 private double length;

 public Segment(Point extremePoint1, Point extremePoint2)
 throws InvalidSegmentException {
 this.extremePoint1 = extremePoint1;
 this.extremePoint2 = extremePoint2;
 setLength();
 }

 public Point getExtremePoint1() {
 return extremePoint1;
 }

 public Point getExtremePoint2() {
 return extremePoint2;
 }

 private void setLength() throws InvalidSegmentException {
 this.length = Ruler.getDistance(extremePoint1, extremePoint2);
 if (length == 0) {
 throw new InvalidSegmentException();
 }
 }

Chapter 10 Exercise Solutions

328
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public String toString() {
 return "Segment from P1" +extremePoint1+ " to P2" + extremePoint2
 + " with length = " + length;
 }
}

Finally, let’s make our Exercise10M class evolve into the Exercise10N class, creating a recursive
method createSegment(), which manages the exception by calling itself. We also note that
we have transformed the temporary variable lastExtreme, as an instance variable (changes in
bold):

import java.util.*;
import javax.swing.*;

public class Exercise10N {
 private Scanner scanner;
 private CartesianPlane cartesianPlane;
 private Point lastExtreme;
 private static int counter = 1;

 public Exercise10N () {
 scanner = new Scanner(System.in);
 }

 public void start() {
 SwingUtilities.invokeLater(() -> cartesianPlane = new CartesianPlane());
 System.out.println("Let's define the first two segments of a"
 + " polyline:");
 System.out.println("Define the first extreme point of the first"
 + " segment of the polyline:");
 Point p1 = getPoint("P" +(counter++));
 System.out.println("Define the second extreme point of the first"
 + " segment of the polyline:");
 createSegment(p1);
 /* Point p2 = getPoint("P" +(counter++));
 Segment s1 = new Segment(p1, p2);
 cartesianPlane.drawSegment(s1);*/
 System.out.println("Define the second extreme point of the second"
 + " segment of the polyline:");
 createSegment(lastExtreme);
 /* Point p3 = getPoint("P" +(counter++));
 Segment s2 = new Segment(p2, p3);
 cartesianPlane.drawSegment(s2);
 Point lastExtreme = p3;*/
 while(true) {
 /* Point nextExtreme = getPoint("P" +(counter++));
 Segment nextSegment = new Segment(lastExtreme, nextExtreme);
 cartesianPlane.drawSegment(nextSegment);

Chapter 10 Exercise Solutions

329
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 lastExtreme = nextExtreme; */
 createSegment(lastExtreme);
 }
 }

 public void createSegment(Point firstExtreme) {
 try {
 lastExtreme = getPoint("P" +(counter++));
 Segment segment = new Segment(firstExtreme, lastExtreme);
 cartesianPlane.drawSegment(segment);
 } catch (InvalidSegmentException exc) {
 System.out.println(exc);
 counter--;
 createSegment(firstExtreme);
 }
 }

 private int getCoordinate(String coordinateName, String pointName) {
 System.out.println("Edit coordinate " + coordinateName
 + " of the extreme point " + pointName);
 while (scanner.hasNext()) {
 if (scanner.hasNextInt()) {
 return scanner.nextInt();
 } else {
 System.out.println("Invalid coordinate " + scanner.next()
 + "! All coordinates must be integers! "
 + " Please enter only integers");
 }
 }
 return -1;
 }

 private Point getPoint(String pointName) {
 int x = getCoordinate("x", pointName);
 int y = getCoordinate("y", pointName);
 Point p = new Point(x,y);
 System.out.println("Point created: " + p);
 return p;
 }

 public static void main(String args[]) {
 Exercise10N exercise10N = new Exercise10N();
 exercise10N.start();
 }
}

Chapter 10 Exercise Solutions

330
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 10.o)

The solution could be implemented as follows:

import java.util.*;

public class Exercise10O {
 public static void main(String[] args) {
 Exercise10O exercise10O = new Exercise10O();
 exercise10O.start();
 }

 public void start() {
 try {
 Scanner scanner = new Scanner(System.in);
 System.out.println("Enter a Kelvin value");
 float kelvin = scanner.nextFloat();
 float celsius = kelvin - 273.15F;
 float fahrenheit = celsius * 9/5 + 32;
 System.out.println(kelvin + " Kelvin equals:\n"
 + celsius + " Celsius\n"
 + fahrenheit + " Fahrenheit");
 } catch (InputMismatchException exc) {
 System.out.println("The value must be numeric");
 start();
 }
 }
}

Solution 10.p)

The solution could be implemented as follows:

import java.util.*;
import java.math.*;

public class Exercise10P {
 public static void main(String[] args) {
 Exercise10P exercise10P = new Exercise10P();
 exercise10P.start();
 }

 public void start() {
 try {
 Scanner scanner = new Scanner(System.in);
 System.out.println("Enter a Kelvin value");
 BigDecimal kelvin = scanner.nextBigDecimal();
 BigDecimal celsius = kelvin.subtract(BigDecimal.valueOf(273.15));

Chapter 10 Exercise Solutions

331
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 BigDecimal fahrenheit = celsius.multiply(BigDecimal.valueOf(9))
 .divide(BigDecimal.valueOf(5)).add(BigDecimal.valueOf(32));
 System.out.println(kelvin + " Kelvin equals:\n"
 + celsius + " Celsius\n" + fahrenheit + " Fahrenheit");
 } catch (InputMismatchException exc) {
 System.out.println("The value must be numeric");
 start();
 }
 }
}

Solution 10.q)

The solution could be implemented as follows:

import java.util.*;
import java.math.*;

public class Exercise10Q {
 public static void main(String[] args) {
 Exercise10Q exercise10Q = new Exercise10Q();
 exercise10Q.start();
 }

 public void start() {
 try {
 System.out.println("Enter a value in Kelvin (for example 12K)," +
 " Celsius (25C) or Fahrenheit (451F)");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.next();
 int lastCharIndex = input.length()-1;
 BigDecimal value = new BigDecimal(
 input.substring(0, lastCharIndex));
 String scale = input.substring(lastCharIndex);
 switch(scale) {
 case"k":
 case"K":
 {
 BigDecimal celsius = value.subtract(
 BigDecimal.valueOf(273.15));
 BigDecimal fahrenheit = celsius.multiply(
 BigDecimal.valueOf(9)).divide(BigDecimal.valueOf(5), 2,
 RoundingMode.HALF_UP).add(BigDecimal.valueOf(32));
 System.out.println(value + " Kelvin equals:\n"
 + celsius + " Celsius\n" + fahrenheit + " Fahrenheit");
 break;
 }

Chapter 10 Exercise Solutions

332
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 case"c":
 case"C":
 {
 BigDecimal kelvin = value.add(BigDecimal.valueOf(273.15));
 BigDecimal fahrenheit = value.multiply(
 BigDecimal.valueOf(9)).divide(BigDecimal.valueOf(5),2,
 RoundingMode.HALF_UP).add(BigDecimal.valueOf(32));
 System.out.println(value + " Celsius equals:\n"
 + kelvin + " Kelvin\n" + fahrenheit + " Fahrenheit");
 break;
 }
 case"f":
 case"F":
 {
 BigDecimal celsius = value.subtract(BigDecimal.valueOf(32))
 .multiply(BigDecimal.valueOf(5)).divide(
 BigDecimal.valueOf(9), 2, RoundingMode.HALF_UP);
 BigDecimal kelvin = celsius.add(BigDecimal.valueOf(273.15));
 System.out.println(value + " Fahrenheit equals:\n"
 + celsius + " Celsius\n" + kelvin + " Kelvin");
 break;
 }
 default:
 System.out.println("Invalid scale " + scale
 + ". Use K for Kelvin, C for Celsius, F for Fahrenheit");
 start();
 }
 } catch (NumberFormatException exc) {
 System.out.println("Wrong format!");
 start();
 }
 }
}

Solution 10.r)

The Converter class could be implemented as follows:

import java.math.*;

public class Converter {
 public static BigDecimal convertKelvinToCelsius(BigDecimal kelvin) {
 return kelvin.subtract(BigDecimal.valueOf(273.15));
 }

 public static BigDecimal convertKelvinToFahrenheit(BigDecimal kelvin) {
 BigDecimal celsius = convertKelvinToCelsius(kelvin);
 return celsius.multiply(BigDecimal.valueOf(9)).divide(

Chapter 10 Exercise Solutions

333
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 BigDecimal.valueOf(5), 2, RoundingMode.HALF_UP).add(
 BigDecimal.valueOf(32));
 }

 public static BigDecimal convertCelsiusToKelvin(BigDecimal celsius) {
 return celsius.add(BigDecimal.valueOf(273.15));
 }

 public static BigDecimal convertCelsiusToFahrenheit(BigDecimal celsius) {
 return celsius.multiply(BigDecimal.valueOf(9)).divide(
 BigDecimal.valueOf(5),2, RoundingMode.HALF_UP).add(
 BigDecimal.valueOf(32));
 }

 public static BigDecimal convertFahrenheitToKelvin(BigDecimal fahrenheit) {
 BigDecimal celsius = convertFahrenheitToCelsius(fahrenheit);
 return celsius.add(BigDecimal.valueOf(273.15));
 }

 public static BigDecimal convertFahrenheitToCelsius(BigDecimal fahrenheit) {
 return fahrenheit.subtract(BigDecimal.valueOf(32))
 .multiply(BigDecimal.valueOf(5)).divide(BigDecimal.valueOf(9), 2,
 RoundingMode.HALF_UP);
 }
}

So, the Exercise10R class could be implemented in the following way:

import java.util.*;
import java.math.*;

public class Exercise10R {
 public static void main(String[] args) {
 Exercise10R exercise10R = new Exercise10R();
 exercise10R.start();
 }

 public void start() {
 try {
 System.out.println("Enter a value in Kelvin (for example 12K),"
 + " Celsius (25C) or Fahrenheit (451F)");
 Scanner scanner = new Scanner(System.in);
 String input = scanner.next();
 int lastCharIndex = input.length()-1;
 BigDecimal value = new BigDecimal(input.substring(0,
 lastCharIndex));
 String scale = input.substring(lastCharIndex);
 switch(scale) {

Chapter 10 Exercise Solutions

334
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 case"k":
 case"K": {
 BigDecimal celsius =
 Converter.convertKelvinToCelsius(value);
 BigDecimal fahrenheit =
 Converter.convertKelvinToFahrenheit(value);
 System.out.println(value + " Kelvin equals:\n"
 + celsius + " Celsius\n" + fahrenheit + " Fahrenheit");
 break;
 }
 case"c":
 case"C": {
 BigDecimal kelvin = Converter.convertCelsiusToKelvin(value);
 BigDecimal fahrenheit =
 Converter.convertCelsiusToFahrenheit(value);
 System.out.println(value + " Celsius equals:\n"
 + kelvin + " Kelvin\n" + fahrenheit + " Fahrenheit");
 break;
 }
 case"f":
 case"F": {
 BigDecimal celsius =
 Converter.convertFahrenheitToCelsius(value);
 BigDecimal kelvin =
 Converter.convertFahrenheitToKelvin(value);
 System.out.println(value + " Fahrenheit equals:\n"
 + celsius + " Celsius\n" + kelvin + " Kelvin");
 break;
 }
 default:
 System.out.println("Invalid scale " + scale
 + ". Use K for Kelvin, C for Celsius, F for Fahrenheit");
 start();
 }
 }
 catch (NumberFormatException exc) {
 System.out.println("Wrong format!");
 start();
 }
 }
}

Solution 10.s)

The Printer class could be implemented in the following way:

import java.math.*;

public class Printer {

Chapter 10 Exercise Solutions

335
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void printInstructions() {
 System.out.println("Enter a value in Kelvin (for example 12K), " +
 "Celsius (25C) or Fahrenheit (451F)");
 }

 public static void printMessage(BigDecimal value1, String scale1,
 BigDecimal value2, String scale2,BigDecimal value3, String scale3) {
 System.out.println(value1 + " " + scale1+ " equals:\n"
 + value2 + " " + scale2 + "\n" + value3 + " " + scale3);
 }

 public static void printInvalidScale(String scale) {
 System.out.println("Invalid scale " + scale
 + ". Use K for Kelvin, C for Celsius, F for Fahrenheit");
 }

 public static void printWrongFormat() {
 System.out.println("Wrong format!");
 }
}

So, the Exercise10S class could be implemented in the following way:

import java.util.*;
import java.math.*;

public class Exercise10S {
 private static final String K ="Kelvin";
 private static final String C ="Celsius";
 private static final String F ="Fahrenheit";

 public static void main(String[] args) {
 Exercise10S exercise10S = new Exercise10S();
 exercise10S.start();
 }

 public void start() {
 try {
 Printer.printInstructions();
 Scanner scanner = new Scanner(System.in);
 String input = scanner.next();
 int lastCharIndex = input.length()-1;
 BigDecimal value = new BigDecimal(
 input.substring(0, lastCharIndex));
 String scale = input.substring(lastCharIndex);
 switch(scale) {
 case"k":
 case"K": {
 BigDecimal celsius =

Chapter 10 Exercise Solutions

336
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Converter.convertKelvinToCelsius(value);
 BigDecimal fahrenheit =
 Converter.convertKelvinToFahrenheit(value);
 Printer.printMessage(value, K, celsius, C, fahrenheit, F);
 break;
 }
 case"c":
 case"C": {
 BigDecimal kelvin = Converter.convertCelsiusToKelvin(value);
 BigDecimal fahrenheit =
 Converter.convertCelsiusToFahrenheit(value);
 Printer.printMessage(value, C, kelvin, K, fahrenheit, F);
 break;
 }
 case"f":
 case"F": {
 BigDecimal celsius =
 Converter.convertFahrenheitToCelsius(value);
 BigDecimal kelvin =
 Converter.convertFahrenheitToKelvin(value);
 Printer.printMessage(value, F, celsius, C, kelvin, K);
 break;
 }
 default:
 Printer.printInvalidScale(scale);
 start();
 }
 } catch (NumberFormatException exc) {
 Printer.printWrongFormat();
 start();
 }
 }
}

Note that the printMessage() method undoubtedly has too many parameters, and its use
appears to be quite complex. However, the solution seems better than that of the previous
exercise.

Solution 10.t)

The following could be a possible implementation of the Exercise10T class:

import java.util.*;
import java.io.*;
import java.math.*;
import java.util.logging.*;

public class Exercise10T {

Chapter 10 Exercise Solutions

337
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private static final LogManager logManager = LogManager.getLogManager();
 private static final Logger LOGGER = Logger.getLogger("Exercise10T");
 private static final String K ="Kelvin";
 private static final String C ="Celsius";
 private static final String F ="Fahrenheit";

 public static void main(String[] args) {
 initLogging();
 LOGGER.info("Main() method called");
 Exercise10T exercise10T = new Exercise10T();
 exercise10T.start();
 LOGGER.info("Program terminated");
 }

 private static void initLogging() {
 try {
 logManager.readConfiguration(new FileInputStream(
 "logging.properties"));
 } catch (IOException exception) {
 LOGGER.log(Level.SEVERE,
 "Problem reading configuration file",exception);
 }
 }

 public void start() {
 try {
 LOGGER.info("Start() method called");
 Printer.printInstructions();
 Scanner scanner = new Scanner(System.in);
 String input = scanner.next();
 int lastCharIndex = input.length()-1;
 BigDecimal value = new BigDecimal(input.substring(0,
 lastCharIndex));
 String scale = input.substring(lastCharIndex);
 switch(scale) {
 case"k":
 case"K": {
 LOGGER.fine("Kelvin scale in use");
 BigDecimal celsius =
 Converter.convertKelvinToCelsius(value);
 BigDecimal fahrenheit =
 Converter.convertKelvinToFahrenheit(value);
 Printer.printMessage(value, K, celsius, C, fahrenheit, F);
 break;
 }
 case"c":
 case"C": {
 LOGGER.fine("Celsius scale in use");
 BigDecimal kelvin = Converter.convertCelsiusToKelvin(value);

Chapter 10 Exercise Solutions

338
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 BigDecimal fahrenheit =
 Converter.convertCelsiusToFahrenheit(value);
 Printer.printMessage(value, C, kelvin, K, fahrenheit, F);
 break;
 }
 case"f":
 case"F": {
 LOGGER.fine("Fahrenheit scale in use");
 BigDecimal celsius =
 Converter.convertFahrenheitToCelsius(value);
 BigDecimal kelvin =
 Converter.convertFahrenheitToKelvin(value);
 Printer.printMessage(value, F, celsius, C, kelvin, K);
 break;
 }
 default:
 LOGGER.fine("Invalid scale");
 Printer.printInvalidScale(scale);
 start();
 }
 } catch (NumberFormatException exc) {
 LOGGER.severe(exc.getMessage());
 Printer.printWrongFormat();
 start();
 }
 }
}

By launching this class with the default level ALL, in the log file we will find the following text:

apr 27, 2020 12:53:01 PM Exercise10T main
INFO: Main() method called
apr 27, 2020 12:53:01 PM Exercise10T start
INFO: Start() method called Metodo start() chiamato
apr 27, 2020 12:53:03 PM Exercise10T start
FINE: Kelvin scale in use
apr 27, 2020 12:53:03 PM Exercise10T main
INFO: Program terminated

But by changing the log level to INFO, and using the application correctly, we will find this text
in the log file:

apr 27, 2020 12:54:01 PM Exercise10T main
INFO: Main() method called
apr 27, 2020 12:54:02 PM Exercise10T start
INFO: Start() method called
apr 27, 2020 12:54:05 PM Exercise10T main
INFO: Program terminated

Chapter 10 Exercise Solutions

339
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

That is, the FINE type logs have been ignored.
Finally, if we changed the log level to SEVERE we would only see the SEVERE level logs. So, the
file would be unchanged if the application was used correctly, while it would contain the log
messages defined to manage the exception if the user specifies an invalid scale. For example
using the application in the following way:

Enter a value in Kelvin (for example 12K), Celsius (25C) or
 Fahrenheit (451F)
j
Wrong format!
Enter a value in Kelvin (for example 12K), Celsius (25C) or
 Fahrenheit (451F)
0k
0 Kelvin equals:
-273.15 Celsius
-459.67 Fahrenheit

we would get the following log file:

apr 27, 2020 12:56:21 PM Exercise10T start
SEVERE: Character j is neither a decimal digit number, decimal point, nor "e"
 notation exponential mark.

Solution 10.u)

We can implement the GuessNumber class in the following way:

import java.util.Random;

public class GuessNumber {
 private static final Random RANDOM = new Random();

 public static int generateRandomNumber(int max) {
 return 1+ RANDOM.nextInt(max);
 }
}

While we can define the GuessNumberGame class as follows:

import java.util.Scanner;
import java.util.Random;

public class GuessNumberGame implements Game {
 private static final int MAX_NUMBER = 100;
 private Scanner scanner;
 private int attemptsNumber;
 private int numberToGuess;

Chapter 10 Exercise Solutions

340
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public GuessNumberGame () {
 init();
 start();
 play();
 end();
 }

 @Override
 public void init() {
 scanner = new Scanner(System.in);
 numberToGuess = GuessNumber.generateRandomNumber(MAX_NUMBER);
 }

 @Override
 public void start() {
 System.out.println("I'm thinking of a number between 1 and "
 + MAX_NUMBER + ", guess what!");
 }

 @Override
 public void play() {
 attemptsNumber++;
 int number = scanner.nextInt();
 if (number < numberToGuess) {
 System.out.println("Too low, try again");
 } else if (number > numberToGuess) {
 System.out.println("Too high, try again");
 } else {
 return;
 }
 play();
 }

 @Override
 public void end() {
 System.out.println("Yes! You guessed it after " + attemptsNumber
 + " attempts");
 }

 public static void main(String args[]) {
 new GuessNumberGame();
 }
}

Note that the main() method simply instantiated the GuessNumberGame object by calling its
constructor. The latter invoked the methods defined by the interface which were implemented
in a very simple and consistent way. Only the recursive play() method deserves attention,
which calls itself up until the user has guessed the number.

Chapter 10 Exercise Solutions

341
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 10.v)

We can redefine the GuessNumberGame class as follows (changes in bold), removing the recur-
sive nature of the play() method:

import java.util.Scanner;
import java.util.Random;

public class GuessNumberGame implements Game {
 private static final int MAX_NUMBER = 100;
 private Scanner scanner;
 private int attemptsNumber;
 private int numberToGuess;

 public GuessNumberGame () {
 init();
 start();
 play();
 end();
 }

 @Override
 public void init() {
 scanner = new Scanner(System.in);
 numberToGuess = GuessNumber.generateRandomNumber(MAX_NUMBER);
 }

 @Override
 public void start() {
 System.out.println("I'm thinking of a number between 1 and "
 + MAX_NUMBER + ", guess what!");
 }

 @Override
 public void play() {
 while (scanner.hasNext()) {
 if (scanner.hasNextInt()) {
 attemptsNumber++;
 int number = scanner.nextInt();
 if (number < numberToGuess) {
 System.out.println("Too low, try again");
 } else if (number > numberToGuess) {
 System.out.println("Too high, try again");
 } else {
 return;
 }
 //play()
 } else {
 System.out.println("Invalid input '" + scanner.next ()

Chapter 10 Exercise Solutions

342
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 + "'. You can only enter integer numbers, please try again");
 }
 }
 }

 @Override
 public void end() {
 System.out.println("Yes! You guessed it after " + attemptsNumber
 + " attempts");
 }

 public static void main(String args[]) {
 new GuessNumberGame();
 }
}

Solution 10.w)

We can implement the Player class in the following way:

public class Player {
 private int id;
 private String name;

 public Player (int id, String name) {
 this.setId(id);
 this.setName(name);
 }

 public void setId(int id) {
 this.id = id;
 }

 public int getId() {
 return id;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 @Override
 public String toString() {
 return "Player " + id + ": " + name;
 }
}

Chapter 10 Exercise Solutions

343
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Then we implement the PlayerException class:

public class PlayerException extends Exception {
 public PlayerException (String message){
 super("Player exception: " + message);
 }
}

The implementation of the MultiPlayerGame abstract class follows:

import java.util.List;
import java.util.ArrayList;

public abstract class MultiPlayerGame implements Game {
 private List<Player> players;

 public MultiPlayerGame () {
 init();
 start();
 play();
 end();
 }

 @Override
 public void init() {
 players = new ArrayList<>();
 }

 public void addPlayer(Player player) {
 players.add(player);
 }

 public void removePlayer(Player player) {
 players.add(player);
 }

 public Player getPlayer(int id) throws PlayerException {
 if (id < 0) {
 throw new PlayerException("The player ID cannot be negative");
 } else if (id >=players.size()) {
 throw new PlayerException("The player ID does not exist");
 }
 return players.get(id);
 }

 public Player getPlayer(String name) throws PlayerException {
 Player playerFound = null;
 int counter = 0;
 for (Player player : players) {
 if (player.getName().equals(name)) {

Chapter 10 Exercise Solutions

344
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 counter++;
 playerFound = player;
 }
 }
 if (counter == 0) {
 throw new PlayerException("Player with name " + name
 + " not found");
 } else if (counter > 1) {
 throw new PlayerException("Found " + counter
 + " players with name " + name);
 }
 return playerFound;
 }

 public List<Player> getPlayers() {
 return players;
 }
}

Then we defined its implementation in a minimal way:

import java.util.Iterator;

import java.util.Iterator;

public class MultiPlayerGameImpl extends MultiPlayerGame {
 public void start() {
 // so far, no implementation
 }

 public void play() {
 // so far, no implementation
 }

 public void end() {
 // so far, no implementation
 }

 public void printPlayers() {
 System.out.println("Players list:");
 for (Player player : getPlayers()) {
 System.out.println(player);
 }
 }
}

Finally, follows our test class:

public class MultiPlayerGameTest {
 private static int counter;

Chapter 10 Exercise Solutions

345
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void main(String args[]) {
 MultiPlayerGameImpl game = new MultiPlayerGameImpl();
 Player p1 = new Player(++counter,"John");
 Player p2 = new Player(++counter,"James");
 game.addPlayer(p1);
 game.addPlayer(p2);
 game.printPlayers();
 System.out.println();
 //NAME OK
 try {
 System.out.println("Retrieved player: " + game.getPlayer("John"));
 } catch (Exception exc) {
 assert false;
 System.out.println(exc.getMessage());
 }
 //NAME NOT OK
 try {
 System.out.println("Retrieved player: " + game.getPlayer("Jack"));
 assert false;
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 try {
 Player p3 = new Player(++counter,"John");
 game.addPlayer(p3);
 game.printPlayers();
 System.out.println();
 System.out.println("Retrieved player: " +game.getPlayer("John"));
 assert false;
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 //ID OK
 try {
 System.out.println("Retrieved player: " +game.getPlayer(2));
 } catch (Exception exc) {
 assert false;
 System.out.println(exc.getMessage());
 }
 //ID NOT OK
 try {
 System.out.println("Retrieved player: " +game.getPlayer(-1));
 assert false;
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 try {
 System.out.println("Retrieved player: " +game.getPlayer(3));
 assert false;

Chapter 10 Exercise Solutions

346
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }
}

which produces the following output:

Players list:
Player 1: John
Player 2: James

Retrieved player: Player 1: John
Player exception: Player with name Jack not found
Players list:
Player 1: John
Player 2: James
Player 3: John

Player exception: Found 2 players with name John
Retrieved player: Player 3: John
Player exception: The player ID cannot be negative
Player exception: The player ID does not exist

Solution 10.x)

A possible solution is represented by the following code:

import java.util.Scanner;

public class MultiPlayerGameConfigurator implements Configurator {
 private static int counter;
 private Scanner scanner;
 private MultiPlayerGameImpl game;

 public MultiPlayerGameConfigurator() {
 game = new MultiPlayerGameImpl();
 scanner = new Scanner(System.in);
 config();
 game.printPlayers();
 }

 @Override
 public void config() {
 var players = game.getPlayers();
 System.out.println("Enter player name " + (++counter) +
 (players.isEmpty() ?"":" Or 'i' to start playing"));
 String text = scanner.next();
 if (!players.isEmpty() && text.equals("i")) {

Chapter 10 Exercise Solutions

347
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 return;
 }
 game.addPlayer(new Player (counter, text));
 config();
 }
}

Note the recursive implementation of the config() method, which allows us to add as many
players as we want.

Solution 10.y)

For completeness, we report the Player class which has been made abstract and modified with
the addition of the play() abstract method (changes in bold) :

public abstract class Player {
 private int id;
 private String name;

 public Player(int id, String name) {
 this.setId(id);
 this.setName(name);
 }

 public abstract boolean play();

 public void setId(int id) {
 this.id = id;
 }

 public int getId() {
 return id;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 @Override
 public String toString() {
 return "Player " + id + ": " + name;
 }
}

then follows the implementation of the GuessNumberPlayer class, which defines the logic to
play in within its play() method, very similar to what was the logic in the GuessNumberGame
version of exercise 10.v:

Chapter 10 Exercise Solutions

348
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import java.util.Scanner;

public class GuessNumberPlayer extends Player {
 private Scanner scanner;
 private int numberToGuess;
 private int attemptsNumber;

 public GuessNumberPlayer (int id, String name, Scanner scanner,
 int numberToGuess) {
 super(id, name);
 this.scanner = scanner;
 this.numberToGuess = numberToGuess;
 }

 public void incrementAttemptsNumber() {
 attemptsNumber++;
 }

 public int getAttemptsNumber() {
 return attemptsNumber;
 }

 @Override
 public boolean play() {
 if (scanner.hasNextInt()) {
 incrementAttemptsNumber();
 int number = scanner.nextInt();
 if (number < numberToGuess) {
 System.out.println("Too low, try again");
 } else if (number > numberToGuess) {
 System.out.println("Too high, try again");
 } else {
 return true;
 }
 } else {
 System.out.println("Invalid input '" + scanner.next ()
 + "'. You can only enter integer numbers, please try again");
 play();
 }
 return false;
 }
}

Finally, below is our implementation of the new GuessNumberGame class (changes in bold):

import java.util.Scanner;
import java.util.Random;
import java.util.List;
import java.util.ArrayList;

public class GuessNumberGame extends MultiPlayerGame implements Configurator {

Chapter 10 Exercise Solutions

349
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private static final int MAX_NUMBER = 100;
 private static int counter;
 private Player currentPlayer;
 private Scanner scanner;
// private int attemptsNumber;
 private int numberToGuess;

/*
 public GuessNumberGame () {
 init();
 start();
 play();
 end();
 }
*/

 @Override
 public void init() {
 super.init();
 scanner = new Scanner(System.in);
 numberToGuess = GuessNumber.generateRandomNumber(MAX_NUMBER);
 }

 @Override
 public void start() {
 config();
 System.out.println("I'm thinking of a number between 1 and "
 + MAX_NUMBER + ", guess what!");
 }

 @Override
 public void config() {
 System.out.println("Enter player name " + (++counter) +
 (getPlayers().isEmpty() ?"":" Or 'i' to start playing"));
 String text = scanner.next();
 if (!getPlayers().isEmpty() && text.equals("i")) {
 currentPlayer = getPlayers().get(0);
 System.out.println(currentPlayer + " is your turn");
 return;
 }
 addPlayer(new GuessNumberPlayer (counter, text, scanner,
 numberToGuess));
 config();
 }

 @Override
 public void play() {
 while (scanner.hasNext()) {
 boolean result = currentPlayer.play();
 if (result) {
 return;

Chapter 10 Exercise Solutions

350
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 }
 currentPlayer = getCurrentPlayer();
 System.out.println(currentPlayer + " is your turn");
 }
 }

 private Player getCurrentPlayer() {
 int nextPlayerIndex = currentPlayer.getId();
 var players = getPlayers();
 if (nextPlayerIndex == players.size()) {
 nextPlayerIndex = 0;
 }
 return players.get(nextPlayerIndex);
 }

 @Override
 public void end() {
 System.out.println("Yes " + currentPlayer.getName()
 + "! You guessed it after " + ((GuessNumberPlayer)currentPlayer)
 .getAttemptsNumber() + " attempts");
 }

 public static void main(String args[]) {
 new GuessNumberGame();
 }
}

Solution 10.z)

The solution should be:

The PlayerException class belongs to games.generic.exceptions.

The Player and MultiPlayerGame classes belong to games.generic.data.

The GuessNumberPlayer class belongs to games.guessnumber.data.

The GuessNumberGame class belongs to games.guessnumber.business.

The GuessNumber class belongs to games.guessnumber.util.

The Game class belongs to games.generic.business.

The Configurator class belongs to games.generic.business.

Note that all classes belonging to the games.generic package are classes that could be reused in
other games! So, in practice we created, what in architectural language is called a framework, let’s
say a mini-framework, which we can reuse to create new configurable and multi-user games!

1.

2.

3.

4.

5.

6.

7.

351
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 11
Exercises

Enumerations and Nested Types

Chapter 11 is the first of the chapters of the third part of the book named “Advanced Features”.
In particular, the nested types are one of the most complex arguments of Java, due to their syn-
tax, and above all to the abstruse properties that characterize them. Mastering the nested types
will allow us to interface with the language more effectively. As for the enumerations, all in all
it is a topic not so complex. There are some particular rules that need to be understood, but the
important thing is to understand when it is convenient to use them. Also for this chapter, you
will find many exercises with multiple answers (some very difficult to solve) that support the
preparation of the Oracle certification exams, but also implementations to be coded.

Exercise 11.a) Nested Types, True or False:

A nested class is a class that is declared within another class.

An anonymous class is also nested, but has no name. Moreover, to be declared, it must
necessarily be instantiated.

The nested classes are not necessary for the Object Orientation.

A nested class must necessarily be instantiated.

To instantiate a nested public class, sometimes the external class must be instantiated
first.

A private nested class, must also declare the “set” and “get” methods to be used by a third
class.

1.

2.

3.

4.

5.

6.

Chapter 11 Exercises

352
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

A nested class cannot have the same name as the class that contains it.

An anonymous class can have the same name as the class that contains it.

A nested class can access static members of the containing class only if it is declared
static.

 A nested class cannot be declared abstract.

Exercise 11.b) Enumerations, True or False:

The enumerations objects cannot be instantiated except within the definition of the
enumeration itself. In fact, they can only have private constructors.

An enumeration can declare methods, and its elements can be extended by classes which
can override the enumeration methods. However, it is not possible for one enum extends
another enum.

The values() method belongs to every enumeration but not to the java.lang.Enum
class.

The following code is compiled without errors:

public enum MyEnum {
 public void method1() {

 }
 public void method2() {

 }
 ENUM1, ENUM2;
}

The following code is compiled without errors:

public enum MyEnum {
 ENUM1 {
 public void method() {

 }
 }, ENUM2;
 public void method2() {

 }
}

7.

8.

9.

10.

1.

2.

3.

4.

5.

Chapter 11 Exercises

353
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The following code is compiled without errors:

public enum MyEnum {
 ENUM1 (), ENUM2;
 private MyEnum(int i) {

 }
}

The following code is compiled without errors:

public class Volume {
 public enum Level {
 HIGH, MEDIUM, LOW
 };
 // class implementation. . .
 public static void main(String args[]) {
 switch (getLevel()) {
 case HIGH:
 System.out.println(Level.HIGH);
 break;
 case MEDIUM:
 System.out.println(Level.MEDIUM);
 break;
 case LOW:
 System.out.println(Level.LOW);
 break;
 }
 }
 public static Livello getLevel() {
 return Level.HIGH;
 }
}

If we declare the following enumeration:

public enum MyEnum {
 ENUM1 {
 public void method1() {

 }
 },
 ENUM2 {
 public void method2() {

 }
 }
}

the following code could be correctly compiled:

MyEnum.ENUM1.method1();

6.

7.

8.

Chapter 11 Exercises

354
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

It is not possible to declare enumerations with a single element.

 Enumerations can be nested into enumerations in the following way:

public enum MyEnum {
 ENUM1 (), ENUM2;
 public enum MyEnum2 {a,b,c}
}

and the following code is compiled without errors:

System.out.println(MyEnum.MyEnum2.a);

Exercise 11.c)

Modify the sources created with the exercises of Chapter 8, after replacing the FileType
interface, created in exercise 8.c, with an enumeration. Everything will have to work as before.

Exercise 11.d)

Starting from the solution of the previous exercise, insert the FileType enumeration in the
File class. What changes must be made to the application to continue to make it work as
before?

Exercise 11.e)

Consider the sources created with the exercises of Chapter 6, and modified with the exercises in
Chapter 9. Currently, the Coin class may be instantiated incorrectly, and exceptions may need
to be handled. For example, as a parameter to the constructor of the Coin class a negative value
could be passed. Following is the code we have developed so far (comments omitted):

public class Coin {

 public final static String CURRENCY ="EURO";

 private final int value;

 public Coin(int value) {
 this.value = value;
 System.out.println("Created a " + getDescription());
 }

 private static String formatDescriptiveString(int value) {
 String formattedString = " cents of ";
 if (value == 1) {
 formattedString = " cent of ";

9.

10.

Chapter 11 Exercises

355
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 } else if (value > 99) {
 formattedString = " ";
 value /= 100;
 }
 return value + formattedString;
 }

 public int getValue() {
 return value;
 }

 public String getDescription() {
 String description = "coin of " + formatDescriptiveString(value)
 + CURRENCY;
 return description;
 }
}

Create an enumeration that allows to make the constructor (and therefore the entire program)
more robust, and that allows us to avoid exception handling. Rewrite also the Coin class.

Exercise 11.f)

Based on the previous exercise, change the Purse class accordingly.

Exercise 11.g)

Based on the last two exercises, change the CoinsTest class accordingly.

Exercise 11.h)

Suppose we want to write a program and want to re-use the following Person class, inherited
from a program already written and not editable:

public class Person {

 private String name;
 private String surname;
 private String birthDate;
 private String occupation;
 private String address;

 public Person(String name, String surname) {
 this.name = name;
 this.surname = surname;
 }

Chapter 11 Exercises

356
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public Person(String name, String surname, String birthDate,
 String occupation, String address) {
 this.name = name;
 this.surname = surname;
 this.birthDate = birthDate;
 this.occupation = occupation;
 this.address = address;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getSurname() {
 return surname;
 }

 public void setSurname(String surname) {
 this.surname = surname;
 }

 public String getBirthDate() {
 return birthDate;
 }

 public void setBirthDate(String birthDate) {
 this.birthDate = birthDate;
 }

 public String getOccupation() {
 return occupation;
 }

 public void setOccupation(String occupation) {
 this.occupation = occupation;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

Chapter 11 Exercises

357
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 @Override
 public String toString() {
 return "Person{" + "name=" + name + ", surname=" + surname + '}';
 }
}

Unfortunately, in our context, we would need to redefine the toString() method so that it
not only prints information on the person’s first and last name, but also the date of birth, ad-
dress and occupation. As already mentioned, however, the class is already in use and cannot be
changed. In particular, our requirement is that the toString() method returns the following
string:

Name: 			 Arjen Anthony
Surname: 			 Lucassen
Occupation: 		 Composer
Birth Date 		 03/04/1960
Address: 			 Holland

Then create a PersonTest class that redefines the toString() method of the Person class and
prints the above output.

For formatting it is possible to exploit the escape character \t intro-
duced in paragraph 3.3.5.3.

Exercise 11.i)

Given the following class:

public class External {
 private int integer = 5;

 public static void main(String[] args) {
 External.Inner inner = new External().new Inner();
 inner.innerMethod();
 }
 private class Inner {
 private int integer = 10;
 protected void innerMethod() {
 System.out.println(super.integer);
 }
 }
}

Which of the following statements are true?

Chapter 11 Exercises

358
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Once the External class has been executed, a NullPointerException is launched.

Once the External class has been executed, 50 is printed.

Once the External class has been executed, 10 is printed.

Once the Internal class has been executed, 5 is printed.

Once the Internal class has been executed, 0 is printed.

This code cannot be compiled.

Exercise 11.l)

Taking into account the answer of the previous exercise, modify the code (with a minimal
change) so as to print the value 5. Then modify it again to make it print also the value 10.

Exercise 11.m)

Given the following class:

public class External {
 public int a = 1;
 private int b = 2;
 public void externalMethod(final int c) {
 int d = 4;
 class Inner {
 private void innerMethod(int e) {

 }
 }
 }
}

Which of the following statements are correct?

Within the method innerMethod it is possible to reference the variable a.

Within the method innerMethod it is possible to reference the variable b.

Within the method innerMethod it is possible to reference the variable c.

Within the method innerMethod it is possible to reference the variable d.

Within the method innerMethod it is possible to reference the variable e.

The class cannot be compiled.

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

6.

Chapter 11 Exercises

359
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 11.n)

Given the following class:

public class Exercise11N {

 public static void main(String args[]) {
 new MyInterface(){
 public void method(){
 System.out.println("Anonymous class");
 }
 }.method();
 }

 private interface MyInterface{
 void method();
 }
}

Which of the following statements is true?

Executing the Exercise11N class, a NullPointerException is thrown.

Executing the Exercise11N class, a CannotInstantiateInterfaceException is thrown.

Once the Exercise11N class has been executed, “Anonymous Class” is printed.

Once the Exercise11N class has been executed, “Null” is printed.

This code cannot be compiled.

Exercise 11.o)

Given the following class:

public class External {
 private class Inner {
 private static int effectivelyFinalVariable = 10;
 Inner() {
 effectivelyFinalVariable = 11;
 }
 protected void method() {
 System.out.println(effectivelyFinalVariable);
 }
 }
}

Which of the following statements are true?

1.

2.

3.

4.

5.

Chapter 11 Exercises

360
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

This code cannot be compiled.

The effectivelyFinalVariable variable is not “effectively final”.

The effectivelyFinalVariable variable does not matter whether or not it is “effectively
final” because it is an instance variable.

The effectivelyFinalVariable variable does not matter whether it is “effectively final”
or not because it belongs to the internal class and not to the external class.

Exercise 11.p)

Given the following class:

public class External {
 private final static String string = "Nested class";

 protected External() {
 private static class Nested {
 protected void method() {
 System.out.println(string);
 }
 }
 }
}

Which of the following statements are true?

This code cannot be compiled.

The static string constant is not “effectively final” because it is also static, and therefore
cannot be used within the internal class Nested.

The static string constant is not accessible to the method() method because it is declared
static.

The Nested class, being declared inside a protected constructor, can only be used inside
the constructor.

Exercise 11.q)

Given the following code:

public enum Exercise11Q {
 A, B, C;

1.

2.

3.

4.

1.

2.

3.

4.

Chapter 11 Exercises

361
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private enum InnerEnum {
 C, D, E;

 protected enum InnerInnerEnum {
 F,G,H
 }
 }

 public static void main(String args[]) {
 System.out.println(/*INSERT YOUR CODE HERE*/);
 }
}

Which of the following expressions can be inserted instead of the comment
/* INSERT YOUR CODE HERE */ to print the value H (it is possible to choose zero or more ex-
pressions):

Exercise11Q.A.InnerEnum.C.InnerInnerEnum.H

Exercise11Q.InnerEnum.InnerInnerEnum.H

InnerInnerEnum.H

InnerEnum.A.InnerInnerEnum.H

InnerEnum.InnerInnerEnum.F.G.H

InnerEnum.InnerInnerEnum.H

Exercise11Q.A.C.H

None: the code does not compile.

Exercise 11.r)

Given the following code:

public enum Exercise11R implements Interface {
 ONE {
 @Override
 public int method() {
 return 29 + 7 + 74;
 }
 } ,
 TWO,
 THREE{
 @Override

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 11 Exercises

362
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public int method() {
 return 12 + 11 + 6;
 }
 };
 @Override
 public int method() {
 return 14 + 4 + 4;
 }

 public static void main(String args[]) {
 Interface i = Exercise11R.THREE;
 System.out.println(i.method());
 }
}

interface Interface {
 int method();
}

If the Exercise11R file is executed, what will be printed (choose only one answer)?

22

29

110

161

THREE

THREE.method()

i.method()

None: the code does not compile.

Exercise 11.s)

Given the following code:

public enum Exercise11S {
 A, B, C;
 public class Inner{
 public enum InnerEnum {
 D, E, F;
 }
 }
 public static void main(String args[]) {
 for (Exercise11S.Inner.InnerEnum item : Exercise11S.Inner.InnerEnum.values()) {

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 11 Exercises

363
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println(item);
 }
 }
}

Once the Exercise11S enumeration has been performed, the output will be:

A, B, C

D, E, F

A B C

D E F

ABC

DEF

None of the above: a NullPointerException is thrown.

None of the above: the code does not compile due to an error in the main() method.

None of the above: the code does not compile due to an error in the Inner class.

Exercise 11.t)

(SPOILER ALERT: next lines will reveal the solution of the
previous exercise!)

After reading the solution of the previous exercise (in particular the compilation output), mod-
ify the code to make it compile, solving the various errors that occur after the various compila-
tions. Running the definitive compilable version the program will have to print the following
output:

D
E
F

This exercise tests your ability to interpret compiler error messag-
es, and solve them. Practically what every programmer does all the
time!

1.

2.

3.

4.

5.

6.

7.

8.

9.

Chapter 11 Exercises

364
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 11.u)

What should we use to have different (even partial) algorithms run on a method (choose all the
correct answers) without having first created the algorithm code?

An object instantiated from an existing class.

An interface.

An enumeration.

An inner class.

A nested class.

An anonymous class.

A switch construct.

Nothing, is simply not possible.

Exercise 11.v)

Abstract a Neapolitan deck of cards and create an executable class (with the main()
method that runs through all 40 cards.

Exercise 11.z)

Starting from the solution of the previous exercise:

Identify formatting problems.

Fix the formatting problems identified.

This exercise tests your ability to solve problems with inventiveness,
conscience and initiative. Practically what every programmer should
always do!

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

365
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 11
Exercise Solutions

Enumerations and Nested Types

Solution 11.a) Nested Types, True or False:

True.

True.

True.

False, anonymous classes must necessarily be instantiated.

True, see section 11.1.2.

False.

True.

False, an anonymous class has no name.

True.

 True.

 False, an anonymous class cannot be declared abstract.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Chapter 11 Exercise Solutions

366
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 11.b) Enumerazioni, True or False:

True.

True.

False.

False.

True.

False, it is not possible to use the default constructor if one is explicitly declared.

True.

True.

True.

 True.

Solution 11.c)

The FileType enumeration code is very simple:

public enum FileType {
 JAVA,
 C_SHARP,
 C_PLUS_PLUS,
 C;
}

Then you need to modify the File class, so as to use the FileType type instead of the old in-
teger type:

public abstract class File {

 private String name;

 private FileType type;

 public File(String name, FileType type) {
 this.name = name;
 this.type = type;
 }

 public String getName() {
 return name;
 }

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 11 Exercise Solutions

367
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void setName(String name) {
 this.name = name;
 }

 public FileType getType() {
 return type;
 }

 public void setType(FileType type) {
 this.type = type;
 }
}

Then you need to modify the SourceFile class, so as to use the FileType type instead of the
old integer type:

public class SourceFile extends File {
 private String content;

 public SourceFile(String name, FileType type) {
 super(name, type);
 }

 public SourceFile(String name, FileType type, String content) {
 this(name, type);
 this.content = content;
 }

 public String getContent() {
 return content;
 }

 public void setContent(String content) {
 this.content = content;
 }

 public void addText(String text) {
 if (content == null) {
 content ="";
 }
 if (text != null) {
 content += text;
 }
 }

 public void addText(String text, int position) {
 final int length = content.length();
 if (content != null && text != null && position > 0 &&
 position < length) {

Chapter 11 Exercise Solutions

368
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 content = content.substring(0, position) + text +
 content.substring(position);
 }
 }
}

Everything else can remain as it is.

Solution 11.d)

The File code with the TypeFile nested enumeration should be the following:

public abstract class File {
 public enum FileType {
 JAVA,
 C_SHARP,
 C_PLUS_PLUS,
 C;
 }

 private String name;

 private FileType type;

 public File(String name, FileType type) {
 this.name = name;
 this.type = type;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public FileType getType() {
 return type;
 }

 public void setType(FileType type) {
 this.type = type;
 }
}

Then we need to modify the two test classes to correctly reference the FileType nested
element:

Chapter 11 Exercise Solutions

369
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class SourceFileTest {
 public static void main(String args[]) {
 SourceFile sourceFile = new SourceFile("Test.java",
 File.FileType.JAVA, "public class MyClass {\n\r");
 System.out.println(sourceFile.getContent());
 // Correct test addText (String)
 sourceFile.addText("}");
 System.out.println(sourceFile.getContent());
 // Correct test addText (String,int)
 sourceFile.addText("//Test text addition\n\r", 23);
 System.out.println(sourceFile.getContent());
 // Incorrect test addText (String,int)
 sourceFile.addText("//Test text addition\n\r", -1);
 System.out.println(sourceFile.getContent());
 // Incorrect test addText (String,int)
 sourceFile.addText("//Test text addition\n\r", 100);
 System.out.println(sourceFile.getContent());
 }
}

and:

public class IDETest {
 public static void main(String args[]) {
 IDE ide = new JavaIDE();
 SourceFile sourceFile = new SourceFile("Test.java",
 File.FileType.JAVA, "public class MyClass {\n\r");
 ide.update(sourceFile, "}");
 }
}

Instead, it was not necessary to modify the SourceFile class, because being a File subclass it
inherited the enumeration.

Solution 11.e)

The implementation of our enumeration is quite complex:

public enum Value {

 ONE_CENT(1) {
 @Override
 public String getDescriptiveString() {
 return getValue() + " cents of ";
 }
 },
 TWO_CENTS(2),
 FIVE_CENTS(5),
 TEN_CENTS(10),

Chapter 11 Exercise Solutions

370
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 TWENTY_CENTS(20),
 FIFTY_CENTS(50),
 ONE_EURO(1) {
 @Override
 public String getDescriptiveString() {
 return getValue() + " ";
 }
 },
 TWO_EURO(2) {
 @Override
 public String getDescriptiveString() {
 return getValue() + " ";
 }
 };

 private int value;

 private Value(int value) {
 this.value = value;
 }

 public String getDescriptiveString() {
 return getValue() + " cents of ";
 }

 public int getValue() {
 return value;
 }
}

We have defined all the possible values for a coin (supposed to be a Euro). Each element of the
enumeration uses a constructor that sets the numerical value of the value variable. Further-
more, the getDescriptiveString() method is defined, which will simplify the original Coin
class. This method is overridden by anonymous classes for three elements of the enumeration.
The Coin class must be modified (simplified) as follows:

public class Coin {

 public final static String CURRENCY = "EURO";

 private final Value value;

 public Coin(Value value) {
 this.value = value;
 System.out.println("Created a " + getDescription());
 }

 public Value getValue() {

Chapter 11 Exercise Solutions

371
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 return value;
 }

 public String getDescription() {
 String description = "coin value " + value.getDescriptiveString()
 + CURRENCY;
 return description;
 }
}

Solution 11.f)

The Purse class code must be modified as follows (comments omitted):

public class Purse {

 private static final int DIMENSION = 10;
 private final Coin[] coins = new Coin[DIMENSION];

 public Purse(Value... values) {
 assert coins.length == DIMENSION;
 try {
 int numberOfCoins = values.length;
 for (int i = 0; i < numberOfCoins; i++) {
 if (i >= 10) {
 throw new FullPurseException (
 "Only the first 10 coins have been inserted!");
 }
 coins[i] = new Coin(values[i]);
 }
 // } catch (FullPurseException | NullPointerException exc) {
 } catch (FullPurseException exc) {
 System.out.println(exc.getMessage());
 } catch (NullPointerException exc) {
 System.out.println("The purse has been created empty");
 }
 assert coins.length == DIMENSION;
 }

 public void add(Coin coin) throws FullPurseException {
 try {
 System.out.println("Let's try adding one "+
 coin.getDescription());
 } catch (NullPointerException exc) {
 throw new NullCoinException();
 }
 int freeIndex = firstFreeIndex();

Chapter 11 Exercise Solutions

372
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 if (freeIndex == -1) {
 throw new FullPurseException("Purse full! The coin "
 + coin.getDescription() + " has not been added!");
 } else {
 coins[freeIndex] = coin;
 System.out.println(coin.getDescription() +" has been added");
 }
 }

 public Coin withdraw(Coin coin) throws CoinNotFoundException {
 try {
 System.out.println("Let's try to get a "+
 coin.getDescription());
 } catch (NullPointerException exc) {
 throw new NullCoinException();
 }
 Coin foundCoin = null;
 int foundCoinIndex = foundCoinIndex(coin);
 if (foundCoinIndex == -1) {
 throw new CoinNotFoundException("Coin not found!");
 } else {
 foundCoin = coin;
 coins[foundCoinIndex] = null;
 System.out.println("One " + coin.getDescription() + " withdraw");
 }
 return foundCoin;
 }

 public void state() {
 System.out.println("The purse contains:");
 for (Coin coin : coins) {
 if (coin == null) {
 break;
 }
 System.out.println("One "+ coin.getDescription());
 }
 }

 private int firstFreeIndex() {
 int index = -1;
 for (int i = 0; i < 10; i++) {
 if (coins[i] == null) {
 index = i;
 break;
 }
 }
 return index;
 }

Chapter 11 Exercise Solutions

373
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private int foundCoinIndex(Coin coin) {
 int foundCoinIndex = -1;
 for (int i = 0; i < 10; i++) {
 if (coins[i] == null) {
 continue;
 }
 Value coinInPurseValue = coins[i].getValue();
 Value value = coin.getValue();
 if (value == coinInPurseValue) {
 foundCoinIndex = i;
 break;
 }
 }
 return foundCoinIndex;
 }
}

Solution 11.g)

The CoinsTest class code is as follows:

public class CoinsTest {
 public static void main(String args[]) {
 Coin twentyCentsCoin = new Coin(Value.TWENTY_CENTS);
 Coin oneCentCoin = new Coin(Value.ONE_CENT);
 Coin oneEuroCoin = new Coin(Value.ONE_EURO);
 // Creation of a Purse with 11 coins
 Purse purseToFail = new Purse(Value.TWO_CENTS, Value.FIVE_CENTS,
 Value.ONE_EURO, Value.TEN_CENTS,
 Value.FIFTY_CENTS, Value.TEN_CENTS,
 Value.ONE_EURO, Value.TWO_EURO,
 Value.TEN_CENTS, Value.FIVE_CENTS,
 Value.TWO_CENTS);
 // Creation of a Purse with 8 coins
 Purse purse = new Purse(Value.TWO_CENTS, Value.FIVE_CENTS,
 Value.ONE_EURO, Value.TEN_CENTS,
 Value.FIFTY_CENTS, Value.TEN_CENTS,
 Value.ONE_EURO, Value.TWO_EURO);
 purse.state();

 try {
 // we add a 20 cents coin
 purse.add(twentyCentsCoin);
 } catch (FullPurseException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }

 try {
 // we add a 1 cents coin

Chapter 11 Exercise Solutions

374
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 purse.add(oneCentCoin);
 } catch (FullPurseException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }

 try {
 // We add the eleventh coin (we should get an error and the
 // coin will not be added)
 purse.add(oneEuroCoin);
 } catch (FullPurseException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }

 // We evaluate the status of the purse
 purse.state();

 try {
 // we withdraw 20 cents
 purse.withdraw(twentyCentsCoin);
 } catch (CoinNotFoundException exc) {
 System.out.println(exc.getMessage());
 }

 try {
 //Let's add the tenth coin again
 purse.add(oneEuroCoin);
 } catch (FullPurseException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }

 // We evaluate the status of the purse
 purse.state();

//The next example has no sense now!
// try {
// // We withdraw a non-existent currency (we should get an error)
// purse.withdraw(new Coin(7));
// } catch (CoinNotFoundException exc) {
// System.out.println(exc.getMessage());
// }

 try {
 //We try to add null
 purse.add(null);
 } catch (FullPurseException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }

 try {

Chapter 11 Exercise Solutions

375
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 //We try to withdraw null
 purse.withdraw(null);
 } catch (CoinNotFoundException | NullCoinException exc) {
 System.out.println(exc.getMessage());
 }
 //we test the passage of the null value to the purse constructor
 Purse purseWithNullPointerException = new Purse(null);
 purse.state();
 }
}

Solution 11.h)

The solution is very simple using an anonymous class on the fly as in the following code, but
we must format the code using tabs (“\t”):

public class PersonaTest {
 public static void main(String args[]) {
 System.out.println(
 new Person("Arjen Anthony", "Lucassen","03/04/1960", "Composer",
 "Holland") {
 @Override
 public String toString() {
 String string ="Name: \t\t\t"+ getName();
 string +="\nSurname: \t\t"+ getSurname();
 string +="\nOccupation: \t\t"+ getOccupation();
 string +="\nBirth Date \t\t"+ getBirthDate();
 string +="\nAddress: \t\t"+ getAddress();
 return string;
 }
 });
 }
}

Solution 11.i)

The correct answer is the last one. In fact the super.integer expression would imply that the
superclass of the Inner class has a variable called integer, which actually does not exist. Here
is the compile-time error message:

External.java:11: error: cannot find symbol
 System.out.println(super.integer);
 ^
 symbol: variable integer
1 error

Chapter 11 Exercise Solutions

376
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 11.l)

The solution could be the following:

public class External {
 private int integer = 5;

 public static void main(String[] args) {
 External.Inner inner = new External().new Inner();
 inner.innerMethod();
 }
 private class Inner extends External {
 private int integer = 10;
 protected void innerMethod() {
 System.out.println(super.integer);
 System.out.println(this.integer);
 }
 }
}

We have highlighted the changes made in bold.

Solution 11.m)

The correct statements are 1, 2, 3, 4 and 5.

Solution 11.n)

The correct statement is 3. In fact, the main() method code instantiates an anonymous class on
the fly, redefines the method() method and, without assigning the new instance to a reference,
calls (always on the fly) the method just redefined.

It would also have been advisable to annotate the redefined method
with the Override annotation.

Solution 11.o)

All statements are true. In particular, the number 1 is true, because rule number 7 applies (see
section 11.1.2.5): “A nested class can declare static members only if declared static.”.

Chapter 11 Exercise Solutions

377
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 11.p)

Statement 1 is correct. In fact, it is not possible to compile this code, because it is not possible
to declare a nested class inside a constructor (or a method).
The number 2 is false because, while the first statement could be considered correct (if it is
declared static, a variable cannot be local, and only the local variables can actually be final), the
second is not true because the Nested nested class is a in turn declared static, and therefore
could use the static variables of the External class.
For the same reason, the number 3 is also false.
The number 4 is obviously false because, as we said for statement 1, it is not possible to declare
a nested class within a constructor (or a method).

Solution 11.q)

The correct answers are 2, 4 and even 5.

Solution 11.r)

The right answer is 2, which means that it is printed 29. In fact, the method() method, inher-
ited from the InnerInterface interface, is rewritten by the enumeration Exercise11R with an
implementation that returns the number 22. But for the specific element of the enumeration
THREE , the method is rewritten in such a way as to precisely return the value 29. In the main()
method the Exercise11R.THREE element is assigned to the reference i of the Interface in-
terface (it is legal for data polymorphism). Then the method() method is invoked on i, which
actually points to the THREE element, which, as we have said, has redefined an implementation
of the method() method, which returns 29.

Solution 11.s)

The correct answer is the last one (number 9). In fact, it is not possible to declare an enumera-
tion within an inner class (see section 11.3.2).
The output of the compilation is as follows:

Exercise11S.java:4: error: enum declarations allowed only in static contexts
 public enum InnerEnum {
 ^
1 error

Chapter 11 Exercise Solutions

378
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 11.t)

Interpreting the output of the previous solution:

Esercizio11S.java:4: error: enum declarations allowed only in static
 contexts
 public enum InnerEnum {
 ^
1 error

It is easy to understand that the problem is that the inner classes (which we remember to be
non-static nested classes) cannot declare enumerations. The compiler, however, tells us that
enumeration declarations are allowed only in static contexts, so it is natural to declare the
nested class as static in the following way:

public enum Exercise11T {
 A, B, C;
 public static class Inner {
 public enum InnerEnum {
 D, E, F;
 }
 }
 public static void main(String args[]) {
 for (Exercise11T.Inner.InnerEnum item : Exercise11T.Inner.InnerEnum.values()) {
 System.out.println(item);
 }
 }
}

Compiling this code, we will get the following output:

Exercise11T.java:9: error: package Exercise11T.Inner does not exist
 for (Exercise11T.Inner.InnerEnum item :
 Exercise11T.Inner.InnerEnum.values()) {
 ^
Exercise11T.java:9: error: package Exercise11T.Inner does not exist
 for (Exercise11T.Inner.InnerEnum item : Exercise11T.Inner.InnerEnum.values()) {
 ^
2 errors

Which makes us understand that the type Exercise11T.Inner.InnerEnum is not recog-
nized as a valid type. The solution consists in using the correct type for our visibility context:
Inner.InnerEnum (that is, we have not specified the enumeration that contains both the main()
method and the Inner class). So the code should look like this:

public enum Exercise10T {
 A, B, C;
 public static class Inner {

Chapter 11 Exercise Solutions

379
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public enum InnerEnum {
 D, E, F;
 }
 }
 public static void main(String args[]) {
 for (Inner.InnerEnum item : Inner.InnerEnum.values()) {
 System.out.println(item);
 }
 }
}

which will be compiled without errors, and whose output will be the following:

D
E
F

as requested.

Solution 11.u)

The answer is number 6, as you can check in section 11.2.5 when in the video store example we
had created the code to be executed on the fly by a method with the following syntax:

public class VideoStoreTest {
 public static void main(String args[]) {
//...
 System.out.println("Nice movies:");
 Movie[] niceMovies = videoStore.getFilteredMovies(new MovieFilter() {
 public boolean filter(Movie movie) {
 return movie.getReviewsAverage() > 3;
 }
 });
//...
 System.out.println("\nSciFi movies:");
 Movie[] sciFiMovies = videoStore.getFilteredMovies(new MovieFilter() {
 public boolean filter(Movie movie) {
 return "SciFi".equals(movie.getGenre());
 }
 });
//...
 }
}

where the VideoStore was:

public class VideoStore {
 private Movie[] movies;

Chapter 11 Exercise Solutions

380
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public VideoStore() {
 movies = new Movie[10];
 loadMovies();
 }
 public void setFilms(Movie[] movies) {
 this.movies = movies;
 }

 public Movie[] getFilms() {
 return movies;
 }

/* THE FOLLOWING METHODS HAVE BEEN REPLACED BY THE DEFINED METHOD IMMEDIATELY AFTER
 public Movie[] getSciFiMovies() {
 Movie [] sciFiMovies = new Movie[10];
 for (int i = 0, j= 0; i< 10;i++) {
 if ("SciFi".equals(movies[i].getGenre())) {
 sciFiMovies[j] = movies[i];
 j++;
 }
 }
 return sciFiMovies;
 }
 public Movie[] getNiceMovies() {
 Movie [] niceMovies = new Movie[10];
 for (int i = 0, j= 0; i< 10;i++) {
 if (movies[i].getReviewsAverage() > 3) {
 niceMovies[j] = movies[i];
 j++;
 }
 }
 return niceMovies;
 }
*/
 /* THIS METHOD REPLACES THE TWO PREVIOUS (COMMENTED OUT) METHODS */
 public Movie[] getFilteredMovies(MovieFilter movieFilter) {
 Movie [] filteredMovies = new Movie[10];
 for (int i = 0, j= 0; i< 10;i++) {
 if (movieFilter.filter(movies[i])) {
 filteredMovies[j] = movies[i];
 j++;
 }
 }
 return filteredMovies;
 }

 private void loadMovies() {
 //loading movies...
 }
}

Chapter 11 Exercise Solutions

381
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

and where the MovieFilter interface, which is redefined with the anonymous classes in the
VideoStoreTest class, was simply the following:

public interface MovieFilter {
 boolean filter(Movie movie);
}

Solution 11.v)

We decided to use enumerations both to abstract the concept of seed and the number of cards.
A number could be represented with a primitive type as an int, or even a byte. But all in all, for
our purpose the enumeration seemed the best choice to be able to also represent the various
cards verbatim. Below is the Number enumeration code:

public enum Number {

 ONE("Ace"),
 TWO("Two"),
 THREE("Three"),
 FOUR("Four"),
 FIVE("Five"),
 SIX("Six"),
 SEVEN("Seven"),
 EIGHT("Eight"),
 NINE("Nine"),
 TEN("Ten");

 String representation;

 Number(String representation){
 this.representation = representation;
 }

 @Override
 public String toString(){
 return representation;
 }
}

Note that we have used the representation variable to manage the text representation of the
enumeration elements. This is set at the time of definition using the only constructor supplied.
With this variable we could have the string Ace printed instead of One, in a rather simple way
(that is without using particular algorithms that use conditions like switch or if). If we had used
a primitive type like int instead, we would have had to manage the situation with an algorithm,
which implies greater probability of error. Note that we have also redefined the toString()

Chapter 11 Exercise Solutions

382
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

method inherited from the Object class to facilitate the printing of enumeration elements.
To be sure we have written the correct code, we have also created a test class, similar
to a unit test (see section 10.4.1) simplified, to test only the printing of the elements of the
enumeration:

/**
 * Class that tests the number enumeration.
 */
public class NumberTest {
 public static void main (String args []) {
 for (Object object: Number.values ()) {
 System.out.println (object);
 }
 }
}

Il cui output ha verificato la correttezza del codice (secondo le nostre intenzioni):

Ace
Two
Three
Four
Five
Six
Seven
Eight
Nine
Ten

Let’s move on to the enumeration that represents the Seed of a card:

public enum Seed {
 CUPS,
 STICKS,
 COINS,
 SWORDS;

 String representation;

 public String toString() {
 return doCapitalization(this.name());
 }

 private String doCapitalization(String string) {
 //make the string lowercase
 String lowerCaseString = string.toLowerCase();
 //retrieve the first character of the string
 String initialCharacter = lowerCaseString.substring(0,1);
 //make uppercase the first character

Chapter 11 Exercise Solutions

383
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 String initialCharacterUpperCase = initialCharacter.toUpperCase();
 //retrieve the concatenation between the capital letter
 // and the rest of the lowercase string
 return initialCharacterUpperCase + lowerCaseString.substring(1);
 }
}

In this case, for educational purposes, we have modified the way in which the elements of the
enumeration are represented. We have created a utility method called doCapitalization(),
which makes the string passed as input capitalized. The instructions of this method are com-
mented and easily to understand. The toString() method does nothing but return the upper-
case string of the enumeration element name. Also in this case we have created a test class:

/**
 * Class that tests the Seme enumeration.
 */
public class SeedTest {
 public static void main (String args []) {
 for (Object object: Seed.values ()) {
 System.out.println (object);
 }
 }
}

which once executed produces the desired output:

Cups
Sticks
Coins
Swords

The Card class is very simple:

public class Card {

 private Seed seed;
 private Number number;

 public Card (Number number, Seed seed) {
 this.number = number;
 this.seed = seed;
 }

 public void setNumber(Number number) {
 this.number = number;
 }

 public Number getNumber() {
 return number;
 }

Chapter 11 Exercise Solutions

384
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void setSeed(Seed seed) {
 this.seed = seed;
 }

 public Seed getSeed() {
 return seed;
 }

 public String toString() {
 return number + " of " + seed;
 }
}

The most complicated class is undoubtedly the CardDeck class, which we wanted to abstract
with a two-dimensional array of 4 lines (one for each seed) and 10 columns (one for each card
number):

public class CardsDeck {
 private Card[][] cards;

 public CardsDeck() {
 cards = new Card[4][10];
 prepareCards();
 }

 public void prepareCards() {

 Seed[] seeds = Seed.values();
 Number[] numbers = Number.values();
 int seedsLength = seeds.length;
 int numbersLength = numbers.length;

 for (int i = 0; i < seedsLength; i++) {
 for (int j = 0; j < numbersLength; j++) {
 cards[i][j] = new Card(numbers[j], seeds[i]);
 }
 }
 }

 public String toString() {

 int cardsLength = cards.length;
 String string ="";

 for (int i = 0; i < cardsLength; i++) {
 int cardsLengthRow = cards[i].length;

 for (int j = 0; j < cardsLengthRow; j++) {
 string += cards[i][j] + (j != (cardsLengthRow-1) ? ", " : "");
 }

Chapter 11 Exercise Solutions

385
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 if (i != (cardsLength-1)) {
 string+="\n";
 }
 }
 return string;
 }

 public void setCards(Card[][] cards) {
 this.cards = cards;
 }

 public Card[][] getCards() {
 return cards;
 }
}

Note that the constructor instantiates the single instance variable (i.e. the two-dimensional ar-
ray of cards) and then invokes the prepareCards() method, which takes care of loading all the
cards in the deck with a double for loop that iterate the elements of the array. The toString()
method instead creates and returns the representative string of the deck of cards.
Finally, the main class (the one with the main() method) is the following:

public class Exercise10V {
 public static void main(String args[]) {
 CardsDeck cardsDeck = new CardsDeck();
 System.out.println(cardsDeck);
 }
}

Where with a double loop we printed the forty cards in the deck.
The output is as follows (unfortunately the page is too narrow with respect to each line to be
printed, so the output is a little staggered):

Ace of Cups, Two of Cups, Three of Cups, Four of Cups, Five of Cups, Six
 of Cups, Seven of Cups, Eight of Cups, Nine of Cups, Ten of Cups
Ace of Sticks, Two of Sticks, Three of Sticks, Four of Sticks, Five of
 Sticks, Six of Sticks, Seven of Sticks, Eight of Sticks, Nine of
 Sticks, Ten of Sticks
Ace of Coins, Two of Coins, Three of Coins, Four of Coins, Five of Coins,
 Six of Coins, Seven of Coins, Eight of Coins, Nine of Coins, Ten of
 Coins
Ace of Swords, Two of Swords, Three of Swords, Four of Swords, Five of
 Swords, Six of Swords, Seven of Swords, Eight of Swords, Nine of
 Swords, Ten of Swords

Also note that the formatting is far from perfect. We will try to solve
the problem in the next exercise.

Chapter 11 Exercise Solutions

386
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 11.z)

The formatting problems are:

an unneeded comma and space is printed at the end of each line.

At the end of the string, two unnecessary letters are.

Let’s fix the two problems with two checks (in bold in the underlying code) within the two loops
of the method. First we use a ternary operator that adds a comma and a space only if we are not
at the last iteration on the numbers, and then with a if we add a “newline” only if we are not at
the last iteration of the seeds:

//...
 public String toString() {
 int cardsLength = cards.length;
 String string = "";
 for (int i = 0; i < cardsLength; i++) {
 int cardsRowLength = cards[i].length;
 for (int j = 0; j < cardsRowLength; j++) {
 string += cards[i][j] + (j != (cardsRowLength-1) ? ", " : "");
 }
 if (i != (cardsLength-1)) {
 string += "\n";
 }
 }
 return string;
 }
//...

1.

2.

387
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 12
Exercises

Generic Types

Generic types are a topic that can become very complex. Among these exercises, and in par-
ticular among those with multiple answers that support the Oracle Java certifications, you will
find some really complicated ones, because to answer correctly you will have to have an excel-
lent preparation.

Exercise 12.a) Generic Types, True or False:

Generic types and type parameter are the same thing.

A main advantage of generics is that they allow you to avoid bugs like those caused by a
ClassCastException at runtime, identifying them in the compilation phase.

The collections can also be used without specifying the type parameters. In this case we
speak of raw type.

Inheritance ignores type parameters.

Wildcards are used when we can’t specify type parameters.

If we create a generic type with type parameter <E>, we can use the same parameter also
in the methods declared in the type.

In generic methods the type parameter is set as the input parameter of the method.

The following code:

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 12 Exercises

388
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class MyGeneric <Foo extends Number> {
 private List<Foo> list;
 public MyGeneric () {
 list = new ArrayList<Foo>();
 }
 public void add(Foo pippo) {
 list.add(pippo);
 }
 public void remove(int i) {
 list.remove(i);
 }
 public Foo get(int i) {
 return list.get(i);
 }
 public void copy(ArrayList<?> al) {
 Iterator<?> i = al.iterator();
 while (i.hasNext()) {
 Object o = i.next();
 add(o);
 }
 }
}

compile without errors.

The following code:

public <N extends Number> void print(List<N> list) {
 for (Iterator<N> i = list.iterator();
 i.hasNext();) {
 System.out.println(i.next());
 }
}

compile without errors.

 To resolve wildcard capture, we nned to use a helper method defined in the standard
library.

 The following code:

List<String> strings = new ArrayList<String>();
strings.add(new Character('A'));

compile without errors.

 The following code:

List<int> ints = new ArrayList<int>();

compile without errors.

9.

10.

11.

12.

Chapter 12 Exercises

389
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 The following code:

List<int> ints = new ArrayList<Integer>();

compile without errors.

 The following code:

List<Integer> ints = new ArrayList<Integer>();
ints.add(1);

compile without errors.

 The following code:

List ints = new ArrayList<Integer>();

compile without errors.

Exercise 12.b)

Consider the sources created with the exercises of Chapter 6 and then redefined in Chapter 9
and 10. Replace the coins array defined in the Purse class with an ArrayList of Coin objects.
If necessary, modify the other classes so that everything works as before

Tip: there may be useful methods in the ArrayList class
documentation.

Exercise 12.c)

Create an abstract Fruit class that defines an encapsulated weight variable. For
our program a fruit object without weight makes no sense. Create the subclass-
es Apple, Peach and Orange. Create a generic class Basket that abstracts the concept of fruit
basket. This defines an array list of fruits. He must also expose a getWeight() method which
returns the total weight of the contents of the basket; an add() method to add one fruit at a
time, which raises a custom exception in case the addition of the fruit you want to add makes
it exceed the maximum limit of 5 kilos in weight. Each basket must have only one type of fruit
at a time. Implement a solution with generics. Create a test class to verify the actual operation
of the program.

Exercise 12.d)

Which of the following statements compile without errors (choose all the correct statements):

13.

14.

15.

Chapter 12 Exercises

390
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

HashMap hm = new HashMap();

HashMap<> hm = new HashMap<>();

HashMap<Integer, String> hm = new HashMap ()<Integer, String>;

HashMap<Double> hm = new HashMap<Double>();

HashMap<Double> hm = new HashMap<>();

Exercise 12.e)

Which of the following statements compile without errors (choose all the correct statements):

ArrayList al = new ArrayList<Integer>();

ArrayList<Integer> al = new ArrayList<>();

ArrayList<String, String> al = new ArrayList<String, String>();

ArrayList al = new ArrayList<>();

ArrayList al = new ArrayList<int>();

Exercise 12.f)

Which of the following statements compile without errors (choose all the correct statements):

List al = new ArrayList<HashMap<String, String>>();

Map<ArrayList<String>> hm = new ArrayList<>();

List<String, String> al = new ArrayList<HashMap<String, String>>();

List<Map<List<List<Integer>>, String>> al = new ArrayList<>();

List<Map<String, String>> al = new ArrayList<HashMap<String, String>>();

Exercise 12.g)

What is the output of the following code?

import java.util.*;

public class Exercise12G {

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Chapter 12 Exercises

391
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void main(String args[]) {
 List list = new ArrayList();
 list.add("1");
 list.add('2');
 list.add(3);
 Iterator iterator = list.iterator();
 while (iterator.hasNext()) {
 System.out.print(iterator.next());
 }
 }
}

123

321

None, the program cannot be compiled because it is not possible to add different ele-
ments to the collection.

"1" '2'3

None, the program cannot be compiled because it is not possible to retrieve an Iterator
from a heterogeneous collection.

The execution will be stopped when we try to print the second value of the collection.

Exercise 12.h)

What is the output of the following code?

import java.util.*;

public class Exercise12H {

 public static void main(String args[]) {
 List<Object> list = new ArrayList<>();
 list.add("1");
 list.add('2');
 list.add(3);
 Iterator<Object> iterator = list.iterator();
 while (iterator.hasNext()) {
 System.out.print(iterator.next());
 }
 }
}

123

"1"'2'3

1.

2.

3.

4.

5.

6.

1.

2.

Chapter 12 Exercises

392
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

None, the program cannot be compiled because the collection only admits objects of
type Object.

None, the program cannot be compiled because it is not possible to retrieve an Iterator
from a heterogeneous collection.

The execution will be stopped when we try to print the second value of the collection.

Exercise 12.i)

What is the output of the following code?

import java.util.*;

public class Exercise12I {

 public static void main(String args[]) {
 List<String> list = new ArrayList<>();
 list.add("1");
 list.add(null);
 list.add('3');
 Iterator<String> iterator = list.iterator();
 while (iterator.hasNext()) {
 System.out.print(iterator.next());
 }
 }
}

None, the program cannot be compiled because the collection does not allow null
values.

None, the program cannot be compiled because the collection does not allow primitive
values.

The execution will be stopped when you try to add null to the collection.

The execution will be stopped when you try to add ‘3’ to the collection.

1null3

Exercise 12.l)

What is the output of the following code?

import java.util.*;

3.

4.

5.

1.

2.

3.

4.

5.

Chapter 12 Exercises

393
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Exercise12L {

 public static void main(String args[]) {
 Map<Integer, Integer> map = new HashMap<>(1);
 map.put(14, 12);
 map.put('a','b');
 map.put(07,0x0ABC);
 }
}

The code does not compile because it is not possible to add three key-value pairs to a
collection of size 1.

The code does not compile because the values 07 and 0x0ABC are not integer values.

The code does not compile because the values 'a' and 'b' are not integer values.

None of the above.

Exercise 12.m)

Given the following statement:

Map<String, Float> map = new Hashmap<>(1);

Which of the following statements are valid?

map.add("string", 1.1F);

map.add("string", 1.1D);

map.add("string", 1);

None of the above.

Exercise 12.n)

Given the following class:

public class Exercise12N/*INSERT CODE 1*/ {

 public static void main(String[] args) {
 Exercise12N<String> g = new Exercise12N/*INSERT CODE 2*/();
 Exercise12N<Object> g2 = new Exercise12N/*INSERT CODE 3*/();
 }
}

1.

2.

3.

4.

1.

2.

3.

4.

Chapter 12 Exercises

394
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

If we wanted to insert the three missing instructions for the compilation to be successful, which
of these options will be valid?

Code 1: <Object>; Code 2: <Object>; Code 3: <Object>.

Code 1: <>; Code 2: <>; Code 3: <>.

Code 1: no code; Code 2: <>; Code 3: <>.

Code 1: <T extends Object>; Code 2: <String>; Code 3: <Object>.

Code 1: <? extends Object>; Code 2: <String>; Code 3: <Object>.

Code 1: <T>; Code 2: <String>; Code 3: <>.

Code 1: <T>; Code 2: <T>; Code 3: <Object>.

Exercise 12.o)

Given the following class:

import java.util.*;

public class Exercise12O {

 public static int getSize(List/*INSERT CODE HERE*/ list) {
 return list.size();
 }

 public static void main(String args[]) {
 System.out.println(getSize(new ArrayList<Integer>()));
 System.out.println(getSize(
 new ArrayList<HashMap<String, List<String>>>()));
 }
}

Which of the following generic parameters could replace the comment /*INSERT CODE HERE*/
to ensure that the code compiles correctly, and allows you to print the size of the list passed as
input, whatever the type of list:

<Object>

<>

<?>

<T extends Object>

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4.

Chapter 12 Exercises

395
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

<? extends Object>

<T>

No code, the file can be compiled as is.

Exercise 12.p)

Given the following class:

public class Exercise12P<T> {

 public static T[] getValues(T t) {
 return t.values();
 }

 private enum T {
 T1, T2, T3;
 }
}

Which of the following statements are correct?

The code does not compile because it is not possible to call the nested enumeration T as
the type parameter.

The code compiles correctly.

The code compiles correctly, but shows a warning.

The code does not compile because it is not possible to declare an enumeration as a type
parameter.

The code does not compile because a static method cannot access a non-static
enumeration.

None of the above.

Exercise 12.q)

Given the following class:

public class Exercise12Q/*INSERT CODE HERE*/ {

 public Integer max(N n1, N n2) {
 return Integer.max(n1.intValue(), n2.intValue());
 }
}

5.

6.

7.

1.

2.

3.

4.

5.

6.

Chapter 12 Exercises

396
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Which of the following generic parameters could replace the comment /*INSERT CODE HERE*/
to make the code compile correctly:

<Object>

<Number>

<?>

<T>

<N>

<N extends Number>

<T>

No code, the file can be compiled as is.

Exercise 12.r)

Given the following class:

import java.util.List;
import java.util.ArrayList;

public class Exercise12R<T> {

 public static void main(String args[]) {
 Exercise12R<Void> e = new Exercise12R<>();
 ArrayList<Integer> a = new ArrayList<>();
 a.add(2);
 a.add(6);
 a.add(10);
 a.add(24);
 a.add(17);
 System.out.println("The sum of the list elements is " +
 e.sumElements(a));
 }
}

Create a generic method (see section 12.3.3) which:

 take as input a generic parameter L defined by the method, which represents a list of
integers.

 Have an integer as the return type, which is the sum of all the elements in the integer
list.

1.

2.

3.

4.

5.

6.

7.

8.

E

E

Chapter 12 Exercises

397
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Note that we have used the Void type as generic type for the Exercise12R
instance, since the Exercise12R class does not use the parameters.

Exercise 12.s)

Given the following hierarchy:

public interface Technology {
 void print();
}

public class Inkjet implements Technology {
 @Override
 public void print(){
 System.out.println("Inkjet print");
 }
}

public class Laser implements Technology {
 @Override
 public void print(){
 System.out.println("Laser print");
 }
}

Create a generic Printer class parameterized with a technology, which in turn declares a
print() method, which however delegates to its own technology the actual message to be
printed. Also create a class that tests the actual functioning of our code

Exercise 12.t)

Given the following enumeration:

public enum Operator {

 SUM("+"), SUBTRACTION("-"), MULTIPLICATION("X"), DIVISION(":");

 String sign;

 Operator(String sign) {
 this.sign = sign;
 }

Chapter 12 Exercises

398
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public String toString() {
 return sign;
 }
}

and the class:

public class OperationTest {
 public static void main(String args[]) {
 Operation<Integer, Operator> operation =
 new Operation<>(1, Operator.SUM, 1);
 operation.print();
 }
}

create the Operation class, with a print() method that simply prints:

1 + 1

Exercise 12.u)

Given the following class:

import java.util.List;
import java.util.Iterator;

public class Exercise12U {
 public static <T extends Number> void loop(List<T> list) {
 for (Iterator<T> i = list.iterator(); i.hasNext();) {
 System.out.println(i.next());
 }
 }
}

Which of the following statements about the loop() method are true?

It is a method that uses a lower bound wildcard.

It is a method that uses a bounded parameter.

It is a method that uses an upper bounded wildcard.

It is a generic method.

It’s a method that uses a wildcard capture.

It is a helper method.

It is a method that has a covariant parameter.

1.

2.

3.

4.

5.

6.

7.

Chapter 12 Exercises

399
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 12.v)

Given the following class:

import java.util.List;

public class Exercise12V {
 protected final void update(List<?> list) {
 list.add(list.get(0));
 }
}

Which of the following statements regarding the modification update() are true?

It is a method that does not compile.

It is a generic method.

It is a helper method.

It needs a helper method.

Exercise 12.z)

Given the following class:

public class Exercise12Z {
 public static <E extends Exception> void printException(E e) {
 System.out.println(e.getMessage());
 }
 public static void main(String[] args) {
 /*INSERT CODE HERE*/
 Exercise12Z.printException(new Throwable("Exception"));
 }
}

Which of the following statements could replace the comment /*INSERT CODE HERE*/ to
ensure that the code compiles correctly:

Exercise12Z.<Exception>printException(new Exception("Exception"));

Exercise12Z.printException(new ClassCastException("ClassCastException"));

Exercise12Z.printException(new RuntimeException("RuntimeException"));

Exercise12Z.printException(new Throwable("Exception"));

1.

2.

3.

4.

1.

2.

3.

4.

401
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 12
Exercise Solutions

Generic Types

Solution 12.a) Generic Types, True or False:

False, see. section 12.1.

True.

True.

True.

True.

True.

False.

False, we will get the following error:

(Foo) in MyGeneric<Foo> cannot be applied to
(java.lang.Object)
add(o);
^

True.

 False, the helper method must be created by hand.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 12 Exercise Solutions

402
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 False.

 False.

 False.

 True.

 True.

Solution 12.b)

The Purse class code will change a lot:

import java.util.ArrayList;
import java.util.List;

/**
 * Abstracts the concept of a purse that can hold a limited number of
 * coins.
 *
 * @author Claudio De Sio Cesari
 */
public class Purse {

 /**
 * Constant that represents the maximum number of coins that this
 * purse can hold
 */
 private static final int DIMENSION = 10;

 /**
 * An array list that contains a limited number of coins.
 */
 private final List<Coin> coins = new ArrayList<>(DIMENSION);

 /**
 * Create a purse containing coins whose values are specified by the
 * varargs values. lf the number of elements of the varargs values is
 * greater than the maximum number of coins that the current purse can
 * hold, then it is handled an exception
 *
 * @param values un varargs di values di coins.
 */
 public Purse(Value... values) {

 assert coins.size() <= DIMENSION;

11.

12.

13.

14.

15.

Chapter 12 Exercise Solutions

403
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 try {
 int numberOfCoins = values.length;
 for (int i = 0; i < numberOfCoins; i++) {
 if (i >= DIMENSION) {
 throw new FullPurseException (
 "Only the first 10 coins have been inserted!");
 }
 coins.add(new Coin(values[i]));
 }
 } catch (FullPurseException exc) {
 System.out.println(exc.getMessage());
 } catch (NullPointerException exc) {
 System.out.println("The purse has been created empty");
 }
 assert coins.size() <= DIMENSION;
 }

 /**
 * Adds a coin to the purse. If this is full the coin will not
 * be added and a significant error will be printed.
 *
 * @param coin
 * the coin to add.
 * @throws FullPurseException
 */
 public void add(Coin coin) throws FullPurseException {
 try {
 System.out.println("Let's try adding one "+
 coin.getDescription());
 } catch (NullPointerException exc) {
 throw new NullCoinException();
 }
 int freeIndex = firstFreeIndex();
 if (freeIndex == -1) {
 throw new FullPurseException("Purse full! The coin "
 + coin.getDescription() +" has not been added!");
 } else {
 coins.set(freeIndex, coin);
 System.out.println(coin.getDescription() +" has been added");
 }
 }

 /**
 * Performs a withdrawal of the specified coin from the current coin purse.
 * In case the specified currency is not present, a significant error
 * will be printed and null will be returned.
 *
 * @param coin
 * the coin to take.

Chapter 12 Exercise Solutions

404
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 * @return
 * the coin found.
 * @throws CoinNotFoundException
 * if the coin is not found.
 */
 public Coin withdraw(Coin coin) throws CoinNotFoundException {
 try {
 System.out.println("Let's try to get a " +
 coin.getDescription());
 } catch (NullPointerException exc) {
 throw new NullCoinException();
 }
 Coin foundCoin = null;
 int foundCoinIndex = foundCoinIndex(coin);
 if (foundCoinIndex == -1) {
 throw new CoinNotFoundException("Coin not found!");
 } else {
 foundCoin = coin;
 coins.set(foundCoinIndex, coin);
 System.out.println("One " + coin.getDescription() + " withdrawn");
 }
 return foundCoin;
 }

 /**
 * Print the contents of the purse.
 */
 public void state() {
 System.out.println("The purse contains:");
 for (Coin coin : coins) {
 if (coin == null) {
 break;
 }
 System.out.println("One " + coin.getDescription());
 }
 }

 /**
 * Retrieves the first free index in the coin array or -1 if the
 * coin purse is full.
 *
 * @return
 * the first free index in the coin array or -1 if the
 * coin purse is full.
 */
 private int firstFreeIndex() {
 int index = coins.indexOf(null);
 return index;
 }

Chapter 12 Exercise Solutions

405
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private int foundCoinIndex(Coin coin) {
 int foundCoinIndex = -1;
 final int size = coins.size();
 for (int i = 0; i < size; i++) {
 if (coins.get(i) == null) {
 continue;
 }
 Value coinInPurseValue = coins.get(i).getValue();
 Value value = coin.getValue();
 if (value == coinInPurseValue) {
 foundCoinIndex = i;
 break;
 }
 }
 return foundCoinIndex;
 }
}

The constructor now has different assertions, because the size of an ArrayList is measured
differently from the size of an array, but it has kept its algorithmic logic and has only changed
the way an element is added to the array list (add()).
The same logic also applies to the add() method, which has only changed the way an element
with a specified index is added to the array list (set() method).
The firstFreeIndex() private method has been greatly simplified, thanks to the use of the
indexOf() defined by ArrayList.
The reader should now also be able to find the differences in the withdraw() method and in the
foundCoinIndex() method, since they are very similar to what we have seen for the methods
add() and firstFreeIndex().
It is not necessary to modify any other class as the variable coins we have modified is encap-
sulated.

Solution 12.c)

The code of the Fruit class and its subclasses is shown below:

public abstract class Fruit {

 private final int weight;

 public Fruit(int weight) {
 this.weight = weight;
 }

 public int getWeight() {
 return weight;
 }
}

Chapter 12 Exercise Solutions

406
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Apple extends Fruit{
 public Apple(int weight) {
 super(weight);
 }
}

public class Peach extends Fruit {
 public Peach(int weight) {
 super(weight);
 }
}

public class Orange extends Fruit {
 public Orange(int weight) {
 super(weight);
 }
}

The class representing the exception could be the following:

public class WeightException extends Exception {
 public WeightException(String message) {
 super(message);
 }
}

The Basket class instead, could be coded as the following:

import java.util.ArrayList;

public class Basket<F extends Fruit> {

 private ArrayList<F> fruit;

 public Basket() {
 fruit = new ArrayList<>();
 }

 public ArrayList<F> getFruit() {
 return fruit;
 }

 public void addFruit(F fruitItem) throws WeightException {
 final int newWeight = getWeight() + fruitItem.getWeight();
 if (newWeight > 2000) {
 throw new WeightException("Too heavy: " + newWeight + " grams!");
 }
 fruit.add(fruitItem);
 System.out.println(fruitItem.getWeight() + " gramms of "+
 fruitItem.getClass().getName() +" added to basket");
 }

Chapter 12 Exercise Solutions

407
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public int getWeight() {
 int weight = 0;
 for (F fruit : fruit) {
 weight += fruit.getWeight();
 }
 return weight;
 }
}

Note that with the parameter type we can use any subclass of Fruit. The F type is then used in
class methods and will be replaced during execution with a subclass of Fruit.
Finally, we can code a simple test class in the following way:

public class FruitTest {
 public static void main(String args[]) {
 Basket<Apple> appleBasket = new Basket<>();
 for (int i = 0; i <= 20; i++) {
 try {
 Apple apple = new Apple(100);
 appleBasket.addFruit(apple);
 } catch (WeightException exc) {
 System.out.println(exc.getMessage());
 }
 }
 }
}

The output of the FruitTest class execution follows:

100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
100 gramms of Apple added to basket
Too heavy: 2100 grams!

Chapter 12 Exercise Solutions

408
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 12.d)

The correct answer is number 1. The number 2 is incorrect because the diamond operator is
used on the instance and not on the reference. The number 3 is incorrect for the incorrect or-
der of the round brackets and the generic parameters of the instance (if we reverse the order of
the parameters, we would get a correct statement). The last two are incorrect because a HashMap
always has two parameters.

Solution 12.e)

The correct answers are the number 1, the number 2 and the number 4. The number 4, in
particular, is a special case because it is a raw type that uses the diamond operator, which in this
particular case is practically optional. The number 3 is incorrect because an ArrayList always
has a single generic parameter.

Solution 12.f)

The correct answers are the number 1 and the number 4. The number 2 is incorrect because
a map always has two parameters. The number 3 does not compile because there is no coin-
cidence between the reference parameters (two strings, and this is already an error because a
list always has only one parameter) and the instance (a HashMap). The number 5 is incorrect
because the generic parameters between reference and instance do not match. Indeed, Map
does not coincide with HashMap.
Here is the output using JShell:

jshell> List<Map<String, String>> al =
 new ArrayList<HashMap<String, String>>() ;
| Error:
| incompatible types: java.util.ArrayList<
 java.util.HashMap<java.lang.String,java.lang.String>> cannot be
 converted to java.util.List<java.util.Map<
 java.lang.String,java.lang.String>>
| List<Map<String, String>> al =
 new ArrayList<HashMap<String, String>>();
| ^--------------------------------------^

Solution 12.g)

The correct answer is 1. In fact, not having specified the generic parameter (we speak of raw
type in these cases), it will be possible to add elements of any kind to the collection. Note that
adding primitive parameters, these are automatically promoted to the relative wrapper objects

Chapter 12 Exercise Solutions

409
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

(in this case '2' is boxed in a Character, while 3 in a Integer). The output of the execution
follows:

123

Solution 12.h)

The correct answer is. It follows the runtime output:

123

Solution 12.i)

The correct answer is 2. It is not possible to add a primitive type (or other complex types other
than String) to a collection that is parameterized with a String type. In fact, the compilation
output is the following:

error: no suitable method found for add(char)
 list.add('3');
 ^
 method Collection.add(String) is not applicable
 (argument mismatch; char cannot be converted to String)
 method List.add(String) is not applicable
 (argument mismatch; char cannot be converted to String)
Note: Some messages have been simplified; recompile with
 -Xdiags:verbose to get full output
1 error

Solution 12.l)

The only correct statement is number 3.
The statement number 1 is not valid because the collections are resizable by default, and the
value 1 passed to the HashMap constructor, represents only the initial size of the collection.
Also the number 2 statement is incorrect. In fact, the values 07 and 0x0ABC are integer values
and therefore with the autoboxing they are correctly “wrapped” inside Integer objects.
Instead the values 'a' and 'b' of which we speak in the statement 3, are characters and are
“wrapped” in Character objects.
The output of the compilation follows:

error: incompatible types: char cannot be
 converted to Integer
 map.put('a','b');

Chapter 12 Exercise Solutions

410
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 ^
Note: Some messages have been simplified; recompile with
 -Xdiags:verbose to get full output
1 error

Solution 12.m)

The answer is the last one, since to add key-value pairs to a map, the put() method must be
used, not the add() method (which is a method declared in the lists).

Solution 12.n)

The correct options are 4 and 6.
Option number 1 is incorrect because you cannot assign a reference with generic type String,
to an instance with generic type Object. In fact, by compiling the file we get the following
output:

error: incompatible types: Exercise12N<Object>
 cannot be converted to Exercise12N<String>
 Exercise12N<String> g = new Exercise12N<Object>();
 ^
 where Object is a type-variable:
 Object extends java.lang.Object declared in class Exercise12N
1 error

The option number 2 will fail at the first line, because it is not possible to use a diamond op-
erator as a generic type of a class. The number 3 will also fail to compile because we have not
declared a generic type for the class. Following is the output that reports the errors deriving
from the compilation process:

Exercise12N.java:2: error: type Exercise12N does not take parameters
 Exercise12N<String> g = new Exercise12N<>();
 ^
Exercise12N.java:3: error: type Exercise12N does not take parameters
 Exercise12N<Object> g2 = new Exercise12N<>();
 ^
Exercise12N.java:2: error: cannot infer type arguments for
 Exercise12N
 Exercise12N<String> g = new Exercise12N<>();
 ^
 reason: cannot use '<>' with non-generic class Exercise12N
Exercise12N.java:3: error: cannot infer type arguments for
 Exercise12N
 Exercise12N<Object> g2 = new Exercise12N<>();
 ^
 reason: cannot use '<>' with non-generic class Exercise12N
4 errors

Chapter 12 Exercise Solutions

411
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The number 5 is also incorrect. In fact, wildcards are used with method parameters. The
compilation output follows:

Exercise12N.java:1: error: <identifier> expected
public class Exercise12N<? extends Object> {
 ^
1 error

Finally, the number 7 produces the following compilation output:

Exercise12N.java:2: error: incompatible types: Exercise12N<T>
 cannot be converted to Exercise12N<String>
 Exercise12N<String> g = new Exercise12N<T>();
 ^
 where T is a type-variable:
 T extends Object declared in class Exercise12N
1 error

where we are warned that Exercise12N<T>, cannot be converted to Exercise12N<String>.

Solution 12.o)

The correct options are 3 and 5, which are essentially equivalent, but also 7 where we use a raw
type. In fact, by compiling using option 7 we will get a warning:

Exercise12O.java:4: warning: [rawtypes] found raw type: List
 public static int getSize(List/*INSERT CODE HERE*/ list) {
 ^
 missing type arguments for generic class List<E>
 where E is a type-variable:
 E extends Object declared in interface List
1 warning

Option 1 is incorrect, because the Object parameter does not allow other parameter types out-
side Object. In fact, here is the output:

Exercise12O.java:9: error: incompatible types: ArrayList<Integer>
 cannot be converted to List<Object>
 System.out.println(getSize(new ArrayList<Integer>()));
 ^
Exercise12O.java:10: error: incompatible types:
 ArrayList<HashMap<String,List<String>>> cannot be converted to
 List<Object>
 System.out.println(getSize(new ArrayList<
 HashMap<String, List<String>>>()));
 ^
Note: Some messages have been simplified; recompile with
 -Xdiags:verbose to get full output
2 errors

Chapter 12 Exercise Solutions

412
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Option 2 makes no sense (incorrect syntax). In fact, here is the output:

Exercise12O.java:4: error: illegal start of type
 public static int getSize(List<> list) {
 ^
1 error

Option 3 and option 6 are both wrong for the same reason. Type T is not defined anywhere.
Follow the output with option 3:

Exercise12O.java:4: error: cannot find symbol
 public static int getSize(List<T> list) {
 ^
 symbol: class T
 location: class Exercise12O
1 error

which is practically identical to the one where option 6 is used:

Exercise12O.java:4: error: > expected
 public static int getSize(List<T extends Object> list) {
 ^
1 error

Solution 12.p)

The correct statement is the number 3. In fact the output is the following:

Exercise12P.java:4: warning: [static] static method should be
 qualified by type name, T, instead of by an expression
 return t.values();
 ^
1 warning

That is, the compiler is warning us that the values() method is static and therefore should be
called using the name of the enumeration, and not on one of its elements.
For the rest of the answers it is easy to understand why they are not correct. In particular for
the number 1 the letter T is the identifier of the enumeration, therefore the question is put in a
completely wrong way.

Solution 12.q)

The correct option is the number 6. Where there is no Number type bounded parameter, we will
get a compilation error like the following:

Chapter 12 Exercise Solutions

413
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise12Q.java:4: error: cannot find symbol
 return Integer.max(n1.intValue(), n2.intValue());
 ^
 symbol: method intValue()
 location: variable n1 of type N
 where N is a type-variable:
 N extends Object declared in class Exercise12Q
Exercise12Q.java:4: error: cannot find symbol
 return Integer.max(n1.intValue(), n2.intValue());
 ^
 symbol: method intValue()
 location: variable n2 of type N
 where N is a type-variable:
 N extends Object declared in class Exercise12Q
2 errors

Solution 12.r)

The solution could be the following (the requested method is highlighted in bold):

import java.util.List;
import java.util.ArrayList;

public class Exercise12R<T> {

 private <L extends List<Integer>> Integer sumElements(L list) {
 int size = list.size();
 int result = 0;
 for (int i = 0; i < size; i++) {
 Integer item = list.get(i);
 result += item;
 }
 return result;
 }

 public static void main(String args[]) {
 Exercise12R<Void> e = new Exercise12R<>();
 ArrayList<Integer> a = new ArrayList<>();
 a.add(2);
 a.add(6);
 a.add(10);
 a.add(24);
 a.add(17);
 System.out.println("The sum of the list elements is "
 + e.sumElements(a));
 }
}

Chapter 12 Exercise Solutions

414
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 12.s)

A possible solution is represented by the following code, which declares a classic bounded
parameter, and, as required, declares the print() method which delegates its real operation to
the implementation of the print() method defined by the technology variable.

public class Printer<T extends Technology> {

 private T technology;

 public Printer(T technology){
 this.technology = technology;
 }

 public void print(){
 technology.print();
 }
}

The actual operation can be tested by the following class of test:

public class PrinterTest {
 public static void main(String args[]) {
 Printer<Laser> printer = new Printer<>(new Laser());
 printer.print();
 Printer<Inkjet> printer2 = new Printer<>(new Inkjet());
 printer2.print();
 }
}

which produces the following output:

Laser print
Inkjet print

Solution 12.t)

The Operation class could be the following:

public class Operation<Integer, O extends Operator> {

 private Integer operand1;
 private O operator;
 private Integer operand2;

 public Operation(Integer operand1, O operator, Integer operand2) {
 this.operand1 = operand1;
 this.operator = operator;
 this.operand2 = operand2;
 }

Chapter 12 Exercise Solutions

415
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void print(){
 System.out.println(operand1 + " " + operator + " " + operand2);
 }
}

Solution 12.u)

The correct statements are 3 and 4.

Solution 12.v)

The correct statements are 1 and 4. In particular we should create a helper method like the
following in bold:

import java.util.List;

public class Solution11V {
 protected final void modifica(List<?> list) {
 helperMethod(list);
 }

 private <T> void helperMethod(List<T> list) {
 list.add(list.get(0));
 }
}

Solution 12.z)

The correct statements are the first 3, only the use of statement 4 would cause an error in com-
pilation, follows the output:

Exercise12Z.java:6: error: method printException in class
 Exercise12Z cannot be applied to given types;
 /*INSERT CODE HERE*/Exercise12Z.printException(
 new Throwable("Exception"));
 ^
 required: E
 found: Throwable
 reason: inference variable E has incompatible bounds
 upper bounds: Exception
 lower bounds: Throwable
 where E is a type-variable:
 E extends Exception declared in method <E>printException(E)
1 error

Nel caso della risposta numero 1, abbiamo usato una sintassi che si utilizza raramente, e di cui
abbiamo solo accennato alla fine del section 12.3.3 relativamente ad un costruttore.

417
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 13
Exercises

The Indispensable Library:
The java.lang Package

As with all exercises in this book, you can consult the documentation of the standard library to
find solutions. This is especially true in the chapters like these dedicated to libraries.

Exercise 13.a) Autoboxing, autounboxing and java.lang, True or False:

 The following code compiles without errors:

char c = new String("Foo");

 The following code compiles without errors:

int c = new Integer(1) + 1 + new Character('a');

The overload rules do not change with the introduction of autoboxing and auto-
unboxing.

Integer class instances are immutable, so their internal state cannot be changed once
instantiated.

The Runtime class depends strictly on the operating system on which it runs.

The Class class allows you to read members of a class (but also superclasses and other
information) simply starting from the class name thanks to the forName() method.

1.

2.

3.

4.

5.

6.

Chapter 13 Exercises

418
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The Class class allows you to instantiate objects of a class knowing only the name.

It is possible from Java version 1.4 to sum a primitive type and an object of its wrapper
class, as in the following example:

Integer a = new Integer(30);
int b = 1;
int c = a + b;

Object cloning requires a call to Object’s clone() method.

 The Math class cannot be instantiated because it is declared abstract.

Exercise 13.b)

Let’s consider the Purse class refined in the exercises of Chapter 10, and focus on the private
method foundCoinIndex(), which we defined in the following way:

 private int foundCoinIndex(Coin coin) {
 int foundCoinIndex = -1;
 final int size = coins.size();
 for (int i = 0; i < size; i++) {
 if (coins.get(i) == null) {
 continue;
 }
 Value coinInPurseValue = coins.get(i).getValue();
 Value value = coin.getValue();
 if (value == coinInPurseValue) {
 foundCoinIndex = i;
 break;
 }
 }
 return foundCoinIndex;
 }

Create an equals() method in the Coin class, so as to simplify the search in this method.

Exercise 13.c)

Create a static block (see section 6.8.3) in the Coin class, which we have refined in the exercises
of Chapter 10, and make it print any sentence. How can reflection be used to make the block
execute?

Exercise 13.d)

Create an InteractiveReflection class that contains a main() method which prints the meth-
ods of a class specified at runtime through the use of a Scanner class (already encountered

7.

8.

9.

10.

Chapter 13 Exercises

419
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

several times previously, as in Exercise 4.m in the InteractiveProgram class). It must be pos-
sible to specify a class, press the Enter key and the program must print the signatures of all the
methods of the specified class.

This program may not run correctly with EJE, it is recommended to
run it from the command line.

Exercise 13.e)

Create an InteractiveCompiler class that contains a main() method which compiles the files
specified at runtime through the use of a Scanner class. It must be possible to specify a class,
press the Enter key and the program must compile the specified class.

This program should be run on the command line or via EJE, but not
via Eclipse or Netbeans. In fact, these IDEs automatically compile the
files and therefore you would not be able to understand well if the file
is correctly compiled by our program or by the IDE.

Exercise 13.f)

Create a class that, given an array of integers, sorts them from highest to lowest.

Exercise 13.g)

Create a WrapperComparable class that has the following characteristics:

 It has an Integer encapsulated constant that must always have a value.

 Have a toString() method that returns the integer.

 Define a sorting method that goes from the highest to the lowest encapsulated integer.

Finally create a class that tests that the ordering works as expected.

Exercise 13.h)

What is the output of the following class?

E

E

E

Chapter 13 Exercises

420
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Exercise13H {
 public static void main(String args[]) {
 String string1 = "Claudio";
 String string2 = new String(stringa1);
 System.out.println(string2 == string1);
 System.out.println(string2.equals(string1));
 System.out.println("Claudio".equals(string1));
 System.out.println("Claudio" == string1);
 System.out.println("Claudio" == string2);
 }
}

Exercise 13.i)

Which of the following statements are correct?

 An immutable object cannot be modified.

 Strings are immutable objects.

 Instances of wrapper classes are immutable objects.

 An immutable object can be pointed to by multiple references.

 An immutable object does not allow you to change its internal state.

 An immutable object does not allow you to change its external status.

Exercise 13.l)

Which of the following statements are correct with respect of compact strings topic?

 You can specify which strings should be made compact.

 A non-compact string uses 16 bits.

 A compact string uses only 8 bits.

 A program, to make all the strings compact, must be compiled using the option
-XX:-CompactStrings.

 Using compact strings, program performance will always be increased by 50%.

Exercise 13.m)

What is the output of the following class?

E

E

E

E

E

E

E

E

E

E

E

Chapter 13 Exercises

421
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Exercise13M {
 public static void main(String args[]) {
 String string = "*** Java ***";
 string.toUpperCase();
 string.trim();
 string.substring(3, 8);
 string.trim();
 string.concat(String.format("String = %n", string.length()));
 string += "!";
 System.out.println(string.length);
 }
}

12

13

11

10

23

22

24

No output, a runtime exception will be thrown.

No output, the class cannot be compiled.

Exercise 13.n)

What is the output of the following class?

public class Exercise13N {
 public static void main(String args[]) {
 String string = "Java";
 string = string.concat(" ");
 string += 9;
 String result = "";
 if (string.intern() == "Java for Aliens") {
 result += "intern()";
 }
 if (string == "Java for Aliens") {
 result += "==";
 }
 if (string.equals("Java for Aliens")) {

1.

2.

3.

4.

5.

6.

7.

8.

9.

Chapter 13 Exercises

422
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 result += "equals()";
 }
 System.out.println(result);
 }
}

Java for Aliens

intern()

intern()==

intern()equals()

null

intern()==equals()

An empty string.

No output, a runtime exception will be thrown.

No output, the class cannot be compiled.

Exercise 13.o)

What is the output of the following class?

public class Exercise13O {
 public static void main(String args[]) {
 String string1 = "123789";
 String string2 = string1.concat(System.lineSeparator());
 char [] array1 = string2.toCharArray();
 char [] array2 = {'4', '5', '6'};
 System.arraycopy(array2, 0, array1, 3, 3);
 System.out.println(array1);
 System.exit(0);
 }
}

Exercise 13.p)

Write a class that represents a text of the RTF type (Rich Text Format), that is a text to which it
is possible to modify for example the type of character, the background color, the line spacing,
the underlining and so on (you choose what must define). Make this class clonable and create a
test program that verifies the actual functioning.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Chapter 13 Exercises

423
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 13.q)

Starting from exercise 6.z, create a class with the main() method that reads username and pass-
word as system properties. Test the class using the right command line options (specify them).

Exercise 13.r)

Which of the following statements about garbage collection are correct?

The JVM only implements two algorithms to deallocate memory: G1GC and ParallelGC.

With ParallelGC the interventions on memory are more numerous and intense, and this
makes the algorithm less efficient compared to G1GC.

It was possible to use G1GC already from Java version 7.

The “finalization” consists in eliminating the objects no longer used by the application.

The “finalization” can be invoked by calling the runFinalization() method of the
Object class.

To use ParallelGC it is necessary to run the application specifying the option
-XX: + UseParallelGC.

Exercise 13.s)

We mentioned that up to Java 8, the setAccessible() method called on a Field object (which
we remember abstracts the concept of variable) or a Method object (which abstracts the concept
of method), allowed reflection to access private members of a class, effectively violating encap-
sulation. With the introduction of modules in Java 9, this is no longer possible.
So, given the following class:

public class ClassWithPrivateMembers {
 private String privateVariable = "This variable is private and cannot " +
 be touched!";
 private String privateMethod() {
 return "This method is private and cannot be touched!";
 }
}

By consulting the official documentation, create another class that with reflection:

 try to modify the value of the variable privateVariable variable;

 try to invoke the privateMethod() method.

1.

2.

3.

4.

5.

6.

E

E

Chapter 13 Exercises

424
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 13.t)

Given the following class:

public class Exercise13T {
 public static void main(String args[]) {
 int radius = 7;
 /*INSERT CODE HERE*/
 System.out.println("The area of the circumference with radius 7 is "
 + area);
 }
}

define the line that must replace the comment /*INSERT CODE HERE*/ to get the correct area
calculation.

Remember that the area of a circle is calculated as:

pi for squared radius, or if we call the radius r, and A the area of the
circle, and we denote the pi number with ∏, we will have

A = ∏r²

Consult the official documentation of the Math class before writing
the code.

Exercise 13.u)

What is the output of the following class?

public class Exercise13U {

 public static void main(String args[]) {
 double e = Math.E;
 Math.floor(e);
 boolean b = check(e, 2.0);
 System.out.println(b);
 }

 public static Boolean check(Double a, Double b) {
 Boolean equals = null;
 if (a.equals(b)) {
 equals = true;
 }
 return equals;
 }
}

Chapter 13 Exercises

425
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

true

false

null

2.0

2.718281828459045

No output, a runtime exception will be thrown.

No output, the class cannot be compiled.

Exercise 13.v)

What is the output of the following class?

public class Exercise13V {
 public static void main(String args[]) {
 Exercise13V e = new Exercise13V();
 e.method(128);
 }

 public void method(Integer number) {
 System.out.println("Integer " + number);
 }
 public void method(long number) {
 System.out.println("long " + number);
 }
 public void method(byte number) {
 System.out.println("byte " + number);
 }
 public void method(Byte number) {
 System.out.println("Byte " + number);
 }
 public void method(short number) {
 System.out.println("short " + number);
 }
 public void method(Double number) {
 System.out.println("Double " + number);
 }
 public void method(double number) {
 System.out.println("double " + number);
 }
}

1.

2.

3.

4.

5.

6.

7.

Chapter 13 Exercises

426
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 13.z)

Create a program that simulates the game known as “stone-paper-scissors”. The game instruc-
tions can be found at this link: https://en.wikipedia.org/wiki/Rock-paper-scissors.
Once the program has been run, the user must specify whether to choose stone, paper or scis-
sors, and at the same time the program must make its choice (randomly).

Try to use all the concepts learned so far to create this application (in-
cluding enumerations). Remember that it is difficult to make choices,
but with the methods of analysis that we have seen before we can pro-
ceed with more rigor and self-confidence.

427
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 13
Exercise Solutions

The Indispensable Library:
The java.lang Package

Solution 13.a) Autoboxing, autounboxing and java.lang, True or False:

False.

True.

True.

True.

True.

True.

True.

False, from Version 1.5.

False.

 False, it cannot be instantiated because it has a private constructor and is declared
final.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 13 Exercise Solutions

428
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 13.b)

We have generated the equals() method code (together with the hashcode() method, which
we report for completeness even if not necessary for the exercise) using Netbeans (we also used
the java.util.Objects class that we will explain later in the book):

 @Override
 public boolean equals(Object obj) {
 if (obj == null) {
 return false;
 }
 if (getClass() != obj.getClass()) {
 return false;
 }
 final Coin other = (Coin) obj;
 if (this.value != other.value) {
 return false;
 }
 return true;
 }

 @Override
 public int hashCode() {
 int hash = 7;
 hash = 97 * hash + Objects.hashCode(this.value);
 return hash;
 }

So the foundCoinIndex() method can be simplified as follows:

 private int foundCoinIndex(Coin coin) {
 int foundCoinIndex = -1;
 final int size = coins.size();
 for (int i = 0; i < size; i++) {
 if (coins.get(i) == null) {
 break;
 }
 if (coins.get(i).equals(coin)) {
 foundCoinIndex = i;
 break;
 }
 }
 return foundCoinIndex;
 }

Solution 13.c)

Reflection is not necessary. In fact, suppose we have defined the following static block in the
Coin class:

Chapter 13 Exercises Solutions

429
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 static {
 System.out.println("Loaded the Coin class with currency = " + CURRENCY);
 }

It would be enough to simply define a variable of the Coin class as follows:

public class ReflectionTest {
 public static void main(String args[]) {
 Coin coin = new Coin(Value.FIFTY_CENTS);
 }
}

The previous code would produce the following output:

Loaded the Coin class with currency = EURO
Created a coin value 50 cents of EURO

However, if we wanted to use reflection, the following code will not suffice:

 Class<Coin> classCoin = Coin.class;
 try {
 classCoin.newInstance();
 } catch (InstantiationException | IllegalAccessException ex) {
 ex.printStackTrace();
 }

which in fact will produce the following output:

java.lang.InstantiationException: Coin
	 at java.lang.Class.newInstance(Class.java:418)
	 at TestReflection.main(ReflectionTest.java:10)
Caused by: java.lang.NoSuchMethodException: Coin.<init>()
	 at java.lang.Class.getConstructor0(Class.java:2971)
	 at java.lang.Class.newInstance(Class.java:403)
	 ... 1 more

This happens because with the newInstance() method the constructor without parameters is
called, but it does not exist!
The solution is to call the correct constructor with the following code:

try {
 Constructor<Coin> costruttore = classCoin.getConstructor(Value.class);
 costruttore.newInstance(Value.FIFTY_CENTS);
} catch (NoSuchMethodException | SecurityException | InstantiationException |
 IllegalAccessException | IllegalArgumentException |
 InvocationTargetException ex) {
 ex.printStackTrace();
}

Chapter 13 Exercise Solutions

430
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 13.d)

The InteractiveReflection class code could be as follows:

import java.lang.reflect.Method;
import java.util.Scanner;

public class InteractiveReflection {

 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 String string = "";
 System.out.println("Type the name of a class in the " +
 "current folder and type enter, or write \"end\" to end the " +
 "program");
 while (!(string = scanner.next()).equals("end")) {
 System.out.println("You typed " + string.toUpperCase() + "!");
 try {
 printMethods(string);
 } catch (ClassNotFoundException ex) {
 ex.printStackTrace();
 }
 }
 System.out.println("Program terminated!");
 }

 private static void printMethods(String string) throws
 ClassNotFoundException {
 Class objectClass = Class.forName(string);
 Method[] methods = objectClass.getDeclaredMethods();
 for (Method method : methods) {
 System.out.println(method);
 }
 }
}

Note that we have used the getDeclaredMethods() method instead of getMethods(), because
the latter would have also printed the methods inherited from the superclasses (in case you
specify the class Coin the methods of the Object superclass).
The output of the previous code is as follows:

Type the name of a class in the current folder and type enter, or write "end" to end the
 program
Coin
You typed COIN!
Loaded the Coin class with currency = EURO
public boolean Coin.equals(java.lang.Object)
public int Coin.hashCode()
public Value Coin.getValue()

Chapter 13 Exercises Solutions

431
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public java.lang.String Coin.getDescription()
end
Program terminated!

Solution 13.e)

The code of the InteractiveCompiler class could be the following:

import java.util.Scanner;

public class InteractiveCompiler {

 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 String string = "";
 System.out.println("Type the name of a source Java file in the " +
 "current folder and type enter, or write \"end\" to end the program");
 while (!(string = scanner.next()).equals("end")) {
 System.out.println("You typed " + string.toUpperCase() + "!");
 try {
 buildClass(string);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 System.out.println("Program terminated!");
 }

 private static void buildClass(String string) throws Exception {
 Runtime runtime = Runtime.getRuntime();
 Process process = runtime.exec("javac " + string);
 final int exitValue = process.waitFor();
 System.out.println(exitValue == 0 ? string + " compiled!" :
 "Cannot compile " + string);
 }
}

Note that we could also use the Compiler API, with a simple code like the following:

JavaCompilerTool compiler = ToolProvider.defaultJavaCompiler();
compiler.run(new FileInputStream("MyClass.java"),null, null);

Also note that we have captured the output code of the compilation process with the waitFor()
method. If this is 0 then the file has been compiled correctly.
The output of our program will be:

java InteractiveCompiler
Type the name of a source Java file in the current folder and type enter, or write "end"

Chapter 13 Exercise Solutions

432
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 to end the program
Coin
You typed COIN!
Cannot compile Coin
Coin.java
You typed COIN.JAVA!
Coin.java compiled!

From the command line we first tried to view all the *.class files with the command dir * .class
(see appendix A), but there were none. Then we compiled the InteractiveCompiler.java class and
checked that the InteractiveCompiler file was generated. Then we ran our program and in
our interactive session we first tried to compile the Coin file, but this does not exist. Then we
tried to compile the Coin.java file and we verified that the compilation was actually successful.
Of course, the Value class and its anonymous classes have also been compiled.

Solution 13.f)

If we talk about an array of integers, since autoboxing-unboxing exists, we can also refer to an
Integer array. Since this class is declared final, and therefore cannot be extended, it is unthink-
able to create a subclass that implements Comparable. The only solution that remains is to cre-
ate a Comparator class that reverses the integers:

import java.util.Comparator;

public class IntegerComparator implements Comparator<Integer> {
 @Override
 public int compare(Integer o1, Integer o2) {
 return -(o1.compareTo(o2));
 }
}

The test class could be the following:

import java.util.Arrays;

public class TestIntegerComparator {
 public static void main(String args[]) {
 Integer []array = {1942, 1947, 1971, 1984, 1976, 1974};
 Arrays.sort(array, new IntegerComparator());
 for (int integer : array) {
 System.out.println(integer);
 }
 }
}

whose output will be:

Chapter 13 Exercises Solutions

433
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

1984
1976
1974
1971
1947
1942

Solution 13.g)

The code of the WrapperComparable class should be defined like this:

public class WrapperComparable implements Comparable<WrapperComparable> {

 private Integer integer;

 public WrapperComparable(Integer integer) {
 if (integer == null) {
 integer = 0;
 }
 this.integer = integer;
 }

 public Integer getInteger() {
 return integer;
 }

 public void setInteger(Integer integer) {
 this.integer = integer;
 }

 @Override
 public int compareTo(WrapperComparable otherWrapperComparable) {
 return -(integer.compareTo(otherWrapperComparable.getInteger()));
 }

 @Override
 public String toString() {
 return "WrapperComparable("+integer+ ")";
 }
}

The code for the TestWrapperComparable class could be the following:

import java.util.Arrays;

public class TestWrapperComparable {
 public static void main(String args[]) {
 WrapperComparable[] array = {new WrapperComparable(1942),
 new WrapperComparable(1974), new WrapperComparable(1907)};

Chapter 13 Exercise Solutions

434
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Arrays.sort(array);
 for (WrapperComparable wrapperComparable : array) {
 System.out.println(wrapperComparable);
 }
 }
}

Solution 13.h)

The output of the class is:

false
true
true
true
false

In fact, string1 and string2 are two different strings, so it is correct that the first print instruc-
tion, which compares strings with the operator == which is based on the reference addresses,
prints false. The second and third print statements will print true, because the equals()
method compares the contents of the strings and not the reference addresses. The result of
the fourth and fifth printing instructions instead, depends on the fact that the string Claudio
is a string that has been put in the pool of strings (see section 13.5.1) and whose address coin-
cides with the address of string1 (see the first instruction of the method) but not with that of
string2.

Solution 13.i)

All statements are correct. In particular in the last one we talk about modifying the external
state of an object, but there is no “external state” to modify.

Solution 13.l)

All statements are false! In particular the number 2 and the number 3 are incorrect because a
character of a string is stored in 16 bits (not a string), while if the string is compact one of its
characters is stored using 8 bits. The number 4 is incorrect because the -XX: -CompactStrings
option should be used when running the program, not when compiling it.

Solution 13.m)

The correct result would be 13, but the correct answer is the last one. In fact in the last instruc-
tion the parentheses are missing to invoke the method length(), which causes the following

Chapter 13 Exercises Solutions

435
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

error in compilation:

Exercise13M.java:10: error: cannot find symbol
 System.out.println(string.length);
 ^
 symbol: variable length
 location: variable string of type String
1 error

The compiler warns us that it does not find the length variable (since the round brackets char-
acterizing the syntax of the methods are missing). Note that all instructions (except the pen-
ultimate) do not reassign the result of the method invoked to string, which therefore always
points to the same immutable object declared initially. Only in the penultimate instruction a
new object (which concatenates an exclamation point at the end of the string) is reassigned to
the string variable with the += operator. That is why if there were no error in the last statement,
the value 13 would have been printed.

Solution 13.n)

The output of the Exercise13N class is as follows:

intern()==equals()

therefore, the correct answer is the number 6. In fact, the call to the method intern() tries to
retrieve the String object on which it is called from the pool of strings, using the comparison
that provides the equals () method. If the desired string does not exist in the pool, it is added,
and a reference to it is returned. So, the string is added to the pool, and subsequent if condi-
tions are checked.

Solution 13.o)

The output of the Exercise12N class is as follows:

123456

Note that the output includes a new line. In fact, after having given as a value 123789 to the
variable string1, we get string2 concatenating to string1 a line separator (which causes a
newline) thanks to the static method lineSeparator() of the System class. Calling the meth-
od toCharArray() on string2, we store in array1 the array of characters that made up the
string string2. So this array has size 8 if run on Windows (where System.lineSeparator()
contains two characters \r and \n) and has dimension 7 on other platforms like Linux (where

Chapter 13 Exercise Solutions

436
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

System.lineSeparator() contains only the escape character \n) . Then to the array2 array
is assigned three elements always of type character (4, 5 and 6) that are all copied through the
System.arraycopy() method in the array1 starting from index 3. Finally, the array array1 is
printed and you exit the program using the System.exit() method (superfluous in this case
because the program would have terminated the same immediately after).

Solution 13.p)

The solution could be implemented in the following way. We create the following enumeration
that simply defines some type of font.

public enum Font {
 ARIAL, TIMES_NEW_ROMAN, COURIER, MONOSPACED;
}

Then we create the required RTFText class in this way:

public class RTFText implements Cloneable {
 String text;
 Font character;
 boolean underlined;

 public RTFText(String text, Font character, boolean underlined) {
 this.text = text;
 this.character = character;
 this.underlined = underlined;
 }

 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }

 public String toString(){
 return "Text = " + text + ", character = " + character +
 ", underlined = " + underlined;
 }
}

Finally, we can write the test class this way:

public class Exercise13P {
 public static void main(String args[]) throws CloneNotSupportedException {
 RTFText text = new RTFText("Java", Font.ARIAL, false);
 System.out.println(text);
 System.out.println(text.clone());
 }
}

Chapter 13 Exercises Solutions

437
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

That will produce the following output.

Text = Java, character = ARIAL, underlined = false
Text = Java, character = ARIAL, underlined = false

Solution 13.q)

One of the possible solutions is the update of the Authentication class:

package com.claudiodesio.authentication;

public class Authentication {

 public void login() {
 String username = System.getProperty("username");
 System.out.println(username);
 String password = System.getProperty("password");
 System.out.println(password);
 User user = findUser(username);
 if (user != null) {
 if (verifyPassword(user, password)) {
 Print.sayHello(user.getName());
 } else {
 Print.authenticationFailed();
 }
 } else {
 Print.usernameNotFound();
 }
 }

 private User findUser(String username) {
 User[] users = UserProfiles.getInstance().getUsers();
 if (username != null) {
 for (User user : users) {
 if (username.equals(user.getUsername())) {
 return user;
 }
 }
 }
 return null;
 }

 private boolean verifyPassword(User user, String password) {
 boolean found = false;
 if (password != null) {
 if (password.equals(user.getPassword())) {
 found = true;
 }
 }
 return found;

Chapter 13 Exercise Solutions

438
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 }

 public static void main(String args[]) {
 Authentication authentication = new Authentication();
 authentication.login();
 }
}

which performed with these parameters:

java -Dusername=dansap -Dpassword=music
 com.claudiodesio.autentication.Authentication

will result in the following output::

dansap
music
Hello Daniele

Solution 13.r)

The statements number 3 and 6 are correct. The number 1 is false because other algorithms
such as SerialGC can also be used. In the number 2 statement the first part of the sentence is
not correct: the ParallelGC interventions are less frequent (but more intense). The “finalization”
consists in testing if there are objects no longer reachable by some reference and therefore not
usable, therefore also the statement 4 is wrong. The runFinalization() method requires the
finalization of the objects, but resides in the Runtime class not in Object, which is why the state-
ment 5 is also incorrect

Solution 13.s)

A possible solution is represented by the following class:

import java.lang.reflect.*;

public class Exercise13S {
 public static void main(String args[]) throws Exception {
 Class<ClassWithPrivateMembers> classWithPrivateMembers =
 ClassWithPrivateMembers.class;
 ClassWithPrivateMembers object =
 classWithPrivateMembers.getDeclaredConstructor().newInstance();
 Field privateVariable =
 classWithPrivateMembers.getField("privateVariable");
 privateVariable.setAccessible(true);
 privateVariable.set(object, "Private variable hacked!");

Chapter 13 Exercises Solutions

439
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println(privateVariable.get(object))
 Method privateMethod =
 classWithPrivateMembers.getMethod("privateMethod");
 privateMethod.setAccessible(true);
 privateMethod.invoke(object);
 }
}

The code is very intuitive, except for the fact that, in setting the variable and invoking the
method, it is also necessary to pass the object on which you want to act.
The output of this program stops at the seventh line:

Exception in thread "main" java.lang.NoSuchFieldException:
 privateVariable
	 at java.base/java.lang.Class.getField(Class.java:1956)
	 at Exercise13S.main(Exercise13S.java:7)

While if we comment out the lines that trigger the exception and re-run the file (obviously after
recompiling it):

import java.lang.reflect.*;

public class Exercise13S {
 public static void main(String args[]) throws Exception {
 Class<ClassWithPrivateMembers> classWithPrivateMembers =
 ClassWithPrivateMembers.class;
 ClassWithPrivateMembers object =
 classWithPrivateMembers.getDeclaredConstructor().newInstance();
 /* Field privateVariable =
 classWithPrivateMembers.getField("privateVariable");
 privateVariable.setAccessible(true);
 privateVariable.set(object, "Private variable hacked!");
 System.out.println(privateVariable.get(object));*/
 Method privateMethod =
 classWithPrivateMembers.getMethod("privateMethod");
 privateMethod.setAccessible(true);
 privateMethod.invoke(object);
 }
}

we will get the following output:

Exception in thread "main" java.lang.NoSuchMethodException:
 ClassWithPrivateMembers.privateMethod()
	 at java.base/java.lang.Class.getMethod(Class.java:2065)
	 at Exercise13S.main(Exercise13S.java:11)

Chapter 13 Exercise Solutions

440
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 13.t)

Just use the PI variable (which represents the ∏ of the Math class) and the pow() method (which
represents the power function) in the following way:

public class Exercise13T {
 public static void main(String args[]) {
 int radius = 7;
 /*INSERT CODE HERE*/
 double area = Math.PI * Math.pow(radius, 2);
 System.out.println("The area of the circumference with radius 7 is "
 + area);
 }
}

And this is its output:

The area of the circumference with radius 7 is 153.93804002589985

Solution 13.u)

The correct answer is 6, in fact the output is the following:

Exception in thread "main" java.lang.NullPointerException
	 at Eserczio12U.main(Eserczio12U.java:5)

This is because the result of calling the floor() method is not reassigned to any variable, and
therefore the e variable remains with the initial value (2.718281828459045). Then the check()
method returns null, because 2.0 is different from 2.718281828459045. But null cannot be
assigned to a boolean primitive type

Solution 13.v)

The output of the Exercise13.v class is as follows:

long 128

In fact, the value 128, as we stated in Chapter 2, is considered an int default value. Therefore,
although the autoboxing is always valid, the method that has as its parameter a primitive type
is invoked, for reasons of code backward compatibility, as explained in section 13.6.1.7.

Solution 13.z)

Our solution is to create a Symbol enumeration, which defines the three signs of the game:

Chapter 13 Exercises Solutions

441
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public enum Symbol {
 ROCK, PAPER, SCISSORS;
}

Then we created a class that we called Rules, which represents the “business core” of the game.
Here is the algorithm that defines the winner. We have defined this algorithm by implementing
the compare() method of the Comparator interface. The choice fell on this method more for
educational purposes than for real utility (surely there are better solutions):

import java.util.Comparator;

public class Rules implements Comparator<Symbol> {
 @Override
 public int compare(Symbol symbol1, Symbol symbol2) {
 int result = 0;
 switch (symbol1) {
 case PAPER: {
 if (symbol2 == Symbol.ROCK) {
 result = 1;
 } else if (symbol2 == Symbol.SCISSORS) {
 result = -1;
 }
 }
 break;
 case ROCK: {
 if (symbol2 == Symbol.SCISSORS) {
 result = 1;
 } else if (symbol2 == Symbol.PAPER) {
 result = -1;
 }
 }
 break;
 case SCISSORS: {
 if (symbol2 == Symbol.PAPER) {
 result = 1;
 } else if (symbol2 == Symbol.ROCK) {
 result = -1;
 }
 }
 break;
 default: {
 result = 0;
 }
 break;
 }
 return result;
 }
}

Chapter 13 Exercise Solutions

442
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The most important class is the RockPaperScissors class, that defines a single public method
play(), and three private methods::

 getSymbol() which retrieves an element of the Symbol enumeration based on its
position (id).

 getComputerSymbol() which reuses the getSymbol() method by passing a random
number between 0 and 2.

 calculateWinner() which returns the string to be printed as program output, based on
the comparison defined in the object Rules.

import java.util.Random;

public class RockPaperScissors {
 public void play(int id) {
 Symbol playerSymbol = getSymbol(id);
 Symbol computerSymbol = getComputerSymbol();
 System.out.println(playerSymbol + " VS " + computerSymbol);
 String result = calculateWinner(playerSymbol, computerSymbol);
 System.out.println(result);
 }

 private String calculateWinner(Symbol playerSymbol, Symbol computerSymbol) {
 Rules rules = new Rules();
 int result = rules.compare(playerSymbol, computerSymbol);
 if (result > 0) {
 return playerSymbol + " Wins!\nYou win!";
 } else if (result < 0) {
 return computerSymbol + " Wins!\nYou loose!";
 } else {
 return "Draw!";
 }
 }

 private Symbol getSymbol(int id) {
 Symbol[] symbols = Symbol.values();
 Symbol computerSymbol = symbols[id];
 return computerSymbol;
 }

 private Symbol getComputerSymbol() {
 Random random = new Random();
 return getSymbol(random.nextInt(3));
 }
}

Finally the main() class manages any input from the user’s command line and calls the

E

E

E

Chapter 13 Exercises Solutions

443
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

RockPaperScissors play() method:

import java.util.Random;

public class Exercise13Z {
 public static void main(String args[]) {
 int id = getId(args);
 RockPaperScissors rockPaperScissors = new RockPaperScissors();
 rockPaperScissors.play(id);
 }

 public static int getId(String args[]) {
 int id = 0;
 if (args.length != 0) {
 try {
 id = Integer.parseInt(args[0]);
 if (id < 0 || id > 2) {
 System.out.println("Enter a number between 0 and 2");
 System.exit(1);
 }
 } catch (Exception exc) {
 System.out.println("Input not valid: " + args[0]);
 System.exit(1);
 }
 } else {
 id = new Random().nextInt(3);
 }
 return id;
 }
}

Here are some examples of output:

ROCK VS PAPER
PAPER Wins!
You loose!

SCISSORS VS PAPER
SCISSORS Wins!
You win!

SCISSORS VS SCISSORS
Draw!

SCISSORS VS ROCK
ROCK Wins!
You loose!

445
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 14
Exercises

Utilities API:
java.util Package
and Date-Time API

The chapter is essentially dedicated to the java.util package and the Date & Time API. The
java.util package is very large, there are many other classes and interfaces worthy of note.
Using the documentation is essential, also to do the following exercises.

Exercise 14.a) Package java.util, True or False:

The Properties class extends Hashtable but allows you to save key-value pairs in a file,
making them persistent.

The Local class abstracts the concept of “zone”.

The ResourceBundle class represents a properties file that allows you to manage
internationalization. The relationship between the file name and the specified locale to
locate this file, will allow us to manage the language configuration of our applications.

The output of the following code:

StringTokenizer st = new StringTokenizer(
 "The object oriented language Java", "t", false);

1.

2.

3.

4.

Chapter 14 Exercises

446
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

while (st.hasMoreTokens()) {
 System.out.println(st.nextToken());
}

will be:

The object
t
orien
t
ed language Java

The following code is invalid:

Pattern p = Pattern.compile("\bb");
Matcher m = p.matcher("blahblahblah...");
boolean b = m.find();
System.out.println(b);

The Preferences class allows you to manage configuration files with an XML file.

The Formatter class defines the printf() method.

The regular expression [a] is a quantifier (greedy quantifier).

The following code:

Date d = new Date();
d.now();

creates a Date object with the current date.

 A SimpleNumberFormat can format and analyze any currency using Locale.

Exercise 14.b) Date-Time API, True or False:

The “from” type methods allow to recover a certain temporal type, starting from a tem-
poral type with more information.

The only way to parse a string to get an Instant object is to use the DateTimeFormatter
class.

The Duration class calculates the distance between two instants, so it is defined on the
timeline.

It is not possible to store time information in an object of type LocalDate.

You can store date information in an object of type LocalTime.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

Chapter 14 Exercises

447
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

You can store date information in an object of type ZonedDate.

The between() method of ChronoUnit returns a Duration object.

The temporal adjusters can be passed to “with” methods to perform operations on dates
and times.

The temporal queries can be passed to “with” methods to retrieve information on dates
and times.

 In general, it is possible to replace the Date class with the Instant class.

Exercise 14.c)

Create a Translator class that exposes a translate() method to translate a limited number of
words from English to another language and vice versa, using a resource bundle.

Exercise 14.d)

Create a TranslationTest class to test the correctness of the translations.

Exercise 14.e)

Create a StringUtils class that declares only static methods (and therefore it is useless to in-
stantiate). It must expose a search() method, which through regular expressions must search
for all words in a text (specified as input) that start with a certain character, and return them
within a list.

Exercise 14.f)

Create a StringUtilsTest class to test the correctness of the search() method.

Exercise 14.g)

Create a DateUtils class that declares only static methods (and therefore it is useless to
instantiate). This class, given two instants as input, must be able to return the number of:

 seconds

 minutes

 hours

 days

6.

7.

8.

9.

10.

E

E

E

E

Chapter 14 Exercises

448
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 weeks

 months

that exist between the two instants.

Exercise 14.h)

Modify the DateUtils class to provide it with a method that, given an instant as input, must be
able to return the number of:

 seconds

 minutes

 hours

 days

 weeks

 months

that exist between the specified time and the current instant.

Exercise 14.i)

In the DateUtils class, create a method that returns the correct time in the “HH:mm ss”
format.

Exercise 14.l)

In the DateUtils class, create a method that formats the specified date according to the pattern
specified as input.

Exercise 14.m)

In the DateUtils class, create a method that analyzes the specified date according to the
pattern specified as input, and returns a LocalDate.

Exercise 14.n)

Create a TestDateUtils class to test the correctness of DateUtils methods.

E

E

E

E

E

E

E

E

Chapter 14 Exercises

449
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 14.o)

Create a simple program that simulates a dice roll. Running the program will print a
random number from 1 to 6. Use the official documentation to find a way to generate
random numbers.
Tip: create just a single class with a main() method containing a single statement.

Exercise 14.p)

Let’s continue the discussion started in Exercise 5.r, implemented in Exercise 6.z, and
formalized in Exercise 7.z, as a use case in the case study called Logos, introduced in section 5.5.
In the authentication use case, a user entered a username and password to authenticate himself
in the system. But who entered the credentials in the system to allow the user to authenticate
with username and password? We find the answer in the use case diagram, shown again in
Figure 14.p.1.

Figure 14.p.1 – The updated Logos use case diagram.

Chapter 14 Exercises

450
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

This exercise requires to implement the configure users use case. Even this use case must be
understood as a small working program, independently of Logos, so that it can possibly be
reused in other programs. To be able to store the username and password pairs, use a proper-
ties file. Keep in mind that in addition to username and password, the User class must also have
other properties to configure, such as the name and role

Reuse the code of exercises 5.z and 6.z and of the other related
exercises.

Exercise 14.q)

Keeping in mind the solution of the previous exercise, modify the code of the exercise 6.z and
in particular the UserProfiles class, so as to load the User objects starting from the properties
file.

Exercise 14.r)

Which of the following statements are correct?

A Formatter object allows you to store key-value pairs as a Properties object, without
having to specify a file to use for data storage.

A System.out object is of type java.io.PrintStream.

The java.io.PrintStream class. defines the printf() method which uses the format()
method of the Formatter class.

The Formatter class defines an overload of the format() method.

The Formatter class also allows formatting based on Locale objects.

Exercise 14.s)

Which of the following statements are correct about the Preferences class?

A Preferences object allows you to store key-value pairs as a Properties object, without
having to specify a file to use for data storage.

A Preferences object does not use the setProperty() method.

The Preferences class extends HashMap.

1.

2.

3.

4.

5.

1.

2.

3.

Chapter 14 Exercises

451
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The Preferences class is instantiated without being able to use constructors, but
methods that return instances. In fact, it is even an abstract class.

The Preferences class defines methods to insert specific types of data as a value.

Exercise 14.t)

Which of the following statements are correct about regular expressions?

The Matcher class defines the find() method which returns the string that matches the
Matcher boolean expression.

The Matcher class is instantiated without being able to use constructors, but methods that
return instances.

A Pattern object defines the start() and end() methods.

Within Java strings, the symbol \ must be repeated, to prevent the compiler from
considering it the prefix of an escape character.

A “greedy quantifier” is a symbol that represents the multiplicity of occurrences
matching a certain pattern.

Exercise 14.u)

Which of the following statements are correct regarding the standardization of Date and Time
API methods?

The “from” methods have an always less “complete” parameter than the type they have
to return.

The “of” methods return instances of objects on the class on which they are invoked.

The “plus” and “minus” methods return copies of the input parameters.

“with”, “is”, “to” and “at” are used only as prefixes, never as complete names.

Exercise 14.v)

Which of the following statements are correct regarding the geolocation of the Date and Time
API?

The ZoneId class abstracts the concept of a geographical area that shares the same time
zone, and is usually identified by a pair of the “region/city” type.

4.

5.

1.

2.

3.

4.

5.

1.

2.

3.

4.

1.

Chapter 14 Exercises

452
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The ZoneOffset class abstracts the concept of time zone.

The ZoneDateTime class represents the localized version of the LocaleDate class.

The atZone() method of the LocalDateTime class returns a ZoneDateTime.

Exercise 14.z)

Which of the following statements are correct regarding the handling of the legacy code of the
Date and Time API?

The from() method is declared both in the GregorianCalendar class and in the Date
class.

The toInstant() method is declared in both the Calendar class and the Date class.

You can replace the Date class with the Instant class.

The GregorianCalendar class can be replaced as appropriate, with the types
ZonedDateTime, LocalTime or LocalDate.

The TimeZone class can be replaced as appropriate with ZoneId or ZoneOffset types.

2.

3.

4.

1.

2.

3.

4.

5.

453
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 14
Exercise Solutions

Utilities API:
java.util Package
and Date-Time API

Solution 14.a) Package java.util, True or False:

True.

True.

True.

False, all the “t” should not be there.

False, is valid but will print false. In order for you to print true, the expression must be
changed to “\\bb”.

False, the way persistent data is stored is platform dependent. A Properties object, on
the other hand, can also use configuration files in XML format.

False, the PrintStream class defines the printf() method, the Formatter class defines
the format() method.

1.

2.

3.

4.

5.

6.

7.

Chapter 14 Exercise Solutions

454
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

False, is a character class.

False, the Date class does not have a now() method. The first line alone would have
fulfilled the required task.

 False, the SimpleNumberFormat class simply does not exist. But the SimpleDateFormat
class exists.

Solution 14.b) Date-Time API, True or False:

True.

False, also the same Instant class defines a parse() method.

False, Duration is not connected to the timeline as it represents a time interval between
two Instant objects.

True.

False.

False, the ZonedDate class simply does not exist.

False.

True.

False.

 True.

Solution 14.c)

The code of the Translator class could be like the following:

import java.util.Locale;
import java.util.ResourceBundle;

public class Translator {

 private LanguageEnum language;

 private ResourceBundle resources;

 public Translator (LanguageEnum language) {
 this.language = language;

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 14 Exercises Solutions

455
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 String keyLanguage = language.getKey();
 Locale locale = new Locale(keyLanguage);
 resources = ResourceBundle.getBundle("resources.vocabulary", locale);
 }

 public String translate(WordsEnum text) {
 String translation = resources.getString(text.getKey());
 return translation;
 }

 public void setLanguage(LanguageEnum language) {
 this.language = language;
 }

 public LanguageEnum getLanguage() {
 return language;
 }
}

Note that to simplify our exercise we have decided to limit the number of words to be
translated using the WordsEnum enumeration:

public enum WordsEnum {

 BOOK("book"), TIME("time"), HOME("home");

 private String key;

 private WordsEnum(String key) {
 this.key = key;
 }

 public String getKey() {
 return key;
 }
}

We have also limited the number of languages supported through the LanguageEnum
enumeration:

public enum LanguageEnum {

 ITALIAN("it", "Italian"), ENGLISH("en", "English");

 String key;

 String description;

 LanguageEnum(String key, String description) {

Chapter 14 Exercise Solutions

456
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 this.key = key;
 this.description = description;
 }

 public String getKey() {
 return key;
 }

 public String toString() {
 return description;
 }
}

We also created in the resource folder (inserted in the source folder downloadable from the same
address from where you downloaded these files: http://www.javaforaliens.com/download.html) the
properties files that we needed: vocabulary_it.properties:

book=libro
home=casa
time=tempo

and vocabolary_en.properties:

book=book
home=home
time=time

Solution 14.d)

The code could be the following:

public class TranslatorTest {

 public static void main(String args[]) {
 Translator translator = new Translator(LanguageEnum.ENGLISH);
 String translatedWord = translator.translate(WordsEnum.BOOK);
 System.out.println(translatedWord);
 }
}

The output will be:

book

we could also use the Scanner class and make the program interactive.

Chapter 14 Exercises Solutions

457
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 14.e)

The code could be the following:

import java.util.ArrayList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class StringUtils {

 public static List<String> search(String text, char firstCharacter) {
 List<String> list = new ArrayList<>();
 Pattern pattern = Pattern.compile("\\b"+firstCharacter+"[a-zA-Z]+\\b");
 Matcher matcher = pattern.matcher(text);
 while (matcher.find()) {
 list.add(matcher.group());
 }
 return list;
 }
}

Solution 14.f)

The code of the StringUtilsTest class could be the following:

import java.util.List;

public class StringUtilsTest {

 public static void main(String args[]) {
 List<String> list = StringUtils.search(
 "The smile of dawn arrived early May "
 + "she carried a gift from her home "
 + "the night shed a tear to tell her of fear "
 + "and of sorrow and pain she'll never outgrow ", 't');
 for (String string : list) {
 System.out.println(string);
 }
 }
}

The output of the previous code is:

the
tear
to
tell

Chapter 14 Exercise Solutions

458
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 14.g)

The code could be the following:

import java.time.LocalDateTime;
import java.time.temporal.ChronoUnit;

public class DateUtils {

 public static long getInterval(LocalDateTime ldt1, LocalDateTime ldt2,
 ChronoUnit chronoUnit) {
 return chronoUnit.between(ldt1, ldt2);
 }
}

But there are so many alternatives to this solution.

Solution 14.h)

The code of the requested method is very trivial:

 public static long getPastTime(Instant instant1, ChronoUnit chronoUnit) {
 return getInterval(instant1, Instant.now(), chronoUnit);
 }

In fact, we have reused the method written in the previous exercise.

Solution 14.i)

The code of the requested method is very trivial:

 public static String getExactTime() {
 LocalTime now = LocalTime.now();
 String exactTime = (now.getHour() + ":" + now.getMinute() + " "
 + now.getSecond());
 return exactTime;
 }

Solution 14.l)

The code of the requested method is also very simple:

 public static String formatDate(LocalDateTime localDateTime, String pattern)
 throws DateTimeException {
 String formattedDate = null;
 try {
 DateTimeFormatter formatter = DateTimeFormatter.ofPattern(pattern);
 formattedDate = formatter.format(localDateTime);

Chapter 14 Exercises Solutions

459
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 } catch (DateTimeException dateTimeException) {
 dateTimeException.printStackTrace();
 throw dateTimeException;
 }
 return formattedDate;
 }

Note that we handled the exception only to print the stack trace, and then we have rethrown it.
We have also included the throws clause next to the method definition. In this way, those who
use this method will know that they could throw the exception in case you specify an incorrect
pattern.

Solution 14.m)

The code of the requested method could be the following:

public static LocalDate analizzaData(String data, String pattern)
 throws DateTimeParseException {
 LocalDate localDate = null;
 try {
 localDate = LocalDate.parse(data, DateTimeFormatter.ofPattern(pattern));
 } catch (DateTimeParseException dateTimeParseException) {
 dateTimeParseException.printStackTrace();
 throw dateTimeParseException;
 }
 return localDate;
}

Note that even in this case we handled the exception only to print the stack trace, and then we
have rethrown it. We have also included the throws clause next to the method definition. In this
way, those who use this method will know that they could throw the exception in case you speci-
fy an incorrect pattern. However, the exception this time is of type DateTimeParseException.

Also in this case, the solution is very simple. Note that it is also possi-
ble to use other classes and other methods to achieve the same results
as in the last four exercises. The library for managing dates and time
is really simple and powerful.

Solution 14.n)

The required code could be the following:

Chapter 14 Exercise Solutions

460
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import java.time.Instant;
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.time.temporal.ChronoUnit;

public class DateUtilsTest {

 private static final String DATE_FORMAT = "MM/dd/yy hh:mm a";

 public static void main(String args[]) {
 final String exactTime = DateUtils.getExactTime();
 System.out.println("Time right now: " + exactTime);
 Instant twoThousand = Instant.parse("2000-01-01T00:00:00.00Z");
 Instant twoThousandAndTen = Instant.parse("2010-01-01T00:00:00.00Z");
 long daysInterval = DateUtils.getInterval(
 twoThousand, twoThousandAndTen, ChronoUnit.DAYS);
 System.out.println("From 1st January 2000 to 1st January 2010 "
 + daysInterval + " days are passed");
 final long minutesPassed =
 DateUtils.getPastTime(twoThousand, ChronoUnit.MINUTES);
 System.out.println(minutesPassed + " minutes " +
 "have passed since January 1st 2010 ");
 LocalDateTime localDateTime = LocalDateTime.now();
 final String formattedDate =
 DateUtils.formatDate(localDateTime, DATE_FORMAT);
 System.out.println("Formatted date: " + formattedDate);
 LocalDate localDate =
 DateUtils.parseDate(formattedDate, DATE_FORMAT);
 System.out.println(localDate);
 System.out.println("Let's throw an exception!");
 localDate = DateUtils.parseDate(formattedDate, "ABC");
 }
}

Solution 14.o)

The right class to use is the java.util.Random class, with its nextInt() method which takes as
input an upper limit (excluded), and which has as its lower limit set to 0 (included). Just add the
value 1 and you’re done. The code could be the following:

import java.util.Random;

public class DiceRoll {
 public static void main(String args[]) {
 System.out.println("Dice rolling... " + (1 + new Random().nextInt(6)) + "!");
 }
}

Chapter 14 Exercises Solutions

461
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 14.p)

Let’s reuse the User class:

package com.claudiodesio.authentication;

public class User {
 private String name;
 private String username;
 private String password;

 public User(String name, String username, String password) {
 this.name = name;
 this.username =username;
 this.password =password;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }
}

The Amministrator class:

package com.claudiodesio.authentication;

public class Administrator extends User {
 public Administrator (String name, String username, String password) {
 super(name, username, password);
 }
}

Chapter 14 Exercise Solutions

462
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The Clerk class:

package com.claudiodesio.authentication;

public class Clerk extends User {
 public Clerk(String name, String username, String password) {
 super(name, username, password);
 }
}

Then let’s modify the UserProfiles class in order to manage user profiles:

package com.claudiodesio.authentication;
import java.util.*;
import java.io.*;

public class UserProfiles {

 private static UserProfiles instance;

 private Properties properties;

 private UserProfiles() {
 properties = new Properties();
 try {
 loadProperties();
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static UserProfiles getInstance() {
 if (instance == null) {
 instance = new UserProfiles();
 }
 return instance;
 }

 public void loadProperties() throws IOException {
 try (FileInputStream inputStream =
 new FileInputStream("config.properties");) {
 properties.load(inputStream);
 }
 }

 public void addUser(String[] args) throws IOException {
 String role = args[0];
 String name= args[1];
 String username = args[2];

Chapter 14 Exercises Solutions

463
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 String password = args[3];
 // If the role Administrator is not specified
 //a clerk will always be inserted
 User user = (role.equals("Administrator") ?
 new Administrator(name, username, password):
 new Clerk(name, username, password));
 String value = name + "," + role + "," + password;
 properties.setProperty(username, value);
 try (FileOutputStream fos = new FileOutputStream("config.properties")) {
 properties.store(fos, "Configuration File");
 }
 System.out.println("Added property: " + username + "=" + value);
 }
}

In particular we have added a method to add user profiles, which allows us to add a line in the
properties file whose key is the username, and whose value is a list with other user information
separated by commas. Finally, with the following class which takes the values to be entered
from the command line, the application is executed:

package com.claudiodesio.authentication;

import java.io.*;

public class Exercise14P {

 public static void main(String args[]) throws IOException {
 if (args.length != 4) {
 System.out.println("Specify role, name, username, password");
 System.exit(1);
 }
 UserProfiles.getInstance().addUser(args);
 }
}

By running the application, for example without specifying command line arguments, we will
get the following output:

java com.claudiodesio.authentication.Eexercise14P
Specify role, name, username, password

instead specifying the following arguments:

java com.claudiodesio.authentication.Eexercise14P Amdministrator
 Claudio desio xxxxxxxx
Added property: desio=Claudio,Amministratore,xxxxxxxx

we will get that in the properties file we will find the following content:

Chapter 14 Exercise Solutions

464
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

#Configuration File
#Sun Oct 05 23:47:31 CEST 2019
desio=Claudio,Amministratore,xxxxxxxx

Solution 14.q)

One possible solution is to change the UserProfiles class as follows:

package com.claudiodesio.authentication;

import java.util.*;
import java.io.*;

public class UserProfiles {

 private static UserProfiles instance;

 private Properties properties;

 private UserProfiles() {
 properties = new Properties();
 try {
 loadProperties();
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static UserProfiles getInstance() {
 if (instance == null) {
 instance = new UserProfiles();
 }
 return instance;
 }

 public void loadProperties() throws IOException {
 try (FileInputStream inputStream =
 new FileInputStream("config.properties");) {
 properties.load(inputStream);
 }
 }

 public void addUser(String[] args) throws IOException {
 String role = args[0];
 String name= args[1];
 String username = args[2];
 String password = args[3];
 // If the role Administrator is not specified

Chapter 14 Exercises Solutions

465
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 //a clerk will always be inserted
 User user = (role.equals("Administrator") ?
 new Administrator(name, username, password):
 new Clerk(name, username, password));
 String value = name +","+ role+","+ password;
 properties.setProperty(username, value);
 try (FileOutputStream fos = new FileOutputStream("config.properties")) {
 properties.store(fos,"Configuration File");
 }
 System.out.println("Added property: " + username + "=" + value);
 }

 public User getUser(String username) {
 String value = (String)properties.getProperty(username);
 if (value == null) {
 return null;
 }
 String [] tokens = value.split(",");
 User user = (tokens[1].equals("Administrator") ?
 new Administrator(tokens[0], username, tokens[2]):
 new Clerk(tokens[0], username, tokens[2]));
 return user;
 }
}

In particular we have created the getUser() method that we are going to call from the
Authentication class, appropriately modified:

package com.claudiodesio.authentication;

import java.util.Scanner;

public class Authentication {

 public void login() {
 boolean authorized = false;
 Scanner scanner = new Scanner(System.in);
 do {
 Print.requestUsername();
 String username = scanner.nextLine();
 User user = UserProfiles.getInstance().getUser(username);
 if (user != null) {
 Print.requestPassword();
 String password = scanner.nextLine();
 if (checkPassword(user, password)) {
 Print.sayHello(user.getName());
 authorized = true;
 } else {
 Print.authenticationFailed();

Chapter 14 Exercise Solutions

466
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 }
 } else {
 Print.usernameNotFound();
 }
 } while (!authorized);
 }

 private boolean checkPassword(User user, String password) {
 boolean found = false;
 if (password != null) {
 if (password.equals(user.getPassword())) {
 found = true;
 }
 }
 return found;
 }
}

Finally, the main() method we moved to the Exercise14Q:

package com.claudiodesio.authentication;

public class Exercise14Q {
 public static void main(String args[]) {
 Authentication authentication = new Authentication();
 authentication.login();
 }
}

Running the application all works as before:

Type username.
foo
User not found!
Type username.
desio
Type password.
yyyyyyyy
Authentication failed
Type username.
desio
Type password.
xxxxxxxx
Hello Claudio

Solution 14.r)

All statements are true.

Chapter 14 Exercises Solutions

467
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 14.s)

All statements are true except number 3. In fact, the Preferences class does not extend
Hashtable, but is an abstract class that extends Object. Just read the Java API documentation

Solution 14.t)

The correct statements are the numbers 2, 4 and 5. The number 1 is false because the find()
method does not return a string but a boolean (the find() method is in fact usually used as a
loop condition).
The number 3 is false because the start() and end() methods do not belong to the Pattern
class but are declared by the Matcher class.

Solution 14.u)

All the statements are true except for the number 1. In fact, the “methods have an always more
complete parameter with respect to the type they have to return.

Solution 14.v)

All statements are true except number 3. In fact, the ZoneDateTime class represents the
localized version of the LocaleDateTime class, not of LocalDate.

Solution 14.z)

All the statements are true!

469
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 15
Exercises

Thread Management

We saw in Chapter 15 how thread management is a very complex topic. However, the most of
the exercises that are presented below, should be quite feasible.

Exercise 15.a) Thread Creation, True or False:

A thread is an object instantiated by the Thread class or the Runnable class.

Multithreading is usually a feature of operating systems and not of programming
languages.

In every application at runtime there is at least one thread running.

Apart from the main thread, a thread needs to execute code within an object whose class
extends Runnable or extends Thread.

The run() method must be called by the programmer to activate a thread.

The current thread is not usually identified with the reference this.

A call to the start() method on a thread, means that it is immediately executed.

The sleep() method is static and allows the thread that reads this instruction to sleep for
a specified number of milliseconds.

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 15 Exercises

470
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Prioritizing threads is an activity that can produce different results on different
platforms.

 The JVM scheduler does not depend on the platform on which it is run.

Exercise 15.b) Handling Multi-Threading, True or False:

A thread abstracts a virtual processor that executes code on certain data.

The synchronized keyword can be used both as a modifier of a method and as a modifier
of a variable.

The monitor of an object can be identified with the synchronized part of the object
itself.

In order for two threads running the same code and sharing the same data to have no
concurrency problems, you need to synchronize the common code.

A thread is said to lock an object if it enters its monitor.

The wait(), notify() and notifyAll() methods are the main tool for multiple threads
communication.

The suspend() and resume() methods are currently deprecated.

The notityAll() method, invoked on a certain object o1, reawakens from the paused
state all the threads that called wait() on the same object. Among these will be executed
that was started first with the start() method.

Deadlock is a blocking error condition generated by two threads that depend on each
other in two synchronized objects.

 If a thread t1 executes the run() method in the object o1 of class C1, and a thread
t2 executes the run() method in the object o2 of the same class C1, the keyword
synchronized is useless.

Exercise 15.c)

Simulate with a working code the following situation with what was learned in this chapter.
A group of 10 people is at the astronomical observatory to admire the passage of a comet us-
ing the powerful telescope provided by the structure. Only one person at a time can use the
telescope, only three minutes per person to complete the observation are allowed. There is no

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 15 Exercises

471
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

line, the participants will access the telescope randomly. Each participant will then go through
statuses:

 The “Waiting” status when waiting for his turn. It lasts indefinitely, depending on when
the participant’s turn begins;

 The “Observation” status when the participant is observing the sky through the telescope.
It lasts exactly 3 minutes (but it is possible to shorten this time to execute the exercise);

 the “Done” state when the turn is over.

Statuses can be characterized by significant prints.

Exercise 15.d)

Simulate with a working code the following situation with what was learned in this chapter.
Suppose we find ourselves at the front office of the municipality that issues the passports. Sup-
pose there are 10 applicants in a line ready to request the document. When your turn comes,
you will be given a form to fill in. In order not to block the queue, the next applicant may in
the meantime request the service at the same front office. So, all applicants will be given the
form to fill in, the line will be very fast, and in parallel several people will be busy filling in the
form. Each applicant could take a variable time from 5 to 10 minutes to fill in the form (but it
is possible to shorten this time to execute the exercise), the first one that will finish (regardless
of its position in the initial line) can request the printing of its passport. This will be printed in
3 minutes (or 3 seconds if you want!) anyway.

Exercise 15.e)

Consider the following classes:

import java.util.ArrayList;

class RunnableArrayList extends ArrayList implements Runnable {

 public void run(String string) {
 System.out.println("Within the run() method: " + string);
 }
}

public class Exercise15E {
 public static void main(String args[]) {
 RunnableArrayList g = new RunnableArrayList();
 Thread t = new Thread(g);
 t.start();
 }
}

E

E

E

Chapter 15 Exercises

472
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

If we execute the Exercise15E class, what will the output be?

Within the run() method: null

Within the run() method:

The code is interrupted by an exception in the Exercise15E class.

The code is interrupted by an exception in the RunnableArrayList class.

No output. The code does not compile due to an error in the Exercise15E class.

No output. The code does not compile due to an error in the RunnableArrayList class.

Exercise 15.f)

Which of the following statements are correct:

A class, to create objects that have a monitor, must extend Thread.

A class, to create objects that have a monitor, must implement Runnable.

When “a thread enters the object monitor” then it has the lock of that object. This means
that no other thread can enter the monitor of that object.

The monitor class is defined by the synchronized methods of a class.

Exercise 15.g)

Which of the following statements are correct?

The Thread class extends Runnable.

Runnable is a functional interface.

The Thread class defines an empty run() method.

The Thread class defines the wait() and notify() methods.

Exercise 15.h)

Create a Countdown class which, once activated, starts a countdown from 10 to 0 before
ending.

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

1.

2.

3.

4.

Chapter 15 Exercises

473
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 15.i)

Which of the following statements are correct:
To instantiate a thread just use its constructors.

Specifying thread priority is not an effective way to decide the order of execution of
multiple threads.

To execute the run() method defined in a class that extends Thread, just call its run()
method.

To execute a thread you need to invoke the start() method of the Object class.

In each program there are at least three threads running.

Exercise 15.l)

Create a program that simulates the following situation. Through interactive commands (“run”,
“walk”, “stop” and “end”) read by the Scanner class, the user will play the part of the coach of a
virtual runner, giving commands on the fly while the runner trains.
Then create a Runner class that extends Thread. It must declare the methods: startRunning()
which will allow it to simulate the runner to go fast, walk() which will allow it to simulate a
walk, takeABreath() which will allow it to simulate the action of stopping, and stopTraining()
(that will end the training (and the program).

Tip: we can use boolean variables to manage an infinite cycle that
manages the training cycle.

Exercise 15.m)

Is it better to implement Runnable or extend the Thread class? Choose all the correct
statements.

By implementing Runnable which is an interface, we can also extend other classes.

By extending the Thread class we can also implement other interfaces.

From the point of view of data abstraction, an object of type Thread should not have pri-
vate variables that represent the data to be managed.

1.

2.

3.

4.

5.

1.

2.

3.

Chapter 15 Exercises

474
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

A Runnable object that implements the run() method can be the input to the
constructor of a Thread object. If the start() method is invoked on this last one, the
thread that executes the run() method is activated.

Exercise 15.n)

Which of the following statements are correct?

With time slicing (or round-robin) scheduling a thread may be running only for a certain
period of time.

Time slicing (or round-robin) scheduling is the default behavior of most Linux systems.

Preemptive scheduling is the default behavior of most Linux systems.

With preemptive scheduling, priority is a more deterministic element than round-robin.
In fact launched two threads at the same time, the highest priority thread will enter the
execution state, and will exit only when it has finished its work, or if it is called on it a
method like wait() or suspend(), or when must wait for external resources (as in the
case of waiting for input-output resources).

Exercise 15.o)

Which of the following statements are correct?

The volatile modifier can only be used on methods and variables.

Declaring volatile an instance variable implies that all other variables of the same in-
stance that are used by the same thread will also be considered volatile.

For a volatile variable, all read and write accesses are atomic.

For a non-volatile integer variable, all read and write accesses are atomic.

Exercise 15.p)

Which of the following statements are correct?

The synchronized keyword allows to declare atomic methods.

The monitor of an object consists of the part of the synchronized object. So, if at a cer-
tain moment, a thread is executing code within one of the synchronized methods of that

4.

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

Chapter 15 Exercises

475
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

object, any other thread that wants to access the code of any of the synchronized methods
of the same object, will have to wait for the first thread to terminate execute synchronized
code.

You can use synchronized blocks to make only certain lines of code synchronized. This
represents a more flexible solution than the static synchronization of a method.

You can use synchronized as a modifier only with methods.

The run() method can be declared synchronized.

Exercise 15.q)

Which of the following statements are correct?

The wait(), notify() and notifyAll() methods are defined in the Thread class.

If a thread encounters the wait() method, it release the object monitor of which it was
executing code.

The notifyAll() method restarts all the threads that had executed the wait() method.

The suspend() and resume() methods are defined in the Thread class.

Exercise 15.r)

Make the following class immutable:

import java.util.Date;

public final class Exercise15R {

 private final Integer integer;

 private final Date date;

 public Exercise15R(Integer integer, Date date) {
 this.integer = integer;
 this.date = (Date)date.clone();
 }

 public final Date getStringBuilder() {
 return (Date)date.clone();
 }

 public final Integer getInteger() {
 return integer;
 }
}

3.

4.

5.

1.

2.

3.

4.

Chapter 15 Exercises

476
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 15.s)

Which of the following statements are correct about java.util.concurrent.atomic and
java.util.concurrent.locks packages?

ReentrantLock is a class that, if instantiated, can replace the use of a synchronized block.
However, a try-catch-finally block must be used.

The concept of fairness of ReentrantLock type objects allows the JVM to create a thread
execution priority research, based on the creation time of the ReentrantLock.

A Lock object can specify a timeout to exit a synchronized block.

The AtomicInteger interface defines atomic methods that perform more than one
operation.

Exercise 15.t)

Consider the following snippet:

Callable<String> callable = new Callable<>() {public void call(){}};
Future<String> future = Executors.newFixedThreadPool(3).start(callable);
String result = future.get();

What message the compiler will return?

Exercise 15.u)

Abstract an alarm clock with the Timer and TimerTask classes of the java.util package. In
particular, it must be possible to pass from the command line a number that will represent the
number of seconds that must pass in order to make “sound” the alarm.

Exercise 15.v)

Which of the following statements are correct?

The statement:

new Semaphore().acquire();

allows a semaphore to acquire a lock on an object.

The tryAcquire() method allows you to specify a timeout.

Semaphore is an interface.

The permits represent a Semaphore instance variables.

1.

2.

3.

4.

1.

2.

3.

4.

Chapter 15 Exercises

477
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 15.z)

Which of the following statements are correct?

Instantiated a cyclicBarrier object of type CyclicBarrier, the statement:

cyclicBarrier.await();

is equivalent to calling the wait() method on the object that reads this statement.

The CyclicBarrier constructor allows you to specify the number of threads that must
“accumulate in a certain code point” before being released.

The signalAll() method of CyclicBarrier is equivalent to the object notifyAll()
method.

The use of CyclicBarrier can always replace the use of wait(), notify() and
notifyAll().

1.

2.

3.

4.

5.

6.

479
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 15
Exercise Solutions

Thread Management

Solution 15.a) Thread Creation, True or False:

False, Runnable is an interface.

True.

True, the so-called main thread.

True.

False, the programmer can invoke the start() method and the scheduler will invoke the
run() method.

True.

False.

True.

True.

 False.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 15 Exercise Solutions

480
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 15.b) Handling Multi-Threading, True or False:

True.

False.

True.

False.

True.

True.

True.

False, the first thread that will start will be the one with the highest priority.

True.

 True.

Solution 15.c)

First, we abstract the concept of status discussed in question 15.c, through an enumeration. We
also create the message to be printed for each status:

package com.claudiodesio.observatory.metadata;

public enum Status {
 WAITING("\"I'm waiting...\""),
 OBSERVATION("\"It's my turn... how wonderful!\""),
 DONE("\"I'm done.\"");

 private String message;

 private Status(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }
}

Then we create a simple class Participant, which has among its instance variables a Status
object. All participants have a name and a telescope to which they refer for observation. Our
class extends Thread, and its run() method defines the observation action:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 15 Exercises Solutions

481
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

package com.claudiodesio.observatory.data;

import com.claudiodesio.observatory.metadata.Status;

public class Participant extends Thread {

 private Status status;

 private final Telescope telescope;

 public Telescope getTelescope() {
 return telescope;
 }

 public Participant(String name, Telescope telescope) {
 setName(name);
 this.telescope = telescope;
 this.setStatus(Status.WAITING);
 status();
 }

 public Status getStatus() {
 return status;
 }

 public void setStatus(Status status) {
 this.status = status;
 }

 @Override
 public void run() {
 telescope.allowObservation(this);
 }

 public void status(){
 System.out.println(getName() + " says: " + status.getMessage());
 }
}

Note that when a Participant is created, the status is set to WAITING.
Then we create the most important class, that is the one that abstracts the Telescope concept:

package com.claudiodesio.observatory.data;

import com.claudiodesio.observatory.metadata.Status;

public class Telescope {

 public synchronized void allowObservation(Participant participant) {

Chapter 15 Exercise Solutions

482
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 participant.setStatus(Status.OBSERVATION);
 participant.status();
 try {
 Thread.sleep(3000);
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 participant.setStatus(Status.DONE);
 participant.status();
 }
}

In his synchronized business method, he merely passes from one state to another after a 3
second pause.
Finally, a test class follows:

package com.claudiodesio.observatory.test;

import com.claudiodesio.observatory.data.Participant;
import com.claudiodesio.observatory.data.Telescope;

public class Observation {

 public static void main(String args[]) {
 Telescope telescope = new Telescope();
 Participant[] participants = getParticipants(telescope);
 for (Participant participant : participants) {
 participant.start();
 }
 }

 private static Participant[] getParticipants(Telescope telescope) {
 Participant[] participants = {
 new Participant("Ciro", telescope),
 new Participant("Gianluca", telescope),
 new Participant("Pierluigi", telescope),
 new Participant("Gigi", telescope),
 new Participant("Nicola", telescope),
 new Participant("Pino", telescope),
 new Participant("Maurizio", telescope),
 new Participant("Raffaele", telescope),
 new Participant("Fabio", telescope),
 new Participant("Vincenzo", telescope)};
 return participants;
 }
}

The output is as follows (which changes with each launch):

Chapter 15 Exercises Solutions

483
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Ciro says: "I'm waiting..."
Gianluca says: "I'm waiting..."
Pierluigi says: "I'm waiting..."
Gigi says: "I'm waiting..."
Nicola says: "I'm waiting..."
Pino says: "I'm waiting..."
Maurizio says: "I'm waiting..."
Raffaele says: "I'm waiting..."
Fabio says: "I'm waiting..."
Vincenzo says: "I'm waiting..."
Ciro says: "It's my turn... how wonderful!"
Ciro says: "I'm done."
Vincenzo says: "It's my turn... how wonderful!"
Vincenzo says: "I'm done."
Fabio says: "It's my turn... how wonderful!"
Fabio says: "I'm done."
Raffaele says: "It's my turn... how wonderful!"
Raffaele says: "I'm done."
Pierluigi says: "It's my turn... how wonderful!"
Pierluigi says: "I'm done."
Gigi says: "It's my turn... how wonderful!"
Gigi says: "I'm done."
Gianluca says: "It's my turn... how wonderful!"
Gianluca says: "I'm done."
Maurizio says: "It's my turn... how wonderful!"
Maurizio says: "I'm done."
Pino says: "It's my turn... how wonderful!"
Pino says: "I'm done."
Nicola says: "It's my turn... how wonderful!"
Nicola says: "I'm done.

Solution 15.d)

We create a TimeUtils class that defines a utility method to generate a random number
between 5 and 10:

package com.claudiodesio.frontoffice.data;

import java.util.*;

public class TimeUtils {

 private static final Random RANDOM = new Random();

 public static int getRandomNumber() {
 return (RANDOM.nextInt(6) + 5);
 }
}

The class Applicant extends Thread:

Chapter 15 Exercise Solutions

484
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

package com.claudiodesio.frontoffice.data;

public class Applicant extends Thread {

 public Applicant(String name) {
 setName(name);
 }

 @Override
 public void run() {
 FrontOffice.getInstance().handleRequest(this);
 }

 @Override
 public String toString() {
 return getName();
 }
}

The Printer class will be used to print documents:

package com.claudiodesio.frontoffice.data;

public class Printer {

 private static Printer instance;

 private Printer() {
 }

 public static Printer getInstance() {
 if (instance == null) {
 instance = new Printer();
 }
 return instance;
 }

 public synchronized void print(Applicant applicant) {
 System.out.println("Employee says: printing passport for " + applicant
 + " in progress...");
 try {
 wait(3000);
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 System.out.println("Employee says: Print completed! " + applicant
 + " thanks and goodbye!");
 }
}

Chapter 15 Exercises Solutions

485
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The FrontOffice class is the key class:

package com.claudiodesio.frontoffice.data;

public class FrontOffice {

 private final Printer printer;
 private static FrontOffice instance;

 public synchronized static FrontOffice getInstance() {
 if (instance == null) {
 instance = new FrontOffice();
 }
 return instance;
 }

 private FrontOffice() {
 printer = Printer.getInstance();
 }

 public synchronized void handleRequest(Applicant applicant) {
 System.out.println("Hello " + applicant);
 System.out.println("Employee says: \"Please, fill in the form "
 + applicant + "\"");
 fillInModule(applicant);
 printer.print(applicant);
 System.out.println(applicant + " says: \"Thanks to you!\"");
 }

 private synchronized void fillInModule(Applicant applicant) {
 System.out.println(applicant + " says: \"OK, I will fill it but...\"");
 final int waiting = TimeUtils.getRandomNumber();
 try {
 System.out.println("...I need " + waiting + " minutes...");
 wait(waiting * 1000);
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 System.out.println(applicant +" says: \"...the module is completed!\"");
 }
}

The test class follows:

package com.claudiodesio.frontoffice.test;

import com.claudiodesio.frontoffice.data.Applicant;

public class FrontOfficeTest {

Chapter 15 Exercise Solutions

486
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void main(String args[]) {
 final Applicant[] richiedenti = getApplicants();
 for (Applicant applicant : richiedenti) {
 applicant.start();
 }
 }

 private static Applicant[] getApplicants() {
 Applicant[] applicants = {
 new Applicant("Ciro"),
 new Applicant("Mario"),
 new Applicant("Massimo"),
 new Applicant("Chicco"),
 new Applicant("Enrico"),
 new Applicant("Lorenzo"),
 new Applicant("Emanuele"),
 new Applicant("Cosimo"),
 new Applicant("Alessandro"),
 new Applicant("Salvatore")};
 return applicants;
 }
}

Finally, the output follows (which always changes):

Hello Alessandro
Employee says: "Please, fill in the form Alessandro"
Alessandro says: "OK, I will fill it but..."
...I need 5 minutes...
Hello Chicco
Employee says: "Please, fill in the form Chicco"
Chicco says: "OK, I will fill it but..."
...I need 6 minutes...
Hello Massimo
Employee says: "Please, fill in the form Massimo"
Massimo says: "OK, I will fill it but..."
...I need 10 minutes...
Hello Mario
Employee says: "Please, fill in the form Mario"
Mario says: "OK, I will fill it but..."
...I need 8 minutes...
Hello Enrico
Employee says: "Please, fill in the form Enrico"
Enrico says: "OK, I will fill it but..."
...I need 5 minutes...
Hello Cosimo
Employee says: "Please, fill in the form Cosimo"
Cosimo says: "OK, I will fill it but..."
...I need 5 minutes...
Hello Emanuele
Employee says: "Please, fill in the form Emanuele"
Emanuele says: "OK, I will fill it but..."

Chapter 15 Exercises Solutions

487
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

...I need 5 minutes...
Hello Salvatore
Employee says: "Please, fill in the form Salvatore"
Salvatore says: "OK, I will fill it but..."
...I need 9 minutes...
Hello Lorenzo
Employee says: "Please, fill in the form Lorenzo"
Lorenzo says: "OK, I will fill it but..."
...I need 6 minutes...
Hello Ciro
Employee says: "Please, fill in the form Ciro"
Ciro says: "OK, I will fill it but..."
...I need 9 minutes...
Alessandro says: "...the module is completed!"
Employee says: printing passport for Alessandro in progress...
Employee says: Print completed! Alessandro thanks and goodbye!
Alessandro says: "Thanks to you!"
Mario says: "...the module is completed!"
Employee says: printing passport for Mario in progress...
Employee says: Print completed! Mario thanks and goodbye!
Mario says: "Thanks to you!"
Lorenzo says: "...the module is completed!"
Employee says: printing passport for Lorenzo in progress...
Employee says: Print completed! Lorenzo thanks and goodbye!
Lorenzo says: "Thanks to you!"
Chicco says: "...the module is completed!"
Employee says: printing passport for Chicco in progress...
Employee says: Print completed! Chicco thanks and goodbye!
Chicco says: "Thanks to you!"
Emanuele says: "...the module is completed!"
Employee says: printing passport for Emanuele in progress...
Employee says: Print completed! Emanuele thanks and goodbye!
Emanuele says: "Thanks to you!"
Enrico says: "...the module is completed!"
Employee says: printing passport for Enrico in progress...
Employee says: Print completed! Enrico thanks and goodbye!
Enrico says: "Thanks to you!"
Cosimo says: "...the module is completed!"
Employee says: printing passport for Cosimo in progress...
Employee says: Print completed! Cosimo thanks and goodbye!
Cosimo says: "Thanks to you!"
Massimo says: "...the module is completed!"
Employee says: printing passport for Massimo in progress...
Employee says: Print completed! Massimo thanks and goodbye!
Massimo says: "Thanks to you!"
Ciro says: "...the module is completed!"
Employee says: printing passport for Ciro in progress...
Employee says: Print completed! Ciro thanks and goodbye!
Ciro says: "Thanks to you!"
Salvatore says: "...the module is completed!"
Employee says: printing passport for Salvatore in progress...
Employee says: Print completed! Salvatore thanks and goodbye!
Salvatore says: "Thanks to you!"

Chapter 15 Exercise Solutions

488
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 15.e)

The correct answer is the number 6, since the RunnableArrayList class does not correctly
implement the Runnable interface, whose run() method does not take any type of input pa-
rameters. In fact, the compilation output is as follows (there are also two warnings relating to
the use and declaration of raw type):

Exercise15E.java:3: warning: [rawtypes] found raw type: ArrayList
class RunnableArrayList extends ArrayList implements Runnable {
 ^
 missing type arguments for generic class ArrayList<E>
 where E is a type-variable:
 E extends Object declared in class ArrayList
D:\claudiodesio.com\Manuale\Java for Aliens 13\Code\chapter_15\exercises\15.e\
 Exercise15E.java:3: error: RunnableArrayList is not abstract and does not override
 abstract method run() in Runnable
class RunnableArrayList extends ArrayList implements Runnable {
^
D:\claudiodesio.com\Manuale\Java for Aliens 13\Code\chapter_15\exercises\15.e\
 Exercise15E.java:3: warning: [serial] serializable class RunnableArrayList has no
 definition of serialVersionUID
class RunnableArrayList extends ArrayList implements Runnable {
^
1 error
2 warnings

Solution 15.f)

Only answer 3 is correct, all others not.
In particular, regarding the answer 4, the Monitor class does not exist.

Solution 15.g)

The correct answers are the number 2 and the number 3.
The number 1 is false because the Thread class implements Runnable. In fact, the latter is an
interface and as such it must be implemented and not extended by another class.
The number 4 is wrong since the wait() and notify() methods are declared in the class
Object.

Solution 15.h)

The Countdown class could be the following:

Chapter 15 Exercises Solutions

489
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Countdown {
 public void run(int seconds) throws InterruptedException {
 for (int i = seconds; i > 0; i--){
 System.out.println(i);
 Thread.sleep(1000);
 }
 System.out.println("Time out!");
 }
}

Then we can create a class that texts it:

public class Exercise15H {
 public static void main(String args[]) throws Exception {
 Countdown countdown = new Countdown();
 int seconds = 10;
 if(args.length > 0) {
 try {
 seconds = Integer.parseInt(args[0]);
 }
 catch (Exception exc) {
 System.out.println("The input must be a positive " +
 "integer number, now using the default value 10...");
 }
 }
 countdown.run(seconds);
 }
}

By executing the latter without specifying parameters we will get the following output:

10
9
8
7
6
5
4
3
2
1
Time out!

If we pass parameter 3 then the output will be limited to:

3
2
1
Time out!

Chapter 15 Exercise Solutions

490
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

If instead we specify a letter (suppose F) we will have the following output:

The input must be a positive integer number, let's use the 10 default value...
10
9
8
7
6
5
4
3
2
1
Time out!

Finally, by specifying a negative number or 0, we will get the following output directly:

Time out!

Solution 15.i)

The correct answers are the numbers 1, 2 and 3. In particular, the 3 does not assert that the
run() method is executed in a separate thread, otherwise it would have been wrong. The run()
method, however, remains a method, and therefore is invocable like any other method. The
statement number 4 is incorrect because the start() method is declared by the Thread class,
and not by the Object class. The statement number 5 is incorrect because the right sentence
would be: “in every program there is at least one thread in execution”.

Solution 15.l)

The specifications of the 15.l exercise are deliberately not too detailed, to leave more space for
the reader’s imagination. So, in this case a possible solution may differ very much from the
solution we present below.
For example we could implement the Runner class in the following way:

public class Runner extends Thread {

 private boolean goAhead;

 private boolean inAction;

 private int gap;

 public Runner() {
 inAction = true;
 gap = 1000;
 }

Chapter 15 Exercises Solutions

491
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void run() {
 while (inAction) {
 try {
 Thread.sleep(gap);
 if (goAhead) {
 System.out.println("|");
 Thread.sleep(gap);
 System.out.println(" |");
 }
 } catch (InterruptedException exc) {
 assert false;
 }
 }
 }

 public void startTraining() {
 start();
 }

 public void startRunning() {
 System.out.println("Ok, let's go...");
 gap = 400;
 goAhead = true;
 }

 public void takeABreath() {
 System.out.println("Ok, I'm standing here.");
 System.out.println("| |");
 goAhead = false;
 }

 public void walk() {
 System.out.println("Ok, I'm, walking...");
 gap = 1000;
 goAhead = true;
 }

 public void stopTraining(){
 System.out.println("Good! I couldn't take it anymore...");
 inAction = false;
 }

 public void cannotUnderstand(String command){
 System.out.println("Sorry! I cannot understand the command "
 + command + "\nPlease use only run, walk, stop or end");
 inAction = true;
 }
}

Chapter 15 Exercise Solutions

492
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The core of the business logic lies precisely in the run() method, which with a loop based on
the inAction variable, prints with pipe symbols | a trace that looks like steps. Note that when
runner have to run, the gap variable, which represents the wait from one step to another, is 400
milliseconds, while when you have to walk the gap is lengthened to a second. Depending on
whether the startRunning() method is called or the walk() method then, these steps will be
faster or less fast.
But let’s see now how we could implement the main class Exercise15L:

import java.util.Scanner;

public class Exercise15L {
 public static void main(String args[]) {
 Runner runner = new Runner();
 runner.startTraining();
 Scanner scanner = new Scanner(System.in);
 boolean loop = true;
 System.out.println(
 "Hi coach, the runner is at your disposal!");
 System.out.println("Write the commands then press the Enter key");
 System.out.println("(run, walk, stop, end)");
 while (loop) {

 String command = scanner.nextLine();
 switch (command) {
 case "run":
 runner.startRunning();
 break;
 case "walk":
 runner.walk();
 break;
 case "stop":
 runner.takeABreath();
 break;
 case "end":
 runner.stopTraining();
 loop = false;
 break;
 default:
 runner.cannotUnderstand(command);
 break;
 }
 }
 try {
 Thread.sleep(2000);
 }
 catch (Exception exc) {
 assert false;

Chapter 15 Exercises Solutions

493
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 }
 System.out.println("End of the training");
 }
}

The code does not differ much from anything we have already seen in these exercises.
Through a Scanner object the commands are read, which are translated into calls to the Runner
methods.
If we execute this last class we could get the following output, which does not give a good
idea if we do not see it in action “live” (better to execute the classes already ready from
the Code\chapter_15\exercises\15.l of the file of exercises that you have probably already
downloaded together with these exercises at http://www.javaforaliens.com):

Hi coach, the runner is at your disposal!
Write the commands then press the Enter key
(run, walk, stop, end)
walk
Ok, I'm, walking...
|
 |
run|

Ok, let's go...
 |
|
 |
|
 |
|
 |
|
s |
top|

Ok, I'm standing here.
| |
 |
run
Ok, let's go...
|
 |
w|
al |
k|
 |

Ok, I'm, walking...
|
 |
hhh|
hhhhhh |

Chapter 15 Exercise Solutions

494
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

h
Sorry! I cannot understand the command hhhhhhhhhh
Please use only run, walk, stop or end
|
 |
dfoghdfgdas|

Sorry! I cannot understand the command dfoghdfgdas
Please use only run, walk, stop or end
 |
stop|

Ok, I'm standing here.
| |
 |
run
Ok, let's go...
|
 |
|
 |
|
 |
|
s |
top|
 |

Ok, I'm standing here.
| |
end
Good! I couldn't take it anymore...
End of the training

Note that, the commands entered, often extend over several lines, because in the meantime the
program is printing “the steps”.

Solution 15.m)

All the statements are correct except for the number 2. In fact, even by implementing the
Runnable interface you have the possibility to implement other interfaces.

Solution 15.n)

All the statements are correct except the number 3. In fact, the preemptive scheduling is the
default behavior of most Unix systems.

Solution 15.o)

All statements are correct except number 1. In fact, the volatile modifier can only be used on
instance variables.

Chapter 15 Exercises Solutions

495
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 15.p)

All statements are correct..

Solution 15.q)

All statements are correct except number 1. In fact, the wait(), notify() and notifyAll()
methods are defined int the Object class.

Solution 15.r)

A possible solution is the following:

import java.util.Date;

public final class Exercise15R {

 private final Integer integer;

 private final Date date;

 public Exercise15R(Integer integer, Date date){
 this.integer = integer;
 this.date = (Date)date.clone();
 }

 public final Date getStringBuilder() {
 return (Date)date.clone();
 }

 public final Integer getInteger() {
 return integer;
 }
}

Solution 15.s)

All statements are correct except number 4. In fact, AtomicInteger is a class not an interface.

Solution 15.t)

Compiling the snippet will cause three errors, one for each line:

Exercise15T.java:6: error: <anonymous Exercise15T$1> is not abstract and does not
 override abstract method call() in Callable
 Callable<String> callable = new Callable<>() {public void call(){}};
 ^
Exercise15T.java:6: error: call() in <anonymous Exercise15T$1> cannot

Chapter 15 Exercise Solutions

496
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 implement call() in Callable
 Callable<String> callable = new Callable<>() {public void call(){}};
 ^
 return type void is not compatible with String where V is a type-variable:
 V extends Object declared in interface Callable
Exercise15T.java:7: error: cannot find symbol
 Future<String> future = Executors.newFixedThreadPool(3).start(callable);
 ^
 symbol: method start(Callable<String>)
 location: interface ExecutorService
3 errors

In fact, in the first line we tried to create an anonymous class that extends Callable param-
eterized with a string. Then the call() method is called which returns void instead of String,
which however does not exist. In the second line the error consists in calling the start() meth-
od (as for Runnable), but the method to call is submit(). Finally, in the third line, the method
get() of Future is invoked which requires the handling of the InterruptedException.
Thus, the correct code would be similar to the following:

Callable<String> callable = new Callable<>() {
 public String call(){return "";}
};
ExecutorService service = Executors.newFixedThreadPool(3);
Future<String> future = service.submit(callable);
String result = null;
try {
 result = future.get();
}
catch (Exception exc) {
 exc.printStackTrace();
}

Solution 15.u)

A possible (and simple) solution could be the following:

import java.util.*;
import java.time.*;
import java.text.*;

public class Exercise15U extends TimerTask {

 private Timer timer;

 public Exercise15U () {
 timer = new Timer();
 }

Chapter 15 Exercises Solutions

497
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 @Override
 public void run() {
 DateFormat timeFormatter =
 DateFormat.getTimeInstance(DateFormat.DEFAULT, Locale.getDefault());
 System.out.println("Wake Up! It's "+ LocalTime.now());
 timer.cancel();
 }

 public static void main(String args[]) throws Exception {
 int seconds = Integer.parseInt(args[0])*1000;
 Exercise15U timerTask = new Exercise15U();
 timerTask.timer.schedule(timerTask, seconds);
 }
}

Solution 15.v)

The correct answers are the number 2 and the number 4.
The number 1 defines a incorrect statement, because at least the number of permits must be
specified for the Semaphore constructor.
The number 3 is false because Semaphore is a class (easy to guess since it is instantiated with a
constructor).

Solution 15.z)

The correct answers are the numbers 1 and 2.
The number 3 is false because signalAll() is not a CyclicBarrier method but belongs to
Condition, which we mentioned in the last lines of section 15.6.3.1.
The number 4 is false, because CyclicBarrier only provides the possibility for a group of
threads to synchronize and expect each other at a certain point in the code.

499
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 16
Exercises

Annotation Types

With these exercises we will try to understand what it means to take advantage of the annota-
tion types. We will create an annotation from scratch, we will exploit it with an ad hoc applica-
tion. We will create a code checker, which based on annotations will decide if our classes meet
certain requirements. Then many other exercises that support certification preparation will
follow, with multiple choice quizzes.

Until now, to simplify our work we have made little use of packages,
which are usually always used. With annotations we will always use
the packages for our exercises. This is necessary because annotations
are not detectable by reflection if they are not in a package. So, we
recommend using an IDE like Eclipse or Netbeans.

Exercise 16.a) Annotations, Declaration and Usage, True or False:

An annotation is a modifier.

An annotation is an interface.

The elements of an annotation seem abstract methods but imply an implicit
implementation.

1.

2.

3.

Chapter 16 Exercises

500
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The following is a valid annotation statement:

public @interface MyAnnotation {
 void method();
}

The following is a valid annotation statement:

public @interface MyAnnotation {
 int method(int value) default 5;
}

The following is a valid annotation statement:

public @interface MyAnnotation {
 int method() default -99;
 enum MyEnum{TRUE, FALSE};
 MyEnum myEnum();
}

Suppose the MyAnnotation annotation defined in point 6 is correct. With the following
code it is used correctly:

public @MyAnnotation (
 MyAnnotation.MyEnum.TRUE
)
MyAnnotation.MyEnum m() {
 return MyAnnotation.MyEnum.TRUE;
}

Suppose the MyAnnotation annotation defined in point 6 is correct. With the following
code it is used correctly:

public @MyAnnotation (
 myEnum=MyAnnotation.MyEnum.TRUE
)
MyAnnotation.MyEnum m() {
 return @MyAnnotation.myEnum;
}

Consider the following annotation.

public @interface MyAnnotation {
 int myValue();
}

With the following code it is used correctly:

public @MyAnnotation (
 5
)

4.

5.

6.

7.

8.

9.

Chapter 16 Exercises

501
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

void m()
 //...
}

 Consider the following annotation:

public @interface MyAnnotation {}

With the following code it is used correctly:

public @MyAnnotation void m() {
 //...
}

Exercise 16.b) Annotations API, True or False:

The following annotation is also a meta-annotation:

public @interface MyAnnotation ()

The following annotation is also a meta-annotation:

@Target(ElementType.SOURCE)
public @interface MyAnnotation ()

The following annotation is also a meta-annotation:

@Target (ElementType.@INTERFACE)
public @interface MyAnnotation ()

The following annotation, if applied to a method, will be documented in the relevant
Javadoc documentation:

@Documented
@Target (ElementType.ANNOTATION_TYPE)
public @interface MyAnnotation ()

The following annotation will be inherited if and only if applied to a class:

@Inherited
@Target (ElementType.METHOD)
public @interface MyAnnotation ()

For the following annotation it is also possible to create an annotation processor that
recognizes the type of annotation at runtime, to implement a particular behavior:

@Documented
@Target (ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface MyAnnotation ()

10.

1.

2.

3.

4.

5.

6.

Chapter 16 Exercises

502
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Override is a standard annotation to signal to the Java runtime that one method
overrides another.

Deprecated can also be considered a meta-annotation because it is applicable to other
annotations.

SuppressWarnings is a single value annotation. Deprecated and Override, on the other
hand, are both markers annotations.

 It is not possible to use the SuppressWarnings, Deprecated and Override simultane-
ously on a single class

Exercise 16.c)

Create a marker annotation for classes, called Short, which must be used to mark classes that
have no more than three methods. This annotation must belong to a package named metadata.
Then create two classes ShortClass and LargeClass, the first with only one method, and the
other with four methods. Let’s annotate both classes with Short, and let them belong to a data
package. Also create an exception that we will call AnnotationException to trigger when a class
does not comply with the annotation specification, which must belong to the excs package.

Exercise 16.d)

Create an InteractiveChecker class that contains a main() method that checks if a class speci-
fied at runtime through the use of a Scanner class and annotated with Short, satisfies the re-
quirement we specified in exercise 16.c. In other words, it must be possible to specify a class,
press the Enter key and the program must print if the verification was successful or an error
message. This class must belong to a package called test.

Exercise 16.e)

Create a single value annotation named Specification, which must be used to mark class-
es that have a precise number of instance variables. Also make this annotation belong to the
metadata package. Also use this annotation for the ShortClass and LargeClass classes, which
will declare instance variables. In particular ShortClass will declare an encapsulated instance
variable, while LargeClass will declare two non-encapsulated instance variables.

Exercise 16.f)

Modify the InteractiveChecker class to verify the correctness of using the Specification
annotation as done for the Short annotation.

7.

8.

9.

10.

Chapter 16 Exercises

503
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 16.g)

Create a complete annotation called Bean, which must be used to mark classes that have a con-
structor without parameters, encapsulated variables, a number of methods not greater than a
number to be specified, and a number of variables no less than a number to be specified. Also
make this annotation belong to the metadata package. Also use this annotation to mark the
ShortClass and LargeClass classes.

Exercise 16.h)

Modify the InteractiveChecker class to verify the correctness of using the Bean annotation as
done for the Short annotation and the Specification annotation.

Exercise 16.i)

Which of the following statements are correct?

The Override annotation is useful only in the compilation phase.

An Override annotation that annotates a method always precedes any modifier of the
method.

The Override annotation belongs to the java.lang package.

The Override annotation can only annotate methods.

The Override annotation is a marker annotation.

Exercise 16.l)

Given the following hierarchy:

public interface Player {
 default void play() {}
}

public class Child implements Player {
 /*INSERT CODE HERE*/
}

What can you insert instead of the comment /*INSERT CODE HERE*/ among the following
statements?

1.

2.

3.

4.

5.

Chapter 16 Exercises

504
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

@Override void play() {}

@Override public void play() {}

@Override public boolean equals(Object o) {return false;}

@Override public int hashcode() {return 1;}

@Override public String toString() {return "";}

Exercise 16.m)

Which of the following statements are correct?

The Deprecated annotation should be used instead of the javadoc @Deprecated tag.

A Deprecated annotation is a complete annotation type, and declares two elements:
since, and forRemoval.

The Deprecated annotation belongs to the java.lang.annotation package.

The Deprecated annotation is a meta-annotation.

Exercise 16.n)

Which of the following statements are correct?

The FunctionalInterface annotation is useful only in the compilation phase.

A FunctionalInterface annotation should only annotate interfaces that have a single
method (which is called method SAM).

The use of the FunctionalInterface annotation is mandatory if the annotated interface
has a single method.

The FunctionalInterface annotation is a marker annotation.

The use of the FunctionalInterface annotation surely implies the use of the @Override
annotation.

Exercise 16.o)

If we compile the following class:

import java.util.*;

1.

2.

3.

4.

5.

1.

2.

3.

4.

1.

2.

3.

4.

5.

Chapter 16 Exercises

505
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Exercise16O {

 List objects;

 public Exercise16O() {
 objects = new ArrayList();

 }

 public void remove(Object object) {
 Iterator iterator = objects.iterator();
 if (iterator.hasNext()) {
 Object item = iterator.next();
 if (object.toString().equals(item.toString())) {
 iterator.remove();
 }
 }
 }
}

we will get the following output which indicates three warnings.

Exercise16O.java:4: warning: [rawtypes] found raw type: List
 List objects;
 ^
 missing type arguments for generic class List<E>
 where E is a type-variable:
 E extends Object declared in interface List
Exercise16O.java:7: warning: [rawtypes] found raw type: ArrayList
 objects = new ArrayList();
 ^
 missing type arguments for generic class ArrayList<E>
 where E is a type-variable:
 E extends Object declared in class ArrayList
Exercise16O.java:12: warning: [rawtypes] found raw type: Iterator
 Iterator iterator = objects.iterator();
 ^
 missing type arguments for generic class Iterator<E>
 where E is a type-variable:
 E extends Object declared in interface Iterator
3 warnings

You can add an annotation to get:

Only two warnings;

Just a warning;

No warnings.

Write the three versions of the class that accomplish what is required.

1.

2.

3.

Chapter 16 Exercises

506
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 16.p)

Which of the following statements are correct?

The Native annotation can be used to interface Java with other languages.

The term “native language” means Java language.

The Native annotation belongs to the java.lang package.

The Native annotation can only annotate constants.

The Native annotation is a marker annotation.

Exercise 16.q)

Which of the following statements are correct?

The Target annotation is a meta-annotation that annotate itself.

The Target annotation is an ordinary annotation type. In fact, it can specify various pa-
rameters.

ElementType is an interface that defines the various Java programming elements to which
annotations can be applied.

The Target annotation can also mark annotations intended to annotate local variables
and type uses (such as when defining a cast, or invoking a constructor).

The Target annotation can also mark annotations intended to annotate import instruc-
tions.

Exercise 16.r)

Which of the following statements are correct?

The Retention annotation is annotated in turn by Target.

The Target annotation is annotated in turn by Retention.

The Documented annotation is annotated in turn by Target.

The Target annotation is annotated in turn by Documented.

The Retention annotation is annotated in turn by Documented.

The Documented annotation is annotated in turn by Retention.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

Chapter 16 Exercises

507
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 16.s)

Which of the following statements are correct?

With the Retention annotation we decide whether the annotated annotation should or
should not be kept within the compiled class.

RetentionPolicy is an enumeration that declares only two elements: SOURCE and
CLASS.

The Retention annotation and the RetentionPolicy enumeration belong to the
java.lang.annotation package.

The Retention annotation can only annotate annotations.

The Retention annotation is an ordinary annotation type.

Exercise 16.t)

Which of the following statements are correct?

The Documented annotation allows you to include the Documented annotation within the
javadoc documentation.

A Documented annotation is annotated by itself.

The Documented annotation is inherited by default in the subclasses.

The Documented annotation can only mark annotations that annotate classes.

The Documented annotation is a marker annotation.

Exercise 16.u)

Given the following code:

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
@Inherited
@Documented
public @interface Annotation16U {

}

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Chapter 16 Exercises

508
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
@Inherited
@Documented
public @interface DifferentAnnotation {

}

@Annotation16U
public interface Interface16U {

}

@DifferentAnnotation
public class Exercise16U implements Interface16U {

}

What is the output of the following program?

import java.lang.reflect.*;
import java.util.*;
import java.lang.annotation.*;
public class AnnotationsReflection {
 public static void main(String[] args) throws Exception {
 Annotation[] dcs=Exercise16U.class.getAnnotations();
 for (Annotation dc : dcs) {
 System.out.println(dc);
 }
 }
}

Exercise 16.v)

Which of the following statements are correct?

The Repeatable annotation can annotate only annotations, in order to make their use
repeatable.

When using a annotation annotated correctly with Repeatable, the JVM creates an object
for us on the fly.

The Repeatable annotation must be a single value and return an array.

To declare a Repeatable annotation you must also create another auxiliary annotation.

1.

2.

3.

4.

Chapter 16 Exercises

509
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

An annotation marked as Repeatable can annotate the same programming element sev-
eral times.

Exercise 16.z)

Given the following code:

//...
@Check(">=0")
@Check("<100")
private int a;
//...

Create the Check annotation.

5.

511
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 16
Exercise Solutions

Annotation Types

Solution 16.a) Annotations, Declarations and Usage, True or False:

False, is an annotation type.

False, is an annotation type.

True.

False, an element of an annotation cannot have as a type void.

False, an annotation method cannot have input parameters.

True.

False, in fact it is legal both the code of the m() method, and to declare public before the
annotation (but obviously it is a modifier of the method). It is not valid, however, to pass
the value MyAnnotation.MyEnum.TRUE as an input to the annotation without specifying a
syntax of the type key = value.

False, in fact, the syntax:

return @MyAnnotation.myEnum;

is not valid. An annotation cannot be used as if it were a class with public static variables.

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 16 Exercise Solutions

512
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

False, in fact, it is not a single value annotation, because its only element is not
called value().

 True.

Solution 16.b) Annotations API, True or False:

True, in fact, if you do not specify with the meta-annotation Target what are the ele-
ments to which the annotation is applicable, the annotation will be by default applicable
to any element except parameter types and type uses.

False, the value ElementType.SOURCE doesn’t exist.

False, the value ElementType.@INTERFACE doesn’t exist.

False, it is also not applicable to methods due to the Target value, which is
ElementType.ANNOTATION_TYPE.

False, in fact it cannot be applied to a class if it is annotated with
 @Target (ElementType.METHOD).

True.

False, at compile-time, not at runtime.

True.

True.

 True, Override is not applicable to classes.

Solution 16.c)

The code of the Short annotation should be similar to the following:

package metadata;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 16 Exercises Solutions

513
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

@Inherited
public @interface Short {

}

Note that for our purposes we had to specify the value of Retention to RetentionPolicy.RUNTIME.
The class ShortClass could instead be modified in the following way:

package data;

import metadata.Short;

@Short
public class ShortClass {

 public void method1() {
 System.out.println("method1");
 }
}

The LargeClass class instead, could be similar to the following:

package data;

import metadata.Short;

@Short
public class LargeClass {
 public void method1() {
 System.out.println("method1");
 }

 public void method2() {
 System.out.println("method2");
 }

 public void method3() {
 System.out.println("method3");
 }

 public void method4() {
 System.out.println("method4");
 }
}

Finally, here is the requested exception:

package excs;

public class AnnotationException extends Exception {

Chapter 16 Exercise Solutions

514
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public AnnotationException(String msg) {
 super(msg);
 }

 @Override
 public String toString() {
 return "AnnotationException{" + getMessage() + "}";
 }
}

Solution 16.d)

The required checker code could be as follows:

package test;

import excs.AnnotationException;
import java.lang.annotation.Annotation;
import java.lang.reflect.Method;
import java.util.Scanner;
import metadata.Short;

public class InteractiveChecker {

 public static void main(String args[]) {
 Scanner scanner = new Scanner(System.in);
 String string = "";
 System.out.println("Type the name of a java file present in the "
 + "current folder and type enter, or write \"end\" "
 + "to end the program");
 while (!(string = scanner.next()).equals("end")) {
 System.out.println("You typed " + string.toUpperCase() + "!");
 try {
 checkClass(string);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 System.out.println("Program terminated!");
 }

 private static void checkClass(String string) throws Exception {
 Class objectClass = Class.forName(string);
 try {
 System.out.println("Start checking @Short annotation for "
 + string);
 Annotation shortAnnotation = objectClass.getAnnotation(Short.class);
 if (shortAnnotation != null) {

Chapter 16 Exercises Solutions

515
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Method[] methods = objectClass.getDeclaredMethods();
 final int methodsNumber = methods.length;
 if (methodsNumber > 3) {
 throw new AnnotationException("There are " + methodsNumber
 + " methods in the class " + string);
 }
 System.out.println("Class "+string+" valid!\nmethods list:");
 for (Method method : methods) {
 System.out.println(method);
 }
 } else {
 System.out.println("This class is not annotated with @Short");
 }
 } finally {
 System.out.println("End of Short annotation check for " + string);
 }
 }
}

Just look the checkClass() method, whose code is still very intuitive.
The following output is produced by first specifying the two classes actually annotated with
@Short, then one that is not annotated (the AnnotationException class) and finally a non-ex-
istent class:

Type the name of a java file present in the current folder and type
 enter, or write "end" to end the program
data.ShortClass
You typed DATA.SHORTCLASS!
Start checking @Short annotation for data.ShortClass
Class data.ShortClass valid!
methods list:
public java.lang.String data.ShortClass.getVariable()
public void data.ShortClass.method1()
public void data.ShortClass.setVariable(java.lang.String)
End of Short annotation check for data.ShortClass

You typed DATA.LARGECLASS!
Start checking @Short annotation for data.LargeClass
End of Short annotation check for data.LargeClass
AnnotationException{There are 4 methods in the class data.LargeClass}
 at test.InteractiveChecker.checkShort(InteractiveChecker.java:47)
 at test.InteractiveChecker.checkClass(InteractiveChecker.java:34)
 at test.InteractiveChecker.main(InteractiveChecker.java:24)

excs.AnnotationException
You typed EXCS.ANNOTATIONEXCEPTION!
Start checking @Short annotation for excs.AnnotationException
This class is not annotated with @Short
End of Short annotation check for excs.AnnotationException

NonExistentClass
You typed NONEXISTENTCLASS!

Chapter 16 Exercise Solutions

516
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

java.lang.ClassNotFoundException: NonExistentClass
 at java.base/jdk.internal.loader.BuiltinClassLoader.loadClass(
 BuiltinClassLoader.java:604)
 at java.base/jdk.internal.loader.ClassLoaders$AppClassLoader.
 loadClass(ClassLoaders.java:178)
 at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:521)
 at java.base/java.lang.Class.forName0(Native Method)
 at java.base/java.lang.Class.forName(Class.java:333)
 at test.InteractiveChecker.checkClass(InteractiveChecker.java:33)
 at test.InteractiveChecker.main(InteractiveChecker.java:24)

Solution 16.e)

The code of the Specification annotation should be the following:

package metadata;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
public @interface Specification {
 int value();
}

The code of the classes ShortClass and LargeClass could be modified as follows:

package data;

import metadata.Short;
import metadata.Specification;

@Short
@Specification(1)
public class ShortClass {

 public void method1() {
 System.out.println("method1");
 }
 private String variable;

 public String getVariable() {

Chapter 16 Exercises Solutions

517
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 return variable;
 }

 public void setVariable(String variable) {
 this.variable = variable;
 }
}

and:

package data;

import metadata.Short;
import metadata.Specification;

@Short
@Specification(3)
public class LargeClass {

 public String variable1;
 public String variable2;

 public void method1() {
 System.out.println("method1");
 }

 public void method2() {
 System.out.println("method2");
 }

 public void method3() {
 System.out.println("method3");
 }

 public void method4() {
 System.out.println("method4");
 }
}

Solution 16.f)

Let’s modify the code of our checker, extracting as a method the verification code of the Short
annotation, and commenting out its call. We create an equivalent method to verify the Specific
annotation. Below only the modified code is reported:

 private static void checkClass(String string) throws Exception {
 Class objectClass = Class.forName(string);
 //checkShort(string, objectClass);

Chapter 16 Exercise Solutions

518
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 checkSpecification(string, objectClass);
 }

 private static void checkSpecification(String string, Class objectClass)
 throws AnnotationException {
 try {
 System.out.println("Start check @Specification annotation for "
 + string);
 Specification specification =
 (Specification) objectClass.getAnnotation(Specification.class);
 if (specification != null) {
 int variablesNumberFromSpecification = specification.value();
 Field[] fields = objectClass.getDeclaredFields();
 final int variablesNumber = fields.length;
 if (variablesNumber != variablesNumberFromSpecification) {
 throw new AnnotationException("There are "
 + variablesNumber
 + " variables in the class " + string
 + " but they should be " +
 variablesNumberFromSpecification);
 }
 System.out.println("Class "+string+" valid!\nvariables list:");
 for (Field field : fields) {
 System.out.println(field);
 }
 } else {
 System.out.println("This class is not annotated with "
 + @Specification");
 }
 } finally {
 System.out.println("End check @Specification annotation for "
 + string);
 }
 }

Here is an example of output:

Type the name of a java file present in the current folder and type enter, or write "end"
 to end the program
data.ShortClass
You typed DATA.SHORTCLASS!
Start check @Specification annotation for data.ShortClass
Class data.ShortClass valid!
variables list:
private java.lang.String data.ShortClass.variable
End check @Specification annotation for data.ShortClass

data.LargeClass
You typed DATA.LARGECLASS!
Start check @Specification annotation for data.LargeClass
End check @Specification annotation for data.LargeClass

Chapter 16 Exercises Solutions

519
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

AnnotationException{There are 2 variables in the class data.LargeClass
 but they should be 3}
 at test.InteractiveChecker.checkSpecification(
 InteractiveChecker.java:72)
 at test.InteractiveChecker.checkClass(InteractiveChecker.java:35)
 at test.InteractiveChecker.main(InteractiveChecker.java:24)

Solution 16.g)

The code of the Bean annotation could be the following:

package metadata;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
public @interface Bean {
 int methodsMaxNumber();
 int variablesMinNumber();
}

The list of classes ShortClass and LargeClass could be modified as follows:

package data;

import metadata.Bean;
import metadata.Short;
import metadata.Specification;

@Short
@Specification(1)
@Bean(methodsMaxNumber = 10, variablesMinNumber = 1)
public class ShortClass {

 public void method1() {
 System.out.println("method1");
 }
 private String variable;

 public String getVariable() {
 return variable;
 }

Chapter 16 Exercise Solutions

520
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void setVariable(String variable) {
 this.variable = variable;
 }
}

and:

package data;

import metadata.Bean;
import metadata.Short;
import metadata.Specification;

@Short
@Specification(3)
@Bean(methodsMaxNumber = 10, variablesMinNumber = 1)
public class LargeClass {

 public String variable1;
 public String variable2;

 public void method1() {
 System.out.println("method1");
 }

 public void method2() {
 System.out.println("method2");
 }

 public void method3() {
 System.out.println("method3");
 }

 public void method4() {
 System.out.println("method4");
 }
}

Solution 16.h)

Let’s modify the code of our checker and, as done for the solution of Exercise 16.f, let’s create a
method to verify the Bean annotation. Below there is only the modified code:

private static void checkClass(String string) throws Exception {
 Class objectClass = Class.forName(string);
 // checkShort(string, objectClass);
 // checkSpecification(string, objectClass);
 checkBean(string, objectClass);
 }

Chapter 16 Exercises Solutions

521
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private static void checkBean(String string, Class objectClass) throws
 AnnotationException, NoSuchMethodException {
 try {
 System.out.println("Start check @Bean annotation per " + string);
 Bean bean = (Bean) objectClass.getAnnotation(Bean.class);
 if (bean != null) {
 checkVariablesNumber(bean, objectClass, string);
 checkMethodsNumber(bean, objectClass, string);
 checkNoArgumentsConstructor(objectClass, string);
 checkEncapsulation(objectClass, string);
 } else {
 System.out.println("This class is not annotated with @Bean");
 }
 } finally {
 System.out.println("End check @Bean annotation for " + string);
 }
 }

 private static void checkVariablesNumber(Bean bean, Class objectClass,
 String string) throws AnnotationException {
 int variablesMinNumber = bean.variablesMinNumber();
 Field[] fields = objectClass.getDeclaredFields();
 final int variablesNumber = fields.length;
 if (variablesNumber < variablesMinNumber) {
 throw new AnnotationException("There are " + variablesNumber
 + " variables in the class " + string
 + " but they should be at least " + variablesMinNumber);
 }
 System.out.println("Class " + string +
 ": variables number ok!\nvariables list:");
 for (Field field : fields) {
 System.out.println(field);
 }
 }

 private static void checkMethodsNumber(Bean bean, Class objectClass,
 String string) throws AnnotationException, NoSuchMethodException {
 int methodsMaxNumber = bean.methodsMaxNumber();
 Method[] methods = objectClass.getDeclaredMethods();
 final int methodsNumber = methods.length;
 if (methodsNumber > methodsMaxNumber) {
 throw new AnnotationException("There are " + methodsNumber
 + " methods in the class " + string
 + " but thau should be a maximum of " + methodsMaxNumber);
 }
 System.out.println("Class " + string
 + ": methods number ok!\nmethods list:");
 for (Method method : methods) {
 System.out.println(method);

Chapter 16 Exercise Solutions

522
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 }
 }

 private static void checkNoArgumentsConstructor(Class objectClass,
 String string) throws AnnotationException, NoSuchMethodException {
 Constructor constructor = objectClass.getConstructor();
 if (constructor == null) {
 throw new AnnotationException(
 "No constructor without parameters!");
 }
 System.out.println("Class " + string
 + " no-arguments constructor present!:");
 System.out.println(constructor);
 }

 private static void checkEncapsulation(Class objectClass, String string)
 throws AnnotationException, NoSuchMethodException {
 Field[] fields = objectClass.getDeclaredFields();
 for (Field field : fields) {
 final String variableName = field.getName();
 final Class<?> type = field.getType();
 final Method setMethod = objectClass.getDeclaredMethod("set" +
 capitalize(variableName), type);
 final Method getMethod = objectClass.getDeclaredMethod("get" +
 capitalize(variableName));
 if (setMethod == null || getMethod == null ||
 !getMethod.getReturnType().equals(type)) {
 throw new AnnotationException("Variable " + variableName +
 " not properly encapsulated in the class" + string);
 }
 }
 System.out.println("Class " + string + ": encapsulation ok!");

 }

 private static String capitalize(String string) {
 return string.substring(0, 1).toUpperCase() + string.substring(1);
 }

Ecco un esempio di output:

Type the name of a java file present in the current folder and type enter, or write "end"
 to end the program
data.ShortClass
You typed DATA.SHORTCLASS!
Start check @Bean annotation per data.ShortClass
Class data.ShortClass: variables number ok!
variables list:
private java.lang.String data.ShortClass.variable
Class data.ShortClass: methods number ok!

Chapter 16 Exercises Solutions

523
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

methods list:
public void data.ShortClass.setVariable(java.lang.String)
public void data.ShortClass.method1()
public java.lang.String data.ShortClass.getVariable()
Class data.ShortClass no-arguments constructor present!:
public data.ShortClass()
Class data.ShortClass: encapsulation ok!
End check @Bean annotation for data.ShortClass

data.LargeClass
You typed DATA.LARGECLASS!
Start check @Bean annotation per data.LargeClass
Class data.LargeClass: variables number ok!
variables list:
public java.lang.String data.LargeClass.variable1
public java.lang.String data.LargeClass.variable2
Class data.LargeClass: methods number ok!
methods list:
public void data.LargeClass.method1()
public void data.LargeClass.method2()
public void data.LargeClass.method3()
public void data.LargeClass.method4()
Class data.LargeClass no-arguments constructor present!:
public data.LargeClass()
End check @Bean annotation for data.LargeClass
java.lang.NoSuchMethodException: data.LargeClass.setVariable1(java.lang.String)
 at java.base/java.lang.Class.getDeclaredMethod(Class.java:2476)
 at test.InteractiveChecker.checkEncapsulation(
 InteractiveChecker.java:152)
 at test.InteractiveChecker.checkBean(InteractiveChecker.java:97)
 at test.InteractiveChecker.checkClass(InteractiveChecker.java:36)
 at test.InteractiveChecker.main(InteractiveChecker.java:24)

Solution 16.i)

All statements on the Override annotation are correct.

Solution 16.l)

Only statement 1 is incorrect as, by not making the public modifier explicit, it is making the
method that applies the override, less accessible than the inherited original. The latter in fact,
being a method declared in an interface, is implicitly public. In short, the rule mentioned in
section 8.2.3.1 (third rule) has been violated.
In fact, the possible output would be the following:

Child.java:2: error: play() in Child cannot implement play() in Player
 /*INSERT CODE HERE*/@Override void play() {}
 ^
 attempting to assign weaker access privileges; was public
1 error

Chapter 16 Exercise Solutions

524
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 16.m)

Only the second statement is correct. The first one is not correct because the annotation and
the javadoc tag should be used simultaneously. The third is also incorrect because the annota-
tion belongs to java.lang. Finally, the number 4 is wrong because this annotation can annotate
different elements of the Java programming, but not other annotations.

Solution 16.n)

The correct statements are 1, 2 and 4. The third is incorrect since it is possible to declare a func-
tional interface without having to annotate it.
The number 5 is incorrect instead, because as FunctionalInterface also the annotation
@Override is always optional.

Solution 16.o)

To get only two warnings there are more solutions: add an annotation to suppress the annota-
tions either on the constructor, or on the instance variable objects, or on the remove() method.
For example, we choose the instance variable objects:

import java.util.*;

public class Exercise16O {
 @SuppressWarnings({"rawtypes"})
 List objects;

 public Exercise16O(){
 objects = new ArrayList();
 }
 public void remove(Object object) {
 Iterator iterator = objects.iterator();
 if (iterator.hasNext()) {
 Object item = iterator.next();
 if (object.toString().equals(item.toString())) {
 iterator.remove();
 }
 }
 }
}

That produce the following output:

Exercise16O.java:8: warning: [rawtypes] found raw type: ArrayList
 objects = new ArrayList();
 ^
 missing type arguments for generic class ArrayList<E>

Chapter 16 Exercises Solutions

525
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 where E is a type-variable:
 E extends Object declared in class ArrayList

Exercise16O.java:12: warning: [rawtypes] found raw type: Iterator
 Iterator iterator = objects.iterator();
 ^
 missing type arguments for generic class Iterator<E>
 where E is a type-variable:
 E extends Object declared in interface Iterator
2 warnings

It’s easy to imagine how to get just one warning. For example, annotating the constructor and
remove() method:

import java.util.*;

public class Exercise16O {

 List objects;

 @SuppressWarnings({"rawtypes"})
 public Exercise16O(){
 objects = new ArrayList();
 }

 @SuppressWarnings({"rawtypes"})
 public void remove(Object object) {
 Iterator iterator = objects.iterator();
 if (iterator.hasNext()) {
 Object item = iterator.next();
 if (object.toString().equals(item.toString())) {
 iterator.remove();
 }
 }
 }
}

In this case we will get the following output:

Exercise16O.java:5: warning: [rawtypes] found raw type: List
 List objects;
 ^
 missing type arguments for generic class List<E>
 where E is a type-variable:
 E extends Object declared in interface List
1 warning

Finally, we could annotate the instance variable and to not get any warning, but it is more
convenient to note the entire class:

Chapter 16 Exercise Solutions

526
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import java.util.*;

@SuppressWarnings({"rawtypes"})
public class Exercise16O {

 List objects;

 public Exercise16O() {
 objects = new ArrayList();
 }

 public void remove(Object object) {
 Iterator iterator = objects.iterator();
 if (iterator.hasNext()) {
 Object item = iterator.next();
 if (object.toString().equals(item.toString())) {
 iterator.remove();
 }
 }
 }
}

that does not produce compilation warnings.

Solution 16.p)

The correct statements are 1, 4 and 5. The term “native language” usually refers to the language
used by the platform on which the program runs, that is the operating system, which usually
coincides with C/C ++, so the number statement 2 is incorrect.
The Native annotation belongs to the java.lang.annotation package, so the statement num-
ber 3 is also incorrect.

Solution 16.q)

The correct statements are 1 and 4. The number 2 is incorrect because Target is a single value
annotation of ElementType array.
The number 3 is not correct because ElementType is not an interface but an enumeration.
The number 5 is not correct because there are situations not contemplated by interfaces an-
notated with Target specifying TYPE_USE as ELEMENT_TYPE, and among these there is precisely
the case of the import as we have specified in the last lines of the section 16.2.1.1.

Solution 16.r)

All statements are true.

Chapter 16 Exercises Solutions

527
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 16.s)

The correct statements are 1, 3 and 4.
The number 2 is incorrect because RetentionPolicy also declares a third element (RUNTIME).
The number 5 is not correct because Target is a single value annotation of type
RetentionPolicy.

Solution 16.t)

The correct statements are 2 and 5.
The number 1 is incorrect because the Documented annotation is an annotation that marks an-
notations reported within the generated javadoc documentation.
The numbers 3 and 4 are simply invented.

Solution 16.u)

The program that reads the Exercise16U annotations, will print only the annotation that has
been declared for the class itself, but will not inherit the annotation from the Interface16U
interface. In fact, the Inherited annotation works only on classes and not on interfaces.
Here is the output:

@DifferentAnnotation()

Solution 16.v)

The correct statements are 1, 2, 4 and 5.
The number 3 is not correct because the single value annotation that must return an array, the
one we have called the container annotation, is the auxiliary annotation discussed in the state-
ment 4.

Solution 16.z)

We could create the following annotations: the Check annotation, and its Checks container an-
notation:

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.FIELD)
@Inherited
@Documented

Chapter 16 Exercise Solutions

528
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

@Repeatable(Checks.class)
public @interface Check {
 String value();
}

and:

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.FIELD)
@Inherited
@Documented
public @interface Checks {
 Check [] value();
}

529
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 17
Exercises

Lambda Expressions

Lambda expressions and method references are not simple topics, but are really important.
The following exercises should allow the reader to better understand the topics covered in
chapter 17. Also, several exercises have been introduced that support the Oracle certification.

Exercise 17.a) Lambda Expressions and Method References:

With a lambda expression it is possible to do everything that can be done with an anony-
mous class.

A lambda expression can use instance variables of the class in which it is declared in a
thread-safe manner.

A lambda expression can use the instance variables of the class in which it is defined only
if declared final.

The following lambda expression is valid:

Consumer <String> c = ((x)->System.out.println(x));

The following lambda expression is valid:

(x, y) -> System.out.println(x);
 System.out.println(y);

1.

2.

3.

4.

5.

Chapter 17 Exercises

530
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The following method reference expression is valid:

System.out::println()

The following statement is valid:

System.out.println(Math::random)

The following statement is valid:

System.out::println(Math::random)

The following statement is valid:

Supplier<Guitar> guitarSupplier = Guitar::new;

 Assuming that the Guitar class has a constructor without parameters, then the following
code is valid:

Guitarist guitar = new Guitarist();
guitar.playGuitar(Guitar::new);

Exercise 17.b)

Create a ComparatorsTest class containing a main() method that declares an array of strings
(at least two of which have the same length). Create Comparator objects with reference to meth-
ods, to sort the strings according to the following criteria:

 by length (from the longest string to the shortest string);

 by length in reverse (from the shortest string to the longeststring);

 by alphabetical order (however, use a lambda expression or a method reference, even if
there is no need for it);

 by reverse alphabetical order;

 by length, but in the case of two strings with the same length by alphabetical order.

Sort the array using the sort() method of the Arrays class, which takes the declared array as
the first parameter and a Comparator object as the second parameter. After each sort print the
result. Create this class in a package, for example com.claudiodesio.lambda.test.

Exercise 17.c)

Create a City class, which abstracts the concept of city, which declares the name string, and the
stateCapital and onTheSea booleans, as encapsulated variables.

6.

7.

8.

9.

10.

E

E

E

E

E

Chapter 17 Exercises

531
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Remember that getter methods for booleans usually use the “is” pre-
fix instead of “get”. So the getStateCapital() and getOnTheSea() meth-
ods should be written as isOnTheSea() and isStateCapital().

Also create any utility methods such as toString() (just to return the name) and a constructor.
This class will belong to a package such as com.claudiodesio.lambda.dati.
Create an Exercise17C class with a main() method, which prints:

 the list of cities on the sea (for example Cities on the sea: [Siracusa, Napoli,
Pescara, Taranto])

 the list of state capital cities (for example, State Capitals: [Milano, Potenza,
Perugia, Napoli])

using the reference methods and the Predicate interface.
This class will belong to a package, for example com.claudiodesio.lambda.test.

Exercise 17.d)

After doing the previous exercise, create an Exercise17D alternative to Exercise17C, which
performs the same operations using lambda expressions.

Exercise 17.e)

Create the Exercise17E class by editing the Exercise17C class by adding a printDetails()
method that prints the list of cities, even with the information defined by the stateCapital
and onTheSea variables. For example, the output might be similar to the following:

Milano is a capital state,
Pescara is on the sea,
Napoli is a capital state, is on the sea,
...

To get this result, you don’t have to change the City class, but use a lambda expression in
Exercise17E, taking advantage of one of the standard functional interfaces, which one?

Exercise 17.f)

Repeat Exercise 11.h, using a lambda expression instead of the anonymous class. For
convenience, we report code of the Exercise 10.h below.

E

E

Chapter 17 Exercises

532
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Suppose we want to write a program and want to re-use the following Person class, inherited
from a program already written and not editable:

public class Person {

 private String name;
 private String surname;
 private String birthDate;
 private String occupation;
 private String address;

 public Person(String name, String surname) {
 this.name = name;
 this.surname = surname;
 }

 public Person(String name, String surname, String birthDate,
 String occupation, String address) {
 this.name = name;
 this.surname = surname;
 this.birthDate = birthDate;
 this.occupation = occupation;
 this.address = address;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getSurname() {
 return surname;
 }

 public void setSurname(String surname) {
 this.surname = surname;
 }

 public String getBirthDate() {
 return birthDate;
 }

 public void setBirthDate(String birthDate) {
 this.birthDate = birthDate;
 }

Chapter 17 Exercises

533
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public String getOccupation() {
 return occupation;
 }

 public void setOccupation(String occupation) {
 this.occupation = occupation;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 @Override
 public String toString() {
 return "Person{" + "name=" + name + ", surname=" + surname + "}";
 }
}

Unfortunately, in our context, we would need to redefine the toString() method so that it
not only prints information on the person’s first and last name, but also the date of birth,
address and occupation. As already mentioned, however, the class is already in use and can-
not be changed. In particular, our requirement is that the toString() method returns the
following string:

Name: 			 Arjen Anthony
Surname: 			 Lucassen
Occupation: 		 Composer
Birth Date 		 03/04/1960
Address: 			 Holland

Then create a PersonTest class that redefines the toString() method of the Person class and
prints the above output.

Exercise 17.g)

Consider the Observation class of the solution of the Exercise 15.c, which we report below for
convenience:

package com.claudiodesio.observatory.test;

import com.claudiodesio.observatory.data.Participant;
import com.claudiodesio.observatory.data.Telescope;

Chapter 17 Exercises

534
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Observation {

 public static void main(String args[]) {
 Telescope telescope = new Telescope();
 Participant[] participants = getParticipants(telescope);
 for (Participant participant : participants) {
 participant.start();
 }
 }

 private static Participant[] getParticipants(Telescope telescope) {
 Participant[] participants = {
 new Participant("Ciro", telescope),
 new Participant("Gianluca", telescope),
 new Participant("Pierluigi", telescope),
 new Participant("Gigi", telescope),
 new Participant("Nicola", telescope),
 new Participant("Pino", telescope),
 new Participant("Maurizio", telescope),
 new Participant("Raffaele", telescope),
 new Participant("Fabio", telescope),
 new Participant("Vincenzo", telescope)};
 return participants;
 }
}

Is it possible to use a lambda expression to implement an override of the run() method of the
Participant class, for one of the participants?

Exercise 17.h)

Given the following code:

new Thread(()->System.out.print("Java");System.out.print("Java");).start();

which of the following statements are correct?

Running this snippet with JShell prints the JavaJava string.

Running this snippet with JShell prints the Java string.

This snippet will not pass the compilation.

This snippet will not throw an exception at runtime.

This snippet will produce a compilation warning.

1.

2.

3.

4.

5.

Chapter 17 Exercises

535
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 17.i)

Given the following code:

new Thread((int a)->{
 int b = 0;
 b = a/b;
}).start();

which of the following statements are correct?

The code does not compile because an ArithmeticException must be handled.

The code compiles and runs correctly.

The code compiles but will launch an ArithmeticException during execution.

The code will produce a compilation warning.

Exercise 17.l)

Suppose we have a lambda expression that uses a method that runs a checked exception with-
out handling it. Which of the following statements is correct?

The code does not compile because we need to handle a checked exception in the code
block of the lambda expression.

The code does not compile, but if it is possible, we can fix it by redefining the SAM meth-
od of the functional interface by handling the exception within the method itself.

The code quietly compiles.

Since we have to handle the exception, we lose the compiler’s inference capabilities,
which leads us to write less code.

Exercise 17.m)

Create the functional interface that can satisfy the following use of lambda expressions:

Operation operation1 = (double a, double b) -> a + b;
Operation operation2 = (double a, double b) -> a - b;
Operation operation3 = (double a, double b) -> a / b;
Operation operation4 = (double a, double b) -> a * b;

1.

2.

3.

4.

1.

2.

3.

4.

Chapter 17 Exercises

536
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 17.n)

There is a standard functional interface, capable of replacing the Operation functional
interface of the previous exercise?

Use the documentation to resolve the exercise.

Exercise 17.o)

Rewrite exercise 17.b, replacing lambda expressions with method references.

Exercise 17.p)

What is the name of the functional interface that best fits as a “Factory”?

Predicate

Factory

Function

Supplier

Consumer

Exercise 17.q)

Select the correct statements.
A functional interface:

Must be annotated with the FunctionalInterface annotation.

Must declare a single method.

It must necessarily be implemented.

It cannot be extended by another functional interface.

It cannot be extended by another interface

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Chapter 17 Exercises

537
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 17.r)

Which of the following statements are correct about constructor references?

The syntax is ClassName::New.

The syntax is ClassName::new().

The syntax is ClassName::new.

A reference to a constructor can be assigned to a reference of a functional interface, whose
SAM method returns void.

With a reference to a constructor, we can replace the implementation of a functional
interface.

Exercise 17.s)

Create a Person class that declares the name and age variables and that implements the
Comparable interface in such a way that the inherited compareTo() method, sort the objects by
increasing age, and, in the case of persons with the same age, in alphabetical order (considering
the name). Also override the toString() method.
Then, given the following class:

import java.util.Arrays;

public class Exercise17S {
 public static void main(String args[]) {
 Person [] persons = {
 new Person("Antonio",21),
 new Person("Bruno",20),
 new Person("Giorgio",19),
 new Person("Martino",22),
 new Person("Daniele",21)
 };
 Arrays.sort(persons, /*INSERT CODE HERE*/);
 System.out.println(Arrays.toString(persons));
 }
}

enter the correct code instead of the comment /*INSERT CODE HERE*/, so as to generate the
following output:

[Giorgio, Bruno, Antonio, Daniele, Martino]

1.

2.

3.

4.

5.

Chapter 17 Exercises

538
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 17.t)

Starting from the Person class of Exercise 17.s, which functional interface could be used instead
of the following method?

boolean hasThisName(Person person, String name) {
 return name.equals(person.getName());
}

Exercise 17.u)

Starting from the Person class of Exercise 17.s, and considering the following class:

import java.util.Arrays;
import java.util.function.BiPredicate;

public class Exercise17U {

 public static void main(String args[]) {
 Person [] persons = {
 new Person("Antonio",21),
 new Person("Bruno",20),
 new Person("Giorgio",19),
 new Person("Martino",22),
 new Person("Daniele",21)
 };
 Person personWithNameThatStartsWithD =
 getPersonWithNameThatStartsWithD("D", persons,
 /*INSERT CODE HERE*/);
 System.out.println(personWithNameThatStartsWithD);
 }

 static Person getPersonWithNameThatStartsWithD(String firstCharacter,
 Person[] persons, BiPredicate<String, Person> biPredicate) {
 for(Person person : persons) {
 if (biPredicate.test(firstCharacter, person)) {
 return person;
 }
 }
 return null;
 }
}

Which lambda expression can be inserted in place of the comment /*INSERT CODE HERE*/ to
retrieve the first Person object that has a name that starts with the “D” from the array?

Chapter 17 Exercises

539
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 17.v)

Which of the following statements are correct?

With lambda expressions the this reference directly refers to the class in which the
expression is included.

For lambda expressions, the same rules apply as for anonymous classes.

The syntax of a lambda expression allows the use of other nested lambda expressions.

The syntax of a lambda expression allows the use of reference to nested methods.

The syntax of a method reference allows to use of other nested lambda expressions.

The syntax of a method reference allows the use of reference to nested methods.

Exercise 17.z)

Which of the following statements are correct?

The functional interface that declares two generic types as input parameters and returns
another one, is called BiFunction.

The functional interface that does not declare generic types as input parameters, but
returns another one, is called Provider.

The functional interface that does not declare generic types as input parameters, but
returns another one, is called Supplier.

The functional interface that declares a generic type as an input parameter and returns
another one, is called Function.

The functional interface that declares three generic types as input parameters and
returns another one, is called TriFunction.

The functional interface that declares a generic type as an input parameter and returns
the same type, is called UnaryOperator.

You can chain multiple UnaryOperators using the default and() method.

The functional interface that declares a generic type as an input parameter and returns
nothing, is called Consumer.

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

6.

7.

8.

541
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 17
Exercise Solutions

Lambda Expressions

Solution 17.a) Lambda Expressions and Method References:

False, for example in an anonymous class we can also define instance variables.

False.

False, cfr. section 17.1.3.2.

False.

False, the curly braces surrounding the method instructions are missing.

False, the brackets next to the println method are not part of the syntax.

False.

False.

True.

 True.

Solution 17.b)

The requested code could be similar to the following:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 17 Exercise Solutions

542
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

package com.claudiodesio.lambda.test;

import java.util.Arrays;
import java.util.Comparator;

public class ComparatorsTest {

 static String names[] = {"Clarissa", "Jem", "Top", "Ermeringildo",
 "Iamaca", "Tom", "Arlequin", "Francesca", "Cumbus", "Blue"};

 public static void main(String args[]) {
 Comparator<String> lenghtComparator = (first, second)
 -> -(Integer.compare(first.length(), second.length()));

 Comparator<String> reverseLengthComparator = (first, second)
 -> (Integer.compare(first.length(), second.length()));

 Comparator<String> reverseAlphabetComparator = (first, second)
 -> -(first.compareTo(second));

 Comparator<String> lengthAndReverseAlphabetComparator = (first, second)
 -> {
 int result = -Integer.compare(first.length(),
 second.length());
 if (result == 0) {
 result = first.compareTo(second);
 }
 return result;
 };
 Arrays.sort(names, lenghtComparator);
 System.out.println("Names sorted by length: " + Arrays.asList(names));

 Arrays.sort(names, reverseLengthComparator);
 System.out.println("Names sorted by length in reverse: " +
 Arrays.asList(names));

 Arrays.sort(names, String::compareTo);
 System.out.println("Names sorted by alphabetical order: " +
 Arrays.asList(names));

 Arrays.sort(names, reverseAlphabetComparator);
 System.out.println("Names sorted by reverse alphabetical order: " +
 Arrays.asList(names));

 Arrays.sort(names, lengthAndReverseAlphabetComparator);
 System.out.println("Names sorted by length in reverse and in " +
 "alphabetical order: " + Arrays.asList(names));
 }
}

Chapter 17 Exercises Solutions

543
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Note that the asList() method of the Arrays class was used only to take advantage of the
textual representation of the collection.
The output will be:

Names sorted by length: [Ermeringildo, Francesca, Clarissa, Arlequin, Iamaca, Cumbus,
 Blue, Jem, Top, Tom]
Names sorted by length in reverse: [Jem, Top, Tom, Blue, Iamaca, Cumbus, Clarissa,
 Arlequin, Francesca, Ermeringildo]
Names in alphabetical order: [Arlequin, Blue, Clarissa, Cumbus, Ermeringildo,
 Francesca, Iamaca, Jem, Tom, Top]
Names in reverse alphabetical order: [Top, Tom, Jem, Iamaca, Francesca, Ermeringildo,
 Cumbus, Clarissa, Blue, Arlequin]
Names sorted by length in reverse and in alphabetical order:
 [Ermeringildo, Francesca, Arlequin, Clarissa, Cumbus, Iamaca, Blue, Jem, Tom, Top]

Solution 17.c)

The code of the City class should be the following:

package com.claudiodesio.lambda.data;

public class City {

 private String name;

 private boolean stateCapital;

 private boolean onTheSea;

 public City(String name, boolean stateCapital, boolean onTheSea) {
 this.name = name;
 this.stateCapital = stateCapital;
 this.onTheSea = onTheSea;
 }

 public boolean isOnTheSea() {
 return onTheSea;
 }

 public void setOnTheSea(boolean onTheSea) {
 this.onTheSea = onTheSea;
 }

 public boolean isStateCapital() {
 return stateCapital;
 }

Chapter 17 Exercise Solutions

544
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void setStateCapital(boolean stateCapital) {
 this.stateCapital = stateCapital;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return getName();
 }
}

The code of the Exercise17C class instead, could be coded in the following way:

package com.claudiodesio.lambda.test;

import com.claudiodesio.lambda.data.City;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.function.Predicate;

public class Exercise17C {

 public static void main(String args[]) {
 List<City> listOfCities = getCities();
 System.out.println("Cities on the sea: " +
 filterCities(listOfCities, Exercise17C::isOnTheSea));
 listOfCities = getCities();
 System.out.println("State capitals: " +
 filterCities(listOfCities, Exercise17C::isStateCapital));
 listOfCities = getCities();
 }

 public static List<City> filterCities(List<City> listOfCities,
 Predicate<City> p) {
 final Iterator<City> iterator = listOfCities.iterator();
 while (iterator.hasNext()) {
 City city = iterator.next();
 if (!p.test(city)) {
 iterator.remove();
 }
 }
 return listOfCities;
 }

Chapter 17 Exercises Solutions

545
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private static List<City> getCities() {
 List<City> city = new ArrayList<>();
 city.add(new City("Milano", true, false));
 city.add(new City("Rovigo", false, false));
 city.add(new City("Potenza", true, false));
 city.add(new City("Siracusa", false, true));
 city.add(new City("Perugia", true, false));
 city.add(new City("Napoli", true, true));
 city.add(new City("Pescara", false, true));
 city.add(new City("Taranto", false, true));
 city.add(new City("Siena", false, false));
 return city;
 }

 public static boolean isOnTheSea(City city) {
 return city.isOnTheSea();
 }

 public static boolean isStateCapital(City city) {
 return city.isStateCapital();
 }
}

The output will be:

Cities on the sea: [Siracusa, Napoli, Pescara, Taranto]
State capitals: [Milano, Potenza, Perugia, Napoli]

Solution 17.d)

The code of the Exercise17D class could be the following:

package com.claudiodesio.lambda.test;

import com.claudiodesio.lambda.data.City;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.function.Predicate;

public class Exercise17D {

 public static void main(String args[]) {
 List<City> listOfCities = getCities();
 System.out.println("Cities on the sea: " +
 filterCities(listOfCities, (city) -> city.isOnTheSea()));
 listOfCities = getCities();
 System.out.println("State capitals: " +
 filterCities(listOfCities,(city) -> city.isStateCapital()));
 listOfCities = getCities();
 }

Chapter 17 Exercise Solutions

546
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static List<City> filterCities(List<City> listOfCities,
 Predicate<City> p) {
 final Iterator<City> iterator = listOfCities.iterator();
 while (iterator.hasNext()) {
 City city = iterator.next();
 if (!p.test(city)) {
 iterator.remove();
 }
 }
 return listOfCities;
 }

 private static List<City> getCities() {
 List<City> city = new ArrayList<>();
 city.add(new City("Milano", true, false));
 city.add(new City("Rovigo", false, false));
 city.add(new City("Potenza", true, false));
 city.add(new City("Siracusa", false, true));
 city.add(new City("Perugia", true, false));
 city.add(new City("Napoli", true, true));
 city.add(new City("Pescara", false, true));
 city.add(new City("Taranto", false, true));
 city.add(new City("Siena", false, false));
 return city;
 }
}

The output will remain the same as for the previous exercise:

Cities on the sea: [Siracusa, Napoli, Pescara, Taranto]
State capitals: [Milano, Potenza, Perugia, Napoli]

Solution 17.e)

The Exercise17E class could be the following:

package com.claudiodesio.lambda.test;

import com.claudiodesio.lambda.data.City;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.function.Consumer;
import java.util.function.Predicate;

public class Exercise17E {

 public static void main(String args[]) {

Chapter 17 Exercises Solutions

547
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 List<City> listOfCities = getCities();
 System.out.println("Cities on the sea: " +
 filterCities(listOfCities, Exercise17E::isOnTheSea));
 listOfCities = getCities();
 System.out.println("State capitals: " +
 filterCities(listOfCities, Exercise17E::isStateCapital));
 listOfCities = getCities();
 printDetails(listOfCities, (city) -> System.out.println(city.getName()
 + (city.isStateCapital() ? " is capital state," : "")
 + (city.isOnTheSea() ? " is on the sea," : "")));
 }

 public static List<City> filterCities(List<City> listOfCities,
 Predicate<City> p) {
 final Iterator<City> iterator = listOfCities.iterator();
 while (iterator.hasNext()) {
 City City = iterator.next();
 if (!p.test(City)) {
 iterator.remove();
 }
 }
 return listOfCities;
 }

 public static void printDetails(List<City> listOfCities, Consumer<City> c) {
 for (City city : listOfCities) {
 c.accept(city);
 }
 }

 private static List<City> getCities() {
 List<City> city = new ArrayList<>();
 city.add(new City("Milano", true, false));
 city.add(new City("Rovigo", false, false));
 city.add(new City("Potenza", true, false));
 city.add(new City("Siracusa", false, true));
 city.add(new City("Perugia", true, false));
 city.add(new City("Napoli", true, true));
 city.add(new City("Pescara", false, true));
 city.add(new City("Taranto", false, true));
 city.add(new City("Siena", false, false));
 return city;
 }

 public static boolean isOnTheSea(City city) {
 return city.isOnTheSea();
 }

 public static boolean isStateCapital(City city) {
 return city.isStateCapital();
 }
}

Chapter 17 Exercise Solutions

548
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

And so, the functional interface to use was the Consumer interface.
It was enough then to invoke this method using a lambda expression (and a couple of ternary
operators) in the main() method:

printDetails(listOfCities, (city) -> System.out.println(city.getName()
 + (city.isStateCapital() ? " is capital state," : "")
 + (city.isOnTheSea() ? " is on the sea," : "")));

The output will be:

Cities on the sea: [Siracusa, Napoli, Pescara, Taranto]
State capitals: [Milano, Potenza, Perugia, Napoli]
Milano is capital state,
Rovigo
Potenza is capital state,
Siracusa is on the sea,
Perugia is capital state,
Napoli is capital state, is on the sea,
Pescara is on the sea,
Taranto is on the sea,
Siena

Solution 17.f)

It is impossible in this case to replace the anonymous class with a lambda expression! Recall
that a lambda expression works by implementing functional interfaces (with only a single ab-
stract method).

Solution 17.g)

Again, it is impossible to use a lambda expression. Instead it is possible to use an anonymous
class:

package com.claudiodesio.observatory.test;

import com.claudiodesio.observatory.data.Participant;
import com.claudiodesio.observatory.data.Telescope;

public class Observation {

 public static void main(String args[]) {
 Telescope telescope = new Telescope();
 Participant[] participants = getParticipants(telescope);
 for (Participant participant : participants) {
 participant.start();
 }
 }

Chapter 17 Exercises Solutions

549
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private static Participant[] getParticipants(Telescope telescope) {
 Participant[] participants = {
 new Participant("Ciro", telescope),
 new Participant("Gianluca", telescope),
 new Participant("Pierluigi", telescope),
 new Participant("Gigi", telescope),
 new Participant("Nicola", telescope) {
 @Override
 public void run() {
 System.out.println(getName() + " I'm ready!");
 super.run();
 }
 },
 new Participant("Pino", telescope),
 new Participant("Maurizio", telescope),
 new Participant("Raffaele", telescope),
 new Participant("Fabio", telescope),
 new Participant("Vincenzo", telescope)};
 return participants;
 }
}

Solution 17.h)

Only the third statement is correct. The output of JShell is as follows:

| Error:
| ')' expected
| new
 Thread(()->System.out.print("Java");System.out.print("Java");).start();
|

In fact, braces are missing around the code block. If there were:

new Thread(()->{System.out.print("Java");System.out.print("Java");}).start();

then the first statement would have been the correct one:

jshell> JavaJava

Solution 17.i)

None of the statements is correct. In fact, the code will not compile because the constructor
of a thread must pass an implementation of the run() method, which does not take input
parameters as specified in the code. By running this snippet on JShell we will get the following
output:

Chapter 17 Exercise Solutions

550
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

jshell> new Thread((int a)->{
 ...> int b = 0;
 ...> b = a/b;
 ...> }).start();
| Error:
| no suitable constructor found for Thread((int a)->{[...] b; })
| constructor java.lang.Thread.Thread(java.lang.Runnable) is not
 applicable
| (argument mismatch; incompatible parameter types in lambda
 expression)
| constructor java.lang.Thread.Thread(java.lang.String) is not
 applicable
| (argument mismatch; java.lang.String is not a functional
 interface)
| new Thread((int a)->{
| ^--------------------...

We note that ArithmeticException extends RuntimeException that is an unchecked excep-
tion. The compiler would therefore not have reported errors, and for this reason the first state-
ment was certainly incorrect. The second and fourth statements are obviously false. The third
statement would have been correct if the implementation of the run() method had been cor-
rected, but it is not.

Solution 17.l)

The statements are all correct except the number 3.

Solution 17.m)

The solution is trivial:

public interface Operation {
 double operation(double x, double y);
}

Solution 17.n)

Yes, there is the DoubleBinaryOperator class that defines the method:

double applyAsDouble(double left, double right)

which coincides as parameters and return type with the operation() method of the Operation
interface of the previous exercise (the name does not count).

Chapter 17 Exercises Solutions

551
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 17.o)

The solution could be the following:

package com.claudiodesio.lambda.test;

import java.util.Arrays;
import java.util.Comparator;

public class Exercise17O {

 static String names[] = {"Clarissa","Jem","Top","Ermeringildo","Iamaca",
 "Tom","Arlequin","Francesca","Cumbus","Blue"
 };

 static int compareLength(String first, String second) {
 return -(Integer.compare(first.length(), second.length()));
 }

 static int compareReverseLength(String first, String second) {
 return (Integer.compare(first.length(), second.length()));
 }

 static int compareReverseAlphabet(String first, String second) {
 return -(first.compareTo(second));
 }

 static int compareLengthAndReverseAlphabet(String first, String second) {

 int result = -Integer.compare(first.length(), second.length());

 if (result == 0) {
 result = first.compareTo(second);
 }

 return result;
 }

 public static void main(String args[]) {

 Arrays.sort(names, Exercise17O::compareLength);
 System.out.println("Names sorted by length: " +
 Arrays.asList(names));

 Arrays.sort(names, Exercise17O::compareReverseLength);
 System.out.println("Names sorted by length in reverse: " +
 Arrays.asList(names));

Chapter 17 Exercise Solutions

552
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Arrays.sort(names, String::compareTo);
 System.out.println("Names in alphabetical order : " +
 Arrays.asList(names));

 Arrays.sort(names, Exercise17O::compareReverseAlphabet);
 System.out.println("Names in reverse alphabetical order " +
 Arrays.asList(names));

 Arrays.sort(names, Exercise17O::compareLengthAndReverseAlphabet);
 System.out.println(
 "Names sorted by length in reverse and in alphabetical order: "
 + Arrays.asList(names));
 }
}

Solution 17.p)

The exercise was really simple, the right answer is the number 4, Supplier, as the definition of
its method is the following:

T get()

where T is a generic parameter of the interface.
Note that the Factory functional interface of answer 2 does not exist.

Solution 17.q)

None of the statements is correct.
Only the number 2 may not be clearly incorrect. In fact, a functional interface must declare a
single abstract method, but it is also possible to declare default and static methods, both public
and private.

Solution 17.r)

The correct statements are the number 3 (which excludes the correctness of 1 and 2) and the
number 5 (which is consistent with the definition of lambda expressions). The statement num-
ber 4 is incorrect because the SAM method cannot return void, but must return the same type
as the constructor.

Solution 17.s)

The Person class could be the following:

Chapter 17 Exercises Solutions

553
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import java.util.*;

public class Person implements Comparable<Person> {

 private String name;

 private int age;

 public Person (String name, int age) {
 this.name = name;
 this.age = age;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public int getAge() {
 return age;
 }

 @Override
 public int compareTo(Person otherPerson) {
 int result = Integer.valueOf(this.age).compareTo(
 Integer.valueOf(otherPerson.age));
 if (result == 0) {
 result = this.name.compareTo(otherPerson.name);
 }
 return result;
 }

 public String toString() {
 return name;
 }
}

Instead the Exercise17S class can be completed with the “reference to an instance method of a
certain type” (which we studied in section 17.2.4) in the following way (the added code in bold):

import java.util.Arrays;

Chapter 17 Exercise Solutions

554
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Exercise17S {
 public static void main(String args[]) {
 Person [] persons = {
 new Person("Antonio",21),
 new Person("Bruno",20),
 new Person("Giorgio",19),
 new Person("Martino",22),
 new Person("Daniele",21)
 };
 Arrays.sort(persons, Person::compareTo);
 System.out.println(Arrays.toString(persons));
 }
}

Solution 17.t)

The right answer is number 6: BiPredicate. In fact it defines the method:

boolean test(T t, U u)

Solution 17.u)

The solution could be the following (the added code is in bold):

import java.util.Arrays;
import java.util.function.BiPredicate;

public class Exercise17U {
 public static void main(String args[]) {
 Person [] persons = {
 new Person("Antonio",21),
 new Person("Bruno",20),
 new Person("Giorgio",19),
 new Person("Martino",22),
 new Person("Daniele",21)
 };
 Person personWithNameThatStartsWithD = getPersonWithNameThatStartsWithD(
 "D", persons, /*INSERT CODE HERE*/
 (String firstCharacter, Person person) ->
 person.getName().startsWith(firstCharacter));
 System.out.println(personWithNameThatStartsWithD);
 }

 static Person getPersonWithNameThatStartsWithD(String firstCharacter,
 Person[] persons, BiPredicate<String, Person> biPredicate) {
 for(Person person : persons) {
 if (biPredicate.test(firstCharacter, person)) {

Chapter 17 Exercises Solutions

555
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 return person;
 }
 }
 return null;
 }
}

Solution 17.v)

The correct answers are the numbers 1, 3 and 4. The number 2 is false, indeed the fact that
lambda expressions do not inherit the complicated rules of anonymous classes is one of the
advantages of using lambda expressions instead of anonymous classes. The numbers 5 and 6
are false because the syntax of a method reference does not include nested code, and therefore
it is impossible to use other nested lambda expressions or other method references

Solution 17.z)

The correct answers are the numbers 1, 3, 4 and 7. The number 2 is false since the number 3 is
correct.
The number 5 is false because TriFunction does not exist, but could easily be created. The
number 6 is false because the and() method does not exist within UnaryOperator (if anything,
it exists andThen()).

557
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 18
Exercises

Collections Framework
and Stream API

The Collections framework contains some of the most widely used implementations in Java.
The documentation is fundamental, every good programmer should consult it assiduously.
Being a very extensive library, there will always be a method or implementation that is right for
us, which we have never used. The Stream API has further extended the horizons of application
of the collections. We advise (as already done in the introduction) to comment on each single
line implemented to better memorize the definitions and meaning of some statements.

Exercise 18.a) Framework Collections, True or False:

Collection , Map, SortedMap, Set, List and SortedSet are interfaces and cannot be
instantiated.

A Set is an ordered collection of objects; a List does not allow duplicate elements and is
ordering.

Maps cannot contain duplicate keys and each key can be associated with only one value.

There are several abstract implementations to customize in the framework such as
AbstractMap.

A HashMap is faster than a Hashtable because it is not synchronized.

1.

2.

3.

4.

5.

Chapter 18 Exercises

558
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

A HashMap is faster than a TreeMap but the latter, being an implementation of SortedMap,
handles the sorting.

HashSet is faster than TreeSet but does not handle the sorting.

Iterator and Enumeration have the same role, but the latter allows during the iterations
to also remove elements.

ArrayList has better performance than Vector because it is not synchronized, but both
have mechanisms to optimize performance.

 The Collections class is a Collection list.

Exercise 18.b) Stream API, True or False:

Stream is a class that implements Collection.

It is possible to iterate over a stream in both directions.

A pipeline consists of a source, optional aggregation methods and a terminal method.

The map() method is to be considered an aggregation method.

Optional is an interface that allows you to avoid having to deal with
NullPointerException.

The reduction methods are aggregation operations.

The joining() method of Stream allows you to concatenate strings with string type
separators.

The DoubleSummaryStatistics class is a particular stream.

The parallelStream() method returns a stream capable of using the Fork/Join
algorithm to perform operations on the elements of a collection.

 A stream can only be instantiated using a collection.

Exercise 18.c)

Create a collection that, if you add two equal elements, launch a custom exception (to be
created as well). Finally also create a test class.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 18 Exercises

559
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 18.d)

Create a map called IncrementalMap, which allows you to add more values (sorted as they
added) to the same key. Also create a test class.

Exercise 18.e)

Taking advantage of the classes created in the previous exercises, create an IncrementalMap
extension (let’s call it RobustIncrementalMap) which, when adding an element whose key
already exists, throws an exception as described in the exercise 18.c. Also create a test class.

Exercise 18.f)

After completing the previous exercise, consider the City class that was created in exercise 16.c
and which we report below for convenience:

package com.claudiodesio.data;

import java.util.Objects;

public class City {

 private String name;

 private boolean stateCapital;

 private boolean onTheSea;

 public City(String name, boolean stateCapital, boolean onTheSea) {
 this.name = name;
 this.stateCapital = stateCapital;
 this.onTheSea = onTheSea;
 }

 public boolean isOnTheSea() {
 return onTheSea;
 }

 public void setOnTheSea(boolean onTheSea) {
 this.onTheSea = onTheSea;
 }

 public boolean isStateCapital() {
 return stateCapital;
 }

Chapter 18 Exercises

560
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void setStateCapital(boolean stateCapital) {
 this.stateCapital = stateCapital;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return getName();
 }
}

Add equals() and hashcode() methods. In a StreamTest cass, wth a stream, print all the “cities
on the sea”. With a second stream, print all the state capitals. With a third stream, print all the
cities that end with the letter “a”.

Exercise 18.g)

Regarding the enhanced for loop, which of the following statements are correct?

The enhanced for loop can in any case replace a for loop.

The enhanced for loop can be used with arrays and with classes that implement
Iterable.

The enhanced for loop replaces the use of Iterator.

The enhanced for loop cannot correctly exploit Iterator methods.

In an enhanced for loop it is not possible loop backwards.

Exercise 18.h)

Given the following code:

import java.util.*;

public class Exercise18H {

1.

2.

3.

4.

5.

Chapter 18 Exercises

561
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void main(String args[]) {
 Collection map = new HashMap(10);
 map.put(1,1);
 System.out.println(map);
 }
}

Which of the following statements is correct?

The code compiles with warnings, and when executed prints {1 = 1}.

The code compiles with warnings, but throws an exception during execution.

The code does not compile.

The code compiles correctly, and when executed prints {1 = 1}.

The code compiles with warnings, and when executed prints {1 = 1, null = null}.

The code compiles with warnings, and when executed prints {1 = 1, 0 = 0}.

Exercise 18.i)

Which of the following statements are correct?

The Iterable interface declares the forEach() method.

Iterator extends Iterable.

Iterator defines the forEachRemaining() method.

Collection implements the Iterable interface.

Exercise 18.l)

Which of the following statements are correct??

Collection is a superclass of List.

A Collection can be transformed into an array by invoking the toArray() method
defined in the Arrays class.

An array can be transformed into a Collection using the toCollection() method of the
Arrays class.

Collection defines the add() method.

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

1.

2.

3.

4.

Chapter 18 Exercises

562
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 18.m)

Consider the following class:

import java.util.*;

public class Exercise18M {
 public static void main(String args[]) {
 ArrayList<String> list = new ArrayList<>(3);
 list.add("*");
 list.add("@");
 list.set(1, "$");
 ListIterator listIterator = list.listIterator();
 while(listIterator.hasNext()) {
 System.out.println(listIterator.next());
 }
 while(listIterator.hasPrevious()) {
 System.out.println(listIterator.previous());
 }
 }
}

If we run this class, what will the output be?

Exercise 18.n)

Create a simple program that defines an ArrayList of integers, and that is filled with the first
50 even numbers in the most efficient way.

Exercise 18.o)

Which of the following statements are correct?

An implementation of Set cannot sort its elements.

An implementation of Set does not allow more than one null element.

The Set interface is extended by SortedSet.

The HashSet implementation is not thread safe.

Exercise 18.p)

Which of the following statements are correct?

The Vector class is an implementation of List.

1.

2.

3.

4.

1.

Chapter 18 Exercises

563
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

An implementation of List does not allow null elements.

A List type reference can become thread safe if it is assigned a List type object that is
returned by the synchronizedList() method.

To delete duplicate items from a list, just fill a Set with the elements of the List.

Exercise 18.q)

Given the class:

import java.util.*;

public class ClaudioLinkedList extends LinkedList<String> {
 public ClaudioLinkedList() {
 add("X");
 add("L");
 add("W");
 add("U");
 add("D");
 add("I");
 add("Z");
 }
}

add in the following class Exercise18Q:

import java.util.*;

public class Exercise18Q {

 public static void main(String args[]) {
 ClaudioLinkedList claudioLinkedList = new ClaudioLinkedList();
 /*INSERT CODE HERE*/
 System.out.println(claudioLinkedList);
 }
}

in place of the comment /*INSERT CODE HERE*/, the code which will allow you to generate the
following output:

[C, L, A, U, D, I, O]

Exercise 18.r)

If we want to use a map in a thread-safe manner, what options do we have? List at least two
options.

2.

3.

4.

Chapter 18 Exercises

564
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 18.s)

If we want to use an immutable list, what options do we have? List at least two options. And if
we want to use an immutable set, what options do we have? List at least two options.

Exercise 18.t)

Given the list of strings that returns the following method:

 public static List<String> getStringList() {
 String string = "Les enfants qui s'aiment s'embrassent debout "
 + "Contre les portes de la nuit "
 + "Et les passants qui passent les désignent du doigt "
 + "Mais les enfants qui s'aiment "
 + "ne sont là pour personne "
 + "Et c'est seulement leur ombre "
 + "qui tremble dans la nuit "
 + "Excitant la rage des passants "
 + "Leur rage, leur mépris, leurs rires et leur envie "
 + "Les enfants qui s'aiment ne sont là pour personne "
 + "Ils sont ailleurs bien plus loin que la nuit "
 + "Bien plus haut que le jour "
 + "Dans l'éblouissante clarté de leur premier amour. ";
 String[] strings = string.split(" ");
 return Arrays.asList(strings);
 }

write a pipeline that considers only words that do not begin with “a”, and calculates (and prints)
the average length.

Exercise 18.u)

Which of the following statements are correct?

Optional is a generic interface.

The method ofNullable() returns an Optional object that acts as a wrapper to the ob-
ject passed as input.

orElseThrow() is an Optional method that returns an Optional object or throws an ex-
ception that can be specified in input, in case the “wrapped” object is null.

findFirst() is an Optional method that returns an Optional or null object, in case the
“wrapped” object is null.

1.

2.

3.

4.

Chapter 18 Exercises

565
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 18.v)

Given the following code:

import java.util.*;
import java.util.stream.*;

public class Exercise18V {

 public static void main(String args[]) {
 List<String> stringList = getStringList();
 /*INSERT CODE HERE*/
 System.out.println(map);
 }

 public static List<String> getStringList() {
 String string = "The children lovers embrace upright "
 + "Against night's doors "
 + "And passers-by who pass by point their finger at them "
 + "But the children lovers "
 + "Are there for no one "
 + "And it's only their shadow "
 + "Which quivers in the night "
 + "Stirring up the anger of the passers-by "
 + "Their anger, their contempt, their laughs and their desire "
 + "The children lovers are there for no one "
 + "They're elsewhere much further than the night "
 + "Much higher than the day "
 + "In the dazzling light of their first love. ";
 String[] strings = string.split(" ");
 return Arrays.asList(strings);
 }
}

Write a pipeline to create a map that groups the words of the text that begin with the same ini-
tial letter, ignoring the fact that the letter is uppercase or lowercase. Insert this pipeline instead
of the comment /*INSERT CODE HERE*/.

Exercise 18.z)

Starting from the result of exercise 18.v, replace the printing instruction:

 System.out.println(map);

with a simple pipeline that prints the contents of the map line by line.

Chapter 18 Exercises

566
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 18.aa)

Which of the following statements are correct?

The HashMap class extends Hashtable.

The Hashtable class is not thread safe.

The Hashtable class extends Properties.

Enumeration has been deprecated since enums and the enum keyword were introduced
in Java 5.

The Enumeration interface has the same methods as the Iterator interface.

The Vector class implements List.

The Vector class is not thread safe.

The Vector class is not generic.

In general, the Vector class, being synchronized, offers superior performance compared
to an ArrayList.

 The Vector class is deprecated.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

567
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 18
Exercise Solutions

Collections Framework
and Stream API

Solution 18.a) Framework Collections, True or False:

True.

False.

True.

True.

True.

True.

True.

False.

True.

 False.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 18 Exercise Solutions

568
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 18.b) Stream API, True or False:

False, Stream is an interface.

False.

True.

True.

False, Optional is a class (also declared final and therefore not extensible).

False, are terminal operations.

False, the joining() method belongs to the Collectors class.

False.

True.

 False.

Solution 18.c)

The custom exception could be the following:

package com.claudiodesio.excs;

public class DuplicateException extends RuntimeException {

 public DuplicateException(Object duplicateElement) {
 super("Unable to add item \""
 + duplicateElement + "\" because already present");
 }
}

While we could code the requested collection in this way:

package com.claudiodesio.collections;

import com.claudiodesio.excs.DuplicateException;
import java.util.HashSet;

public class RobustSet<E> extends HashSet<E> {

 @Override
 public boolean add(E e) {
 boolean result = super.add(e);

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 18 Exercises Solutions

569
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 if (!result) {
 throw new DuplicateException(e);
 }
 return result;
 }
}

And here’s a test class:

package com.claudiodesio.test;

import com.claudiodesio.collections.RobustSet;
import com.claudiodesio.excs.DuplicateException;

public class RobustSetTest {

 public static void main(String args[]) {
 RobustSet<String> set = getRobustSet();
 try {
 set.add("Italy);
 } catch (DuplicateException duplicateException) {
 System.out.println(duplicateException.getMessage());
 }
 System.out.println(set);
 }

 public static RobustSet<String> getRobustSet() {
 RobustSet<String> set = new RobustSet<>();
 set.add("Italy");
 set.add("French");
 set.add ("Poland");
 set.add ("Germany");
 set.add ("England");
 set.add ("Spain");
 set.add ("Greece");
 set.add ("Netherlands");
 set.add ("Portugal");
 set.add ("Belgium");
 return set;
 }
}

The output will be:

Unable to add item "Italy" because already present
 [Germany, England, French, Belgium, Poland, Netherlands, Italy,
 Spain, Greece, Portugal]

Chapter 18 Exercise Solutions

570
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 18.d)

The code of the requested map could be the following:

package com.claudiodesio.collections;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;

public class IncrementalMap<K, V> extends HashMap<K, Collection<V>> {

 public void add(K key, V value) {
 if (this.get(key) == null) {
 Collection<V> collection = getCollection();
 collection.add(value);
 this.put(key, collection);
 } else {
 Collection<V> arrayList = this.get(key);
 arrayList.add(value);
 }
 }

 protected Collection<V> getCollection() {
 return new ArrayList<>();
 }
}

Note that the add() method is not an override (the method to add key-value pairs is the put()
method) but an ad hoc method.
A test class follows:

package com.claudiodesio.test;

import com.claudiodesio.collections.IncrementalMap;
import com.claudiodesio.collections.RobustSet;
import java.util.Iterator;

public class IncrementalMapTest {

 public static void main(String args[]) {
 IncrementalMap<Integer, String> map = new IncrementalMap<>();
 filIncrementalMap(map);
 System.out.println(map);
 }

 public static void filIncrementalMap(IncrementalMap<Integer, String> map) {
 RobustSet<String> set = RobustSetTest.getRobustSet();
 int i = 1;

Chapter 18 Exercises Solutions

571
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 int j = 1;
 Iterator<String> iterator = set.iterator();
 while (iterator.hasNext()) {
 if (i % 3 == 0) {
 j++;
 }
 String string = iterator.next();
 map.add(j, string);
 i++;
 }
 }
}

which generates the following output:

{1=[Greece, Netherlands], 2=[French, Belgium, Poland], 3=[England, Italy, Portugal],
 4=[Germany, Spain]}

Solution 18.e)

The code of the requested map could be the following:

package com.claudiodesio.collections;

import java.util.Collection;

public class RobustIncrementalMap<K, V> extends IncrementalMap<K, V> {

 @Override
 protected Collection<V> getCollection() {
 return new RobustSet<>();
 }
}

Note that this time the add() method is an override, and simply by substitute the ArrayList
defined in the IncrementalMap class with a RobustSet we have solved the situation. If we want,
we could do some refactoring on these two classes in order to improve our code. First, we re-
turn to the IncrementalMap class and rewrite the add() method with some small tricks:

package com.claudiodesio.collections;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;

public class IncrementalMap<K, V> extends HashMap<K, Collection<V>> {

Chapter 18 Exercise Solutions

572
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void add(K key, V value) {
 if (this.get(key) == null) {
 Collection<V> collection = getCollection();
 collection.add(value);
 this.put(key, collection);
 } else {
 Collection<V> arrayList = this.get(key);
 arrayList.add(value);
 }
 }

 protected Collection<V> getCollection() {
 return new ArrayList<>();
 }
}

In this way we can simplify the subclass:

package com.claudiodesio.collections;

import java.util.Collection;

public class RobustIncrementalMap<K, V> extends IncrementalMap<K, V> {

 @Override
 protected Collection<V> getCollection() {
 return new RobustSet<>();
 }

}

And get the same result, without code duplication.
The test class follows:

package com.claudiodesio.test;

import com.claudiodesio.collections.IncrementalMap;
import com.claudiodesio.collections.RobustIncrementalMap;
import com.claudiodesio.excs.DuplicateException;

public class RobustIncrementalMapTest {

 public static void main(String args[]) {

 IncrementalMap<Integer, String> map = new RobustIncrementalMap<>();
 IncrementalMapTest.fillIncrementalMap(map);
 try {
 map.add(1, "Greece");
 } catch (DuplicateException duplicatoException) {

Chapter 18 Exercises Solutions

573
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println(duplicatoException.getMessage());
 }
 System.out.println(map);
 }
}

Which generates the following output:

Unable to add item "Greece" because already present
 {1=[Greece, Netherlands], 2=[French, Belgium, Poland], 3=[England,
 Italy, Portugal], 4=[Germany, Spain]}

Solution 18.f)

In the City class we add the required methods:

 @Override
 public int hashCode() {
 int hash = 7;
 hash = 19 * hash + Objects.hashCode(this.name);
 return hash;
 }

 @Override
 public boolean equals(Object obj) {
 if (obj == null) {
 return false;
 }
 if (getClass() != obj.getClass()) {
 return false;
 }
 final City other = (City) obj;
 if (!Objects.equals(this.name, other.name)) {
 return false;
 }
 return true;
 }

The StreamsTest class instead could be coded as follows:

package com.claudiodesio.test;

import com.claudiodesio.collections.RobustSet;
import com.claudiodesio.data.City;

public class StreamsTest {

 public static void main(String args[]) {

Chapter 18 Exercise Solutions

574
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 RobustSet<City> set = getRobustSet();
 System.out.println("City on the sea:");
 set.stream().filter(e->e.isOnTheSea()).forEach(System.out::println);
 System.out.println("\nState capital:");
 set.stream().filter(e->e.isStateCapital()).forEach(System.out::println);
 System.out.println("\nCities whose name ends with 'a':");
 set.stream().filter(
 e->e.getName().endsWith("a")).forEach(System.out::println);
 }

 public static RobustSet<City> getRobustSet() {
 RobustSet<City> set = new RobustSet<>();
 set.add(new City("Milano", true, false));
 set.add(new City("Rovigo", false, false));
 set.add(new City("Potenza", true, false));
 set.add(new City("Siracusa", false, true));
 set.add(new City("Perugia", true, false));
 set.add(new City("Napoli", true, true));
 set.add(new City("Pescara", false, true));
 set.add(new City("Taranto", false, true));
 set.add(new City("Siena", false, false));
 return set;
 }
}

The output follows l’output:

City on the sea:
Napoli
Siracusa
Taranto
Pescara

State capital:
Napoli
Potenza
Perugia
Milano

Cities whose name ends with 'a':
Potenza
Perugia
Siena
Siracusa
Pescara

Solution 18.g)

The correct statements are the numbers 2, 4 and 5.

Chapter 18 Exercises Solutions

575
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 18.h)

The correct answer is the number 3 because HashMap does not extend Collection, and there-
fore it is not possible to assign a Collection reference to a HashMap. The output of the compila-
tion, is in fact the following:

Exercise18H.java:5: warning: [rawtypes] found raw type: Collection
 Collection map = new HashMap(10);
 ^
 missing type arguments for generic class Collection<E> where E is a type-variable:
 E extends Object declared in interface Collection
Exercise18H.java:5: warning: [rawtypes] found raw type: HashMap
 Collection map = new HashMap(10);
 ^
 missing type arguments for generic class HashMap<K,V> where K,V are type-variables:
 K extends Object declared in class HashMap
 V extends Object declared in class HashMap
Exercise18H.java:5: error: incompatible types: HashMap cannot be converted to Collection
 Collection map = new HashMap(10);
 ^
Exercise18H.java:6: error: cannot find symbol
 map.put(1,1);
 ^
 symbol: method put(int,int)
 location: variable map of type Collection
2 errors
2 warnings

Note that two warnings are also shown because we used raw type, and that the errors are also
two, because the reference map, being of the Collection type, does not declare the put()
method (which is declared in the Map interface).

Solution 18.i)

The correct answers are the numbers 1 and 3. Iterator does not extend Iterable, so the state-
ment 2 is incorrect. In the case of statement 4 the statement would have been correct if it had
been: Collection extends the Iterable interface. In fact, both Collection and Iterable are
interfaces and not classes. This implies that one can extend the other, not implement it.

Solution 18.l)

The only correct answer is the number 4. The statement number 1 is false simply because
Collection is an interface and not a class. As for statement 2, the toArray() method is de-
clared by the Collection interface. Furthermore, there is no toCollection() method in the
Arrays class, so the statement 3 is also incorrect.

Chapter 18 Exercise Solutions

576
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 18.m)

The output of the Exercise18M class is as follows:

*
$
$
*

In fact, two elements are inserted (the strings * and @) with the method add() in the list list,
and then with the method set() the string @ is overwritten with the string $. The subsequent
loops print the elements of the list by iterating with a ListIterator first forward and then
backwards.

Solution 18.n)

The solution could be the following class:

import java.util.*;

public class Exercise18N {
 public static void main(String args[]) {
 ArrayList<Integer> list = new ArrayList<>();
 list.ensureCapacity(50);
 long startTime = System.currentTimeMillis();
 for (int i = 1; i <=100000; ++i) {
 if (i%2==0) {
 list.add(i);
 }
 }
 long endTime = System.currentTimeMillis();
 System.out.println("Time = " + (endTime - startTime));
 }
}

Solution 18.o)

All statements are correct except number 1. In fact, being Set extended by SortedSet (see state-
ment number 3), the implementations of SortedSet as TreeSet will be ordered. The number
2 is true since any Set does not allow duplicates, so it is not possible to add the null element
twice.

Solution 18.p)

Only the statements number 3 and 4 are correct.

Chapter 18 Exercises Solutions

577
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 18.q)

The solution could be the following class:

import java.util.*;

public class Exercise18Q {

 public static void main(String args[]) {

 ClaudioLinkedList claudioLinkedList = new ClaudioLinkedList();
 /*INSERT CODE HERE*/
 claudioLinkedList.removeFirst();
 claudioLinkedList.addFirst("C");
 claudioLinkedList.set(2, "A");
 claudioLinkedList.removeLast();
 claudioLinkedList.addLast("O");
 System.out.println(claudioLinkedList);
 }
}

Solution 18.r)

We could use a Hashtable, a ConcurrentHashMap, or use a reference that points to the result of
the invocation of a synchronizedMap() synchronizer method.

Solution 18.s)

We could use a reference that points to the result of invoking an unmodifiableList() synchro-
nizer method, as shown below:

List<String> immutableList = Arrays.asList("a", "b", "c");
immutableList = Collections.unmodifiableList(immutableList);

Or you can use the static convenience of()method of the List interface, introduced in Java 9:

List immutableList = List.of("a", "b", "c");

The same goes for the immutable set implementations. Here are the two examples required:

Set<String> immutableSet = new HashSet<>(Arrays.asList("a", "b", "c"));
immutableSet = Collections.unmodifiableSet(immutableSet);

and exploiting the of () static method of the Set interface:

Set<String> immutableSet = Set.of("a", "b", "c");

Solution 18.t)

A possible solution could be the following:

Chapter 18 Exercise Solutions

578
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import java.util.*;

public class Exercise18T {
 public static void main(String args[]) {
 List<String> stringList = getStringList();
 Double average = stringList.stream().filter(
 s -> !s.startsWith("a")).mapToInt(
 String::length).average().getAsDouble();
 System.out.println(average);
 }

 public static List<String> getStringList() {
 String string = "Les enfants qui s'aiment s'embrassent debout "
 + "Contre les portes de la nuit "
 + "Et les passants qui passent les désignent du doigt "
 + "Mais les enfants qui s'aiment "
 + "ne sont là pour personne "
 + "Et c'est seulement leur ombre "
 + "qui tremble dans la nuit "
 + "Excitant la rage des passants "
 + "Leur rage, leur mépris, leurs rires et leur envie "
 + "Les enfants qui s'aiment ne sont là pour personne "
 + "Ils sont ailleurs bien plus loin que la nuit "
 + "Bien plus haut que le jour "
 + "Dans l'éblouissante clarté de leur premier amour. ";
 String[] strings = string.split(" ");
 return Arrays.asList(strings);
 }
}

Which will produce the following output:

4.607142857142857

Solution 18.u)

The correct statements are the numbers 2 and 3. The statement number 1 is incorrect because
Optional is a generic class. The 4 is incorrect because findFirst() is declared in the Stream
interface.

Solution 18.v)

The solution could be the following (the pipeline introduced is in bold):

import java.util.*;
import java.util.stream.*;

Chapter 18 Exercises Solutions

579
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Exercise18V {

 public static void main(String args[]) {
 List<String> stringList = getStringList();
 Map<String, List<String>> map =
 stringList.stream().collect(Collectors.groupingBy(s ->
 (""+s.charAt(0)).toLowerCase()));
 System.out.println(map);
 }

 public static List<String> getStringList() {
 String string ="The children lovers embrace upright "
 + "Against night's doors "
 + "And passers-by who pass by point their finger at them "
 + "But the children lovers "
 + "Are there for no one "
 + "And it's only their shadow "
 + "Which quivers in the night "
 + "Stirring up the anger of the passers-by "
 + "Their anger, their contempt, their laughs and their desire "
 + "The children lovers are there for no one "
 + "They're elsewhere much further than the night "
 + "Much higher than the day "
 + "In the dazzling light of their first love. ";
 String[] strings = string.split(" ");
 return Arrays.asList(strings);
 }
}

Note that the Function passed to the groupingBy() method returns the first character, which
is “added” to an empty string to be turned into a string, and then made lowercase to avoid case-
sensitive distinctions. Unfortunately the output is not very readable (see next exercise):

{a=[Against, And, at, Are, And, anger, anger,, and, are], b=[by, But], c=[children,
 children, contempt,, children], d=[doors, desire, day, dazzling], e=[embrace,
 elsewhere], f=[finger, for, for, further, first], h=[higher], i=[it's, in, In], l=[lovers,
 lovers, laughs, lovers, light, love.], m=[much, Much], n=[night's, no, night, no, night],
 o=[one, only, of, one, of], p=[passers-by, pass, point, passers-by], q=[quivers],
 s=[shadow, Stirring], t=[The, their, them, the, there, their, the, the, the, Their,
 their, their, their, The, there, They're, than, the, than, the, the, their], u=[upright,
 up], w=[who, Which]}

Solution 18.z)

The solution could be the following (in bold the required pipeline):

import java.util.*;
import java.util.stream.*;

public class Exercise18Z {

Chapter 18 Exercise Solutions

580
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public static void main(String args[]) {
 List<String> stringList = getStringList();
 Map<String, List<String>> map =
 stringList.stream().collect(Collectors.groupingBy(s ->
 ("" + s.charAt(0)).toLowerCase()));
 map.entrySet().stream().forEach(System.out::println);
 }

 public static List<String> getStringList() {
 String string = "The children lovers embrace upright "
 + "Against night's doors "
 + "And passers-by who pass by point their finger at them "
 + "But the children lovers "
 + "Are there for no one "
 + "And it's only their shadow "
 + "Which quivers in the night "
 + "Stirring up the anger of the passers-by "
 + "Their anger, their contempt, their laughs and their desire "
 + "The children lovers are there for no one "
 + "They're elsewhere much further than the night "
 + "Much higher than the day "
 + "In the dazzling light of their first love. ";
 String[] strings = string.split(" ");
 return Arrays.asList(strings);
 }
}

The output is much clearer:

a=[Against, And, at, Are, And, anger, anger,, and, are]
b=[by, But]
c=[children, children, contempt,, children]
d=[doors, desire, day, dazzling]
e=[embrace, elsewhere]
f=[finger, for, for, further, first]
h=[higher]
i=[it's, in, In]
l=[lovers, lovers, laughs, lovers, light, love.]
m=[much, Much]
n=[night's, no, night, no, night]
o=[one, only, of, one, of]
p=[passers-by, pass, point, passers-by]
q=[quivers]
s=[shadow, Stirring]
t=[The, their, them, the, there, their, the, the, the, Their, their, their, their, The,
 there, They're, than, the, than, the, the, their]
u=[upright, up]
w=[who, Which]

Solution 18.aa)

None of the statements are correct!

581
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 19
Exercises

Java Platform Module System

It will not be easy for programmers to start using modules. It is a concept that embraces a dif-
ferent IT branch: the software architecture. The exercises presented below aim to first clarify all
the theoretical concepts, and then create modules in a progressive manner until a sustainable
architecture is created, for the application that simulates an address book created with the ex-
ercises of the previous (and also the next) chapter.

Exercise 19.a)

Which of the following statements are correct:

With the modular system we can avoid runtime exceptions like ClassNotFoundException.

The strong encapsulation allows to make a certain package accessible only to the
specified packages.

In JDK 9 the rt.jar file has been deleted.

The JVM Version 9, when running a program that uses modules, must manage them.
This means that it will be less efficient than when it will run a program that does not use
modules.

We can avoid using the modules because the concept of anonymous modules exists.

1.

2.

3.

4.

5.

Chapter 19 Exercises

582
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 19.b)

Which of the following statements are true?

A modular JAR file has a .jmod extension.

The JDK 9 has defined new applications as jlink, and many other JDK applications such as
jdeps have been modified to support the introduction of the modules.

A module consists of a single file.

The classes of some packages like sun.*, and *.internal.* have been deleted.

An automatic module is a JAR file references int the module path.

Exercise 19.c)

Which of the following statements are true?

The words that define the module directives (module, open, opens, provides, requires,
to, transitive, uses and with) are called “restricted words”.

Both packages and modules follow the same convention for names.

It is possible to annotate the descriptor of a module module-info.java with some
annotations.

The descriptor of a module module-info.class must be in the root directory of the
module.

Exercise 19.d)

Explain what it means to execute the following command:

javac -d mods/com.domain.mymodule src/com.domain.mymodule/com/domain/*
 src/com.domain.mymodule/module-info.java

Exercise 19.e)

Explain what it means to execute the following command:

java --module-path mods -m com.domain/com.domain.HelloModularWorld

1.

2.

3.

4.

5.

1.

2.

3.

4.

Chapter 19 Exercises

583
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 19.f)

Define the following concepts regarding the software architecture:

Software component

Vertical partitioning

Framework (horizontal partitioning)

Cohesion

Coupling

Subsystem

Dependency inversion principle

Exercise 19.g)

Imagine that we have created a management software for a computer store. Let’s also
imagine having a module that contains the code that manages the billing of the store,
and let’s call it shop.billing. This module contains the packages shop.billing.items,
shop.billing.internalalgorithms and shop.billing.availablefunctions. Then con-
sider another module that contains the code that represents the graphic user interface of the
application, and let’s call it a shop.gui. Declare the relative descriptors that explain the
dependency that exists between these two modules.

Exercise 19.h)

Starting from the solution of the previous exercise, declare the descriptor of a module that
contains the code that allows to sell items called the shop.sales, and possibly modify the
descriptors already defined. Keep in mind that:

The shop.sales module contains the packages called:

 shop.sales.availablefunctions

 shop.sales.items

 shop.sales.internalalgorithms

From the graphical user interface it will be possible to sell items of the store.

At the same time as the sale, it must be possible to invoice the sold items.

1.

2.

3.

4.

5.

6.

7.

1.

E

E

E

2.

3.

Chapter 19 Exercises

584
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 19.i)

Starting from the solution of the previous exercise, what can we do if we want the shop.billing
module read the shop.gui.

Exercise 19.l)

Starting from the solution of the Exercise 19.h, what we can do to allow the
shop.gui module to access through reflection to a private method defined in the package
shop.billing.internalalgorithms?

Exercise 19.m)

Consider the solution of the previous exercise. If it is not possible to modify our code anymore,
but we have noticed that a class of the package shop.sales must use a private method of the
package shop.billing.internalalgorithms through reflection, what can we do?

Exercise 19.n)

Which of the following statements is correct:

The ServiceLoader class was introduced already in Java Version 6.

The Service Provider Interface (SPI) component depends on its implementations.

With the ServiceLoader class we can completely eliminate the dependency between
modules.

To implement a service with ServiceLoader, implementations of a service provider
interface must be exported from the respective modules.

A provider method is a kind of factory method.

Exercise 19.o)

Starting from the solution of Exercise 20.n, define packages for the various classes. Then
create and compile a module that exports the package that contains all the classes that
represent data.

Exercise 19.p)

Starting from the solution of Exercise 19.o, create a module that exports the package that
contains the exceptions.

1.

2.

3.

4.

5.

Chapter 19 Exercises

585
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

To compile multiple modules with a single command, the --module-source-path attribute is
usually used. For example, to compile the exercise of section 19.3 on the ServiceLoader, we
used the following command:

javac -d mods --module-source-path
 src src/com.claudiodesio.spi/module-info.java
 src/com.claudiodesio.spi/com/claudiodesio/spi/*
 src/com.claudiodesio.invs/module-info.java
 src/com.claudiodesio.invs/com/claudiodesio/invs/*
 src/com.claudiodesio.certs/module-info.java
 src/com.claudiodesio.certs/com/claudiodesio/certs/*
 src/com.claudiodesio.factory/module-info.java
 src/com.claudiodesio.factory/com/claudiodesio/factory/*
 src/com.claudiodesio.handlers/module-info.java
 src/com.claudiodesio.handlers/com/claudiodesio/handlers/*
 src/com.claudiodesio.client/module-info.java
 src/com.claudiodesio.client/com/claudiodesio/client/*

(written all on one line without wrapping).

Exercise 19.q)

Starting from the solution of Exercise 19.p, create a module that exports the package containing
the utility classes.

Exercise 19.r)

Starting from the solution of Exercise 19.q, create a module that exports the package containing
the class that plays the role of service provider interface. Our goal is to transform the way we
serialize contacts with ServiceLoader.

Exercise 19.s)

Below is the Exercise20N class which represents the client of the phone book that
we will create in the exercises of Chapter 20:

You can safely ignore the implementation details of the Input-Output
APIs that are used below. You just have to know that we will use two
different APIs (named IO and NIO2) to save objects on our hard disk.
Since you’ll have to understand and solve these exercises in the next
chapter, you can come back later and give a look at the code you will
write in the next exercises. Please focus on the argument of Chapter
19: modules.

Chapter 19 Exercises

586
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class Exercise20N {

 private SerializationManager<Contact> fileManager;

 private Contact[] contacts;

 Exercise20N() {
 contacts = getContacts();
 fileManager = new FileNIO2Manager();
 }

 private void executeTest() {
 System.out.println("TESTING THE CREATION OF THE THREE CONTACTS");
 createContacts();
 System.out.println("RETRIEVING THE THREE CONTACTS");
 retrieveContacts();
 System.out.println(
 "TESTING THE CREATION OF A CONTACT ALREADY EXISTING");
 createExistingContact();
 System.out.println("TRYING TO RETRIEVE A CONTACT");
 retrieveNonExistentContact();
 System.out.println("UPDATING AN EXISTING CONTACT");
 updateExistingContact();
 System.out.println("REMOVING AN EXISTING CONTACT");
 removeExistingContact();
 System.out.println("UPDATING AN EXISTING CONTACT");
 updateNonExistentContact();
 System.out.println("REMOVING A NON-EXISTENT CONTACT");
 removeNonExistentContact();
 }

 public void createExistingContact() {
 execute(()->fileManager.insert(contacts[0]));
 }

 public void updateExistingContact() {
 execute(()->fileManager.update(new Contact("Daniele",
 "Mics Street 1","07890")));
 }

 public void removeExistingContact() {
 execute(()->fileManager.remove(contacts[2].getName()));
 }

 public void updateNonExistentContact() {
 execute(()->fileManager.update(new Contact("Foo",
 "Mics Street 1","07890")));
 }

Chapter 19 Exercises

587
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void removeNonExistentContact() {
 execute(()->fileManager.remove("Ligeia"));
 }

 public void retrieveNonExistentContact() {
 execute(()->fileManager.retrieve("Foo"));
 }

 public void createContacts() {
 for (Contact contact : contacts) {
 System.out.println("Creating contact:\n" + contact);
 createContact(contact);
 }
 }

 public void retrieveContacts() {
 for (Contact contact : contacts) {
 System.out.println("Retrieving contact: " + contact.getName());
 retrieveContact(contact.getName());
 }
 }

 public void retrieveContact(String nameContact) {
 execute(()->fileManager.retrieve(nameContact));
 }

 private void createContact(Contact contact) {
 execute(()->fileManager.insert(contact));
 }

 private Contact[] getContacts() {
 Contact contact1 = new Contact("Daniele","Guitars Street 1","01234560");
 Contact contact2 = new Contact("Giovanni","Sciences Avenue 2","0565432190");
 Contact contact3 = new Contact("Ligeia","Secrets Place 3","07899921");
 Contact[] contacts = {
 contact1, contact2, contact3
 };
 return contacts;
 }

 public <O> O execute(Retriever<O> retriever) {
 O output = null;
 try {
 output = retriever.execute();
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 return output;
 }

Chapter 19 Exercises

588
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void execute(Executor executor) {
 try {
 executor.execute();
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public static void main(String args[]) {
 Exercise20N exercise20N = new Exercise20N();
 exercise20N.executeTest();
 }
}

We have printed in bold instructions on which to focus our attention. Notice how in the con-
structor an object of the class FileManagerNIO2 is explicitly created, and assigned to a refer-
ence of SerializationManager. Our goal for this exercise, is to create two different modules
to transform into services the two ways in which we serialize the Contact objects as we see in
chapter 20, with the FileManager and NIO2Manager classes. In the next exercises we will use
these modules.

Exercise 19.t)

Starting from the solution of Exercise 19.s, rename the Exercise20N class to Exer-
cise19T, and use the ServiceLoader to load the services. Make it possible to specify
from the command line which serialization manager should be used. Then create a module
that contains this class and run the application.

Exercise 19.u)

Starting from the solution of Exercise 19.t, create a factory class and the relative
module and move the getSerializationManager() method present in the Ex-
ercise19T class inside it. Modify the com.claudiodesio.phonebook.test module descriptor
accordingly.

Exercise 19.v)

Pack the modules created in the corresponding modular JARs and run the application.

Exercise 19.z)

With jlink create a custom environment with only the java.base module. Then copy in a lib
folder the solutions of the Exercise 19.v, run our executable modular JAR via the newly created
runtime.

589
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 19
Exercise Solutions

Java Platform Module System

Solution 19.a)

The correct statements are the numbers 1, 3 and 5. The statement number 2 is incorrect be-
cause the strong encapsulation allows to make a certain package accessible only to the specified
modules (not to the specified packages). The statement number 4 is incorrect because as stated
in section 19.1.1, the JVM optimization techniques are more effective if the types that will be
used in the application are known a priori.

Solution 19.b)

The only correct statements are the numbers 2 and 5. The number 1 is incorrect because a
modular JAR has a .jar extension. A file with the .jmod extension is instead characterized by
the fact that it also contains native resources. The statement number 3 is clearly false: the de-
scriptor of the module is a single file, not the module itself. Finally, the statement number
4 is also false because the packages were not eliminated, but made unavailable using strong
encapsulation.

Solution 19.c)

All statements are correct.

Chapter 19 Exercise Solutions

590
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 19.d)

With the following instruction:

javac -d mods/com.domain.mymodule
 src/com.domain.mymodule/com/domain/*
 src/com.domain.mymodule/module-info.java

we are compiling a module named com.domain.mymodule.
In particular, with the option:

-d mods/com.domain.mymodule

we are requesting to the javac command, that the result of the compilation will have to be
placed inside the subfolder com.domain.mymodule of the mods directory (folder that must be
present in the same position where we are executing the compilation command).
With the argument:

src/com.domain.mymodule/com/domain/*

we are specifying that all the files present in the src/com.domain.mymodule/com/domain path
must be compiled.
With:

src/com.domain.mymodule/module-info.java

we are specifying that the descriptor of the module module-info.java present in the
src/com.domain.mymodule directory must also be compiled.

Solution 19.e)

With the following instruction:

java --module-path mods -m com.domain/com.domain.mymodule.HelloModularWorld

we are running the main() method of the com.domain.mymodule.HelloModularWorld class of
the module named com.domain.mymodule, specifying the mods directory as module path.

Solution 19.f)

A software component is a set of classes with a well-defined interface, which provides execut-
able functions regardless of the context. A software component is therefore an executable and
reusable subsystem.

Chapter 19 Exercises Solutions

591
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

In a vertical partitioning the application is divided by features of the same importance, and
each of them can be developed independently of the other.
Horizontal partitioning is a partitioning based primarily on inheritance. A typical example is
a framework, that is a micro-architecture that provides an extensible model for implementing
applications within a specific domain.
Cohesion is the measure of how much a certain element (class, method, package, subsystem,
etc.) contributes to achieving a certain purpose within the system.
Coupling is the metric that measures the dependence between classes, between packages, be-
tween methods and so on.
A subsystem is a set of classes linked by associations, events and constraints, and for which
an independent development of the other subsystems is possible. Subsystems are internally
highly cohesive (i.e. they declare only types that work together to achieve a certain purpose),
internally there are highly coupled types that are loosely coupled with external types.
The Dependency Inversion Principle states that classes must depend on abstractions and
not implementations.

Solution 19.g)

A solution could be the following:

module shop.gui {
 requires shop.billing;
}

and:

module shop.billing {
 exports shop.billing.items;
 exports shop.billing.availablefunctions;
 //exports shop.billing.internalalgorithms;
}

That is, the shop.gui module reads the shop.billing module, which in turn exposes
only two of the three packages (note that the third directive is commented out). In fact, the
shop.billing.internalalgorithms package, with that name, very probably could not be
used directly from the outside.

Solution 19.h)

Moving in such an abstract context, it is possible to hypothesize different solutions. Assuming
that the descriptor of the shop.billing module will not be modified, we could simply export
the right packages from the shop.sales module:

Chapter 19 Exercise Solutions

592
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

module shop.sales {
 exports shop.sales.items;
 exports shop.sales.availablefunctions;
 //exports shop.sales.internalalgorithms;
}

and make the shop.gui module read also shop.sales:

module shop.gui {
 requires shop.billing;
 requires shop.sales;
}

thus delegating to the graphical user interface, the burden of defining a function that contextu-
alises the sale and invoicing of an item in a single request from the user. Since it is not a good
practice to assign business rules to a graphical user interface (which must already implement
the presentation logic), we decide to make the situation more flexible, so that we can make deci-
sions later. Then using the requires transitive directive, we are going to modify the descrip-
tor of the shop.sales module, so that it can read (and make read) the shop.billing module.

module shop.sales {
 exports shop.sales.items;
 exports shop.sales.availablefunctions;
 //exports shop.sales.internalalgorithms;
 requires transitive shop.billing;
}

At this point the shop.gui module can only read shop.sales, as it will transitively read also
shop.billing:

module shop.gui {
 //requires shop.billing;
 requires shop.sales;
}

Solution 19.i)

Actually, nothing can be done unless you want to re-evaluate all the dependencies already
specified. If we wanted shop.billing to read shop.gui interface, we would get a cyclic depen-
dency error.

Solution 19.l)

The solution is to review the descriptor of the shop.billing module by exporting the
shop.sales.internalalgorithms package, and at the same time open it to the shop.gui
module.

Chapter 19 Exercises Solutions

593
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

module shop.billing {
 exports shop.billing.items;
 exports shop.billing.availablefunctions;
 exports shop.billing.internalalgorithms;
 opens shop.billing.internalalgorithms to shop.gui;
}

Solution 19.m)

The only solution is to run the program by specifying from the command line the opening of
the shop.billing module to the shop.sales module, with the following syntax:

-add-opens shop.billing/shop.billing.internalalgorithms=shop.sales

Solution 19.n)

The correct statements are the numbers 1, and 5. The statement number 2 is false, because the
implementations depend on the service provider interface. The statement number 4 is false as
it is not necessary to export the implementations of the service provider interface, but rather
to use the provides to directive.

Solution 19.o)

A possible solution is to create a module that we will call com.claudiodesio.phonebook.data.
It will contain the Contact and Data classes, both belonging to a package named as the
module:

package com.claudiodesio.phonebook.data;

import java.io.Serializable;

public interface Data extends Serializable {
}

and:

package com.claudiodesio.phonebook.data;

import java.io.Serializable;

public class Contact implements Data {

 private static final long serialVersionUID = 8942402240056525661L;

 private String name;

Chapter 19 Exercise Solutions

594
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private String address;

 private String phoneNumber;

 public Contact (String name, String address, String phoneNumber) {
 this.name = name;
 this.address = address;
 this.phoneNumber = phoneNumber;
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public String getAddress() {
 return address;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 @Override
 public String toString(){
 return "Name:\t" + name + "\nAddress:\t" + address + "\nPhone:\t"
 + phoneNumber;
 }
}

We can see the packages of the other classes in the solutions of the next exercises.
The descriptor of the module will be the following:

module com.claudiodesio.phonebook.data {
 exports com.claudiodesio.phonebook.data;
}

To compile the module we will use the following command with the usual folder structure that

Chapter 19 Exercises Solutions

595
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

we have used so far (the complete exercise is in the Code\chapter_19\exercises\19.o folder con-
taining the source code of the book, that you have probably downloaded together with the file
that you are reading, at http://www.javaforaliens.com):

javac -d mods --module-source-path src
 src/com.claudiodesio.phonebook.data/module-info.java
 src/com.claudiodesio.phonebook.data/com/claudiodesio/phonebook/data/*.java

Solution 19.p)

A possible solution is to create a module that we will name:

com.claudiodesio.phonebook.exceptions

It will contain the NonExistentContactException and DuplicateContactException classes,
both belonging to a package named as the module:

package com.claudiodesio.phonebook.exceptions;

import java.io.IOException;

public class NonExistentContactException extends IOException {

 private static final long serialVersionUID = 8942402240056525663L;

 public NonExistentContactException(String message) {
 super(message);
 }
}

and:

package com.claudiodesio.phonebook.exceptions;

import java.io.IOException;

public class DuplicateContactException extends IOException {

 private static final long serialVersionUID = 8942402240056525662L;

 public DuplicateContactException (String message) {
 super(message);
 }
}

The module descriptor will be the following:

module com.claudiodesio.phonebook.exceptions {
 exports com.claudiodesio.phonebook.exceptions;
}

Chapter 19 Exercise Solutions

596
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

To compile both the modules, we will use the following command with the usual folder struc-
ture that we have used so far (the complete exercise is in the Code\chapter_19\exercises\19.p
folder of the zip file containing the source code of the book):

javac -d mods --module-source-path src
 src/com.claudiodesio.phonebook.data/module-info.java
 src/com.claudiodesio.phonebook.data/com/claudiodesio/phonebook/data/*.java
 src/com.claudiodesio.phonebook.exceptions/module-info.java
 src/com.claudiodesio.phonebook.exceptions/com/claudiodesio/phonebook/exceptions/*.java

Solution 19.q)

A possible solution is to create a module that we will name com.claudiodesio.phonebook.util.
It will contain the Retriever, Executor and FileUtils classes, belonging to a package named
as the module:

package com.claudiodesio.phonebook.util;

@FunctionalInterface
public interface Retriever<O> {

 O execute() throws Exception;
}

and:

package com.claudiodesio.phonebook.util;

@FunctionalInterface
public interface Executor {

 void execute() throws Exception;
}

and:

package com.claudiodesio.phonebook.util;

public class FileUtils {
 public static final String SUFFIX = ".con";

 public static String getFileName(String name) {
 return name + SUFFIX;
 }
}

The module descriptor will be the following:

module com.claudiodesio.phonebook.util {
 exports com.claudiodesio.phonebook.util;
}

Chapter 19 Exercises Solutions

597
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

To compile the three modules, we will use the following command with the usual folder struc-
ture that we have used so far (the complete exercise is in the Code\chapter_19\exercises\19.q
folder of the file containing the source code of the book):

javac -d mods --module-source-path src
 src/com.claudiodesio.phonebook.data/module-info.java
 src/com.claudiodesio.phonebook.data/com/claudiodesio/phonebook/data/*.java
 src/com.claudiodesio.phonebook.exceptions/module-info.java
 src/com.claudiodesio.phonebook.exceptions/com/claudiodesio/phonebook/exceptions/*.java
 src/com.claudiodesio.phonebook.util/module-info.java
 src/com.claudiodesio.phonebook.util/com/claudiodesio/phonebook/util/*.java

Solution 19.r)

com.claudiodesio.phonebook.spi.SerializationManager is the class will act as ser-
vice provider interface, and which will belong to the com.claudiodesio.phonebook.spi
module:

package com.claudiodesio.phonebook.spi;

import com.claudiodesio.phonebook.data.Data;

import java.io.*;

import java.util.*;

public interface SerializationManager<T extends Data> {

 void insert(T data) throws IOException;

 T retrieve(String id) throws IOException, ClassNotFoundException;

 void update(T data) throws IOException;

 void remove(String id) throws IOException;
}

The descriptor of the module will be the following:

module com.claudiodesio.phonebook.spi {
 exports com.claudiodesio.phonebook.spi;
 requires com.claudiodesio.phonebook.data;
}

In this case it was necessary to read the com.claudiodesio.phonebook.data module, since the
SerialializationManager class uses the Data interface.
To compile the four modules, we will use the following command with the usual folder struc-

Chapter 19 Exercise Solutions

598
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

ture that we have used so far (the complete exercise is in the Code\chapter_19\exercises\19.r
folder of the file containing the source code of the book):

javac -d mods --module-source-path src
 src/com.claudiodesio.phonebook.data/module-info.java
 src/com.claudiodesio.phonebook.data/com/claudiodesio/phonebook/data/*.java
 src/com.claudiodesio.phonebook.exceptions/module-info.java
 src/com.claudiodesio.phonebook.exceptions/com/claudiodesio/phonebook/exceptions/*.java
 src/com.claudiodesio.phonebook.util/module-info.java
 src/com.claudiodesio.phonebook.util/com/claudiodesio/phonebook/util/*.java
 src/com.claudiodesio.phonebook.spi/module-info.java
 src/com.claudiodesio.phonebook.spi/com/claudiodesio/phonebook/spi/*.java

Solution 19.s)

First of all, we had to add to the FileManager and FileManagerNIO2 classes, in addition to the
package declarations, several import declarations:

package com.claudiodesio.phonebook.io;

import com.claudiodesio.phonebook.spi.SerializationManager;
import com.claudiodesio.phonebook.data.Contact;
import com.claudiodesio.phonebook.exceptions.*;
import com.claudiodesio.phonebook.util.*;
import java.util.*;
import java.io.*;

public class FileManager implements SerializationManager<Contact> {

 @Override
 public void insert(Contact contact) throws DuplicateContactException,
 FileNotFoundException, IOException {
 Contact duplicateContact = getContact(contact.getName());
 if (duplicateContact != null) {
 throw new DuplicateContactException(contact.getName() +
 ": contact already exists!");
 }
 store(contact);
 }

 @Override
 public Contact retrieve(String name) throws ContactNotFoundException,
 DuplicateContactException {
 Contact contact = getContact(name);
 if (contact == null) {
 throw new ContactNotFoundException(name + ": contact not found!");
 }
 return contact;
 }

Chapter 19 Exercises Solutions

599
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 @Override
 public void update(Contact contact) throws ContactNotFoundException,
 DuplicateContactException, FileNotFoundException, IOException {
 if (isContactExisting(contact.getName())) {
 store(contact);
 } else {
 throw new ContactNotFoundException(contact.getName() +
 ": contact not found!");
 }
 }

 @Override
 public void remove(String name) throws ContactNotFoundException,
 DuplicateContactException, FileNotFoundException, IOException {
 File file = new File(FileUtils.getFileName(name));
 if (file.delete()) {
 System.out.println("Contact " + name + " deleted!");
 } else {
 throw new ContactNotFoundException(name + ": contact not found!");
 }
 }

 private void store(Contact contact) throws FileNotFoundException,
 IOException {
 try (FileOutputStream fos =
 new FileOutputStream (new File(FileUtils.getFileName(
 contact.getName())));
 ObjectOutputStream s = new ObjectOutputStream (fos);) {
 s.writeObject (contact);
 System.out.println("Contact stored:\n"+ contact);
 }
 }

 private boolean isContactExisting(String name) {
 File file = new File(FileUtils.getFileName(name));
 return file.exists();
 }

 private Contact getContact(String name) {
 try (FileInputStream fis = new FileInputStream (
 new File(FileUtils.getFileName(name)));
 ObjectInputStream ois = new ObjectInputStream (fis);) {
 Contact contact = (Contact)ois.readObject();
 System.out.println("Contact retrieved:\n"+ contact);
 return contact;
 } catch (Exception exc) {
 return null;
 }
 }
}

Chapter 19 Exercise Solutions

600
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

and:

package com.claudiodesio.phonebook.nio;

import com.claudiodesio.phonebook.spi.SerializationManager;
import com.claudiodesio.phonebook.data.Contact;
import com.claudiodesio.phonebook.exceptions.*;
import com.claudiodesio.phonebook.util.*;
import java.util.*;
import java.io.*;
import java.util.*;
import java.io.*;
import java.nio.file.*;

public class FileManagerNIO2 implements SerializationManager<Contact> {

 @Override
 public void insert(Contact contact) throws DuplicateContactException,
 FileNotFoundException, IOException {

 Path path = Paths.get(FileUtils.getFileName(contact.getName()));
 if (Files.exists(path)) {
 throw new DuplicateContactException(contact.getName() +
 ": contact already exists!");
 }
 store(contact);
 }

 @Override
 public Contact retrieve(String name) throws ContactNotFoundException,
 DuplicateContactException {

 Contact contact = getContact(name);
 if (contact == null) {
 throw new ContactNotFoundException(name + ": contact not found!");
 }
 return contact;
 }

 @Override
 public void update(Contact contact) throws ContactNotFoundException,
 DuplicateContactException, FileNotFoundException, IOException {

 if (isExistingContact(contact.getName())) {
 store(contact);
 } else {
 throw new ContactNotFoundException(contact.getName() +
 ": contact not found!");
 }
 }

Chapter 19 Exercises Solutions

601
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 @Override
 public void remove(String name) throws ContactNotFoundException,
 DuplicateContactException, FileNotFoundException, IOException {
 Path path = Paths.get(FileUtils.getFileName(name));
 if (Files.exists(path)) {
 Files.delete(path);
 System.out.println("Contact "+ name +" deleted!");
 } else {
 throw new ContactNotFoundException(name +": contact not found!");
 }
 }

 private void store(Contact contact) throws FileNotFoundException,
 IOException {
 Path path = Paths.get(FileUtils.getFileName(contact.getName()));
 Files.write(path, getBytesFromObject(contact));
 System.out.println("Contact stored:\n"+ contact);
 }

 private byte[] getBytesFromObject(Object object) throws IOException {
 try (ByteArrayOutputStream bos = new ByteArrayOutputStream();
 ObjectOutput out = new ObjectOutputStream(bos)) {
 out.writeObject(object);
 return bos.toByteArray();
 }
 }

 private Object getObjectFromByte(byte[] bytes) throws IOException,
 ClassNotFoundException {
 try (ByteArrayInputStream bis = new ByteArrayInputStream(bytes);
 ObjectInput in = new ObjectInputStream(bis)) {
 return in.readObject();
 }
 }

 private boolean isExistingContact(String name) {
 Path path = Paths.get(FileUtils.getFileName(name));
 return Files.exists(path);
 }

 private Contact getContact(String name) {
 Path path = Paths.get(FileUtils.getFileName(name));
 byte[] bytes = null;
 Contact contact = null;
 try {
 bytes = Files.readAllBytes(path);
 contact = (Contact)getObjectFromByte(bytes);
 System.out.println("Contact retrieved:\n" + contact);
 }

Chapter 19 Exercise Solutions

602
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 catch (Exception exc) {
 return null;
 }
 return contact;
 }
}

The first module will contain FileManager and will be called com.claudiodesio.phonebook.io,
while FileManagerNIO2 will be contained in the module com.claudiodesio.phonebook.nio.
For the first module we can create the following descriptor:

module com.claudiodesio.phonebook.io {
 //exports com.claudiodesio.phonebook.io;
 provides com.claudiodesio.phonebook.spi.SerializationManager with
 com.claudiodesio.phonebook.io.FileManager;
 requires com.claudiodesio.phonebook.data;
 requires com.claudiodesio.phonebook.exceptions;
 requires com.claudiodesio.phonebook.spi;
 requires com.claudiodesio.phonebook.util;
}

While for the second we can create this other:

module com.claudiodesio.phonebook.nio {
 //exports com.claudiodesio.phonebook.nio;
 provides com.claudiodesio.phonebook.spi.SerializationManager with
 com.claudiodesio.phonebook.nio.FileManagerNIO2;
 requires com.claudiodesio.phonebook.data;
 requires com.claudiodesio.phonebook.exceptions;
 requires com.claudiodesio.phonebook.spi;
 requires com.claudiodesio.phonebook.util;
}

To compile the six modules, we will use the following command with the usual folder structure
that we have used so far (the complete exercise is in the Code\chapter_19\exercises\19.s folder
of the file containing the source code of the book):

javac -d mods --module-source-path src
 src/com.claudiodesio.phonebook.data/module-info.java
 src/com.claudiodesio.phonebook.data/com/claudiodesio/phonebook/data/*.java
 src/com.claudiodesio.phonebook.exceptions/module-info.java
 src/com.claudiodesio.phonebook.exceptions/com/claudiodesio/phonebook/exceptions/*.java
 src/com.claudiodesio.phonebook.util/module-info.java
 src/com.claudiodesio.phonebook.util/com/claudiodesio/phonebook/util/*.java
 src/com.claudiodesio.phonebook.spi/module-info.java
 src/com.claudiodesio.phonebook.spi/com/claudiodesio/phonebook/spi/*.java
 src/com.claudiodesio.phonebook.io/module-info.java
 src/com.claudiodesio.phonebook.io/com/claudiodesio/phonebook/io/*.java
 src/com.claudiodesio.phonebook.nio/module-info.java
 src/com.claudiodesio.phonebook.nio/com/claudiodesio/phonebook/nio/*.java

Chapter 19 Exercises Solutions

603
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 19.t)

We have changed the name of the Exercise18N class with Exercise19T to exploit the
ServiceLoader and load the services declared in the previous exercise. In addition, we have
refactored the various imports and declared the belonging package.

package com.claudiodesio.phonebook.test;

import java.util.function.*;
import com.claudiodesio.phonebook.spi.SerializationManager;
import com.claudiodesio.phonebook.data.Contact;
import com.claudiodesio.phonebook.util.*;
import java.util.Iterator;
import java.util.ServiceLoader;

public class Exercise19T {

 private SerializationManager<Contact> fileManager;

 private Contact[] contacts;

 public Exercise19T(String className) {
 contacts = getContacts();
 fileManager = getSerializationManager(className);
 }

 public SerializationManager<Contact> getSerializationManager(
 String className) {
 ServiceLoader<SerializationManager> serviceLoader = ServiceLoader.load(
 com.claudiodesio.phonebook.spi.SerializationManager.class);
 for (SerializationManager<Contact> serializationManager : serviceLoader)
 {
 if (serializationManager.getClass().
 getSimpleName().equals(className)) {
 return serializationManager;
 }
 }
 throw new IllegalArgumentException(
 "No serialization manager found for class = " + className);
 }

 private void executeTest() {
 System.out.println("TESTING THE CREATION OF THE THREE CONTACTS");
 createContacts();
 System.out.println("RETRIEVING THE THREE CONTACTS");
 retrieveContacts();
 System.out.println(
 "TESTIING THE CREATION OF A CONTACT ALREADY EXISTING");

Chapter 19 Exercise Solutions

604
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 createExistingContact();
 System.out.println("TRYING TO RETRIEVE A CONTACT");
 retrieveNonExistentContact();
 System.out.println("UPDATING AN EXISTING CONTACT");
 updateExistingContact();
 System.out.println("REMOVING AN EXISTING CONTACT");
 removeExistingContact();
 System.out.println("UPDATING AN EXISTING CONTACT");
 updateNonExistentContact();
 System.out.println("REMOVING A NON-EXISTENT CONTACT");
 removeNonExistentContact();
 }

 public void createExistingContact() {
 execute(()->fileManager.insert(contacts[0]));
 }

 public void updateExistingContact() {
 execute(()->fileManager.update(new Contact("Daniele",
 "Mics Street 1","07890")));
 }

 public void removeExistingContact() {
 execute(()->fileManager.remove(contacts[2].getName()));
 }

 public void updateNonExistentContact() {
 execute(()->fileManager.update(new Contact("Foo",
 "Mics Street 1","07890")));
 }

 public void removeNonExistentContact() {
 execute(()->fileManager.remove("Ligeia"));
 }

 public void retrieveNonExistentContact() {
 execute(()->fileManager.retrieve("Foo"));
 }

 public void createContacts() {
 for (Contact contact : contacts) {
 System.out.println("Creating contact:\n" + contact);
 createContact(contact);
 }
 }

 public void retrieveContacts() {
 for (Contact contact : contacts) {
 System.out.println("Retrieving contact: " + contact.getName());

Chapter 19 Exercises Solutions

605
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 retrieveContact(contact.getName());
 }
 }

 public void retrieveContact(String nameContact) {
 execute(()->fileManager.retrieve(nameContact));
 }

 private void createContact(Contact contact) {
 execute(()->fileManager.insert(contact));
 }

 private Contact[] getContacts() {
 Contact contact1 = new Contact("Daniele","Guitars Street 1","01234560");
 Contact contact2 = new Contact("Giovanni", "Sciences Avenue 2","0565432190");
 Contact contact3 = new Contact("Ligeia","Secrets Place 3","07899921");
 Contact[] contacts = {
 contact1, contact2, contact3
 };
 return contacts;
 }

 public <O> O execute(Retriever<O> retriever) {
 O output = null;
 try {
 output = retriever.execute();
 }
 catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 return output;
 }

 public void execute(Executor executor) {
 try {
 executor.execute();
 }
 catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public static void main(String args[]) {
 Exercise19T exercise19T = new Exercise19T(args[0]);
 exercise19T.executeTest();
 }
}

In bold we have highlighted the getSerializationManager() factory method which

Chapter 19 Exercise Solutions

606
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

manages which service to use (based on the className parameter). Then we defined the
relative module of which we report the descriptor below, which can access via reflection to
SerializationManager:

module com.claudiodesio.phonebook.test {
 uses com.claudiodesio.phonebook.spi.SerializationManager;
 requires com.claudiodesio.phonebook.spi;
 requires com.claudiodesio.phonebook.data;
 requires com.claudiodesio.phonebook.util;
}

We can now compile the seven modules defined so far with the following command (as always,
the complete exercise is in the Code\chapter_19\exercises\19.t folder of the zip file containing
the source code of the book).

javac -d mods --module-source-path src
 src/com.claudiodesio.phonebook.data/module-info.java
 src/com.claudiodesio.phonebook.data/com/claudiodesio/phonebook/data/*.java
 src/com.claudiodesio.phonebook.exceptions/module-info.java
 src/com.claudiodesio.phonebook.exceptions/com/claudiodesio/phonebook/exceptions/*.java
 src/com.claudiodesio.phonebook.util/module-info.java
 src/com.claudiodesio.phonebook.util/com/claudiodesio/phonebook/util/*.java
 src/com.claudiodesio.phonebook.spi/module-info.java
 src/com.claudiodesio.phonebook.spi/com/claudiodesio/phonebook/spi/*.java
 src/com.claudiodesio.phonebook.io/module-info.java
 src/com.claudiodesio.phonebook.io/com/claudiodesio/phonebook/io/*.java
 src/com.claudiodesio.phonebook.nio/module-info.java
 src/com.claudiodesio.phonebook.nio/com/claudiodesio/phonebook/nio/*.java
 src/com.claudiodesio.phonebook.test/module-info.java
 src/com.claudiodesio.phonebook.test/com/claudiodesio/phonebook/test/*.java

To run the application we can use the following command:

java --module-path mods -m
 com.claudiodesio.phonebook.test/com.claudiodesio.phonebook.test.Exercise19T FileManager

Which will print the same output seen in the solution of the 18.n exercise and which we report
below for convenience:

TESTING THE CREATION OF THE THREE CONTACTS
Creating contact:
Name: Daniele
Address: Guitars Street 1
Phone: 01234560
Contact stored:
Name: Daniele
Address: Guitars Street 1
Phone: 01234560
Creating contact:
Name: Giovanni

Chapter 19 Exercises Solutions

607
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Address: Sciences Avenue 2
Phone: 0565432190
Contact stored:
Name: Giovanni
Address: Sciences Avenue 2
Phone: 0565432190
Creating contact:
Name: Ligeia
Address: Secrets Place 3
Phone: 07899921
Contact stored:
Name: Ligeia
Address: Secrets Place 3
Phone: 07899921
RETRIEVING THE THREE CONTACTS
Retrieving contact: Daniele
Contact retrieved:
Name: Daniele
Address: Guitars Street 1
Phone: 01234560
Retrieving contact: Giovanni
Contact retrieved:
Name: Giovanni
Address: Sciences Avenue 2
Phone: 0565432190
Retrieving contact: Ligeia
Contact retrieved:
Name: Ligeia
Address: Secrets Place 3
Phone: 07899921
TESTIING THE CREATION OF A CONTACT ALREADY EXISTING
Contact retrieved:
Name: Daniele
Address: Guitars Street 1
Phone: 01234560
Daniele: contact already exists!
TRYING TO RETRIEVE A CONTACT
Foo: contact not found!
UPDATING AN EXISTING CONTACT
Contact stored:
Name: Daniele
Address: Mics Street 1
Phone: 07890
REMOVING AN EXISTING CONTACT
Contact Ligeia deleted!
UPDATING AN EXISTING CONTACT
Foo: contact not found!
REMOVING A NON-EXISTENT CONTACT
Ligeia: contact not found!

To use the FileManagerNIO2 class it will be sufficient to specify it as a command line argument
instead of FileManager.

Chapter 19 Exercise Solutions

608
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 19.u)

Thus, we rewrite the constructor of the Exercise19U class:

 public Exercise19U(String className) {
 contacts = getContacts();
 fileManager =
 SerializationManagerFactory.getSerializationManager(className);
 }

which invokes the static method getSerializationManager() of the
SerializationManagerFactory class. In fact, here is the SerializationFactoryManager
class:

package com.claudiodesio.phonebook.factory;

import com.claudiodesio.phonebook.spi.SerializationManager;
import com.claudiodesio.phonebook.data.Contact;
import java.util.Iterator;
import java.util.ServiceLoader;

public class SerializationManagerFactory {
 public static SerializationManager<Contact> getSerializationManager(
 String className) {
 ServiceLoader<SerializationManager> serviceLoader = ServiceLoader.load(
 com.claudiodesio.phonebook.spi.SerializationManager.class);
 for (SerializationManager serializationManager : serviceLoader) {
 if (serializationManager.getClass().getSimpleName().
 equals(className)) {
 return serializationManager;
 }
 }
 throw new IllegalArgumentException(
 "No serialization manager found for class = " + className);
 }
}

The descriptor of the new module com.claudiodesio.phonebook.factory is the following:

module com.claudiodesio.phonebook.factory {
 exports com.claudiodesio.phonebook.factory to
 com.claudiodesio.phonebook.test;
 requires com.claudiodesio.phonebook.spi;
 requires com.claudiodesio.phonebook.data;
 uses com.claudiodesio.phonebook.spi.SerializationManager;
}

While the descriptor of the module com.claudiodesio.phonebook.test can be simplified as
follows:

Chapter 19 Exercises Solutions

609
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

module com.claudiodesio.phonebook.test {
 requires com.claudiodesio.phonebook.spi;
 requires com.claudiodesio.phonebook.factory;
 requires com.claudiodesio.phonebook.data;
 requires com.claudiodesio.phonebook.util;
}

The command to compile everything will be:

javac -d mods --module-source-path src
 src/com.claudiodesio.phonebook.data/module-info.java
 src/com.claudiodesio.phonebook.data/com/claudiodesio/phonebook/data/*.java
 src/com.claudiodesio.phonebook.exceptions/module-info.java
 src/com.claudiodesio.phonebook.exceptions/com/claudiodesio/phonebook/exceptions/*.java
 src/com.claudiodesio.phonebook.util/module-info.java
 src/com.claudiodesio.phonebook.util/com/claudiodesio/phonebook/util/*.java
 src/com.claudiodesio.phonebook.spi/module-info.java
 src/com.claudiodesio.phonebook.spi/com/claudiodesio/phonebook/spi/*.java
 src/com.claudiodesio.phonebook.io/module-info.java
 src/com.claudiodesio.phonebook.io/com/claudiodesio/phonebook/io/*.java
 src/com.claudiodesio.phonebook.nio/module-info.java
 src/com.claudiodesio.phonebook.nio/com/claudiodesio/phonebook/nio/*.java
 src/com.claudiodesio.phonebook.test/module-info.java
 src/com.claudiodesio.phonebook.test/com/claudiodesio/phonebook/test/*.java
 src/com.claudiodesio.phonebook.factory/com/claudiodesio/phonebook/factory/*.java
 src/com.claudiodesio.phonebook.factory/module-info.java

The execution command does not change with respect to that used in the previous exercise, as
well as the output.

Solution 19.v)

Meanwhile we have renamed the Exercise19U class in Exercise19V and recompiled the mod-
ules. We then created the eight modular files with this command:

jar --create --file=lib/com.claudiodesio.phonebook.data.jar
 --module-version=1.0 -C mods/com.claudiodesio.phonebook.data .
jar --create --file=lib/com.claudiodesio.phonebook.exceptions.jar
 --module-version=1.0 -C mods/com.claudiodesio.phonebook.exceptions .
jar --create --file=lib/com.claudiodesio.phonebook.util.jar
 --module-version=1.0 -C mods/com.claudiodesio.phonebook.util .
jar --create --file=lib/com.claudiodesio.phonebook.spi.jar
 --module-version=1.0 -C mods/com.claudiodesio.phonebook.spi .
jar --create --file=lib/com.claudiodesio.phonebook.io.jar
 --module-version=1.0 -C mods/com.claudiodesio.phonebook.io .
jar --create --file=lib/com.claudiodesio.phonebook.nio.jar
 --module-version=1.0 -C mods/com.claudiodesio.phonebook.nio .
jar --create --file=lib/com.claudiodesio.phonebook.factory.jar
 --module-version=1.0 -C mods/com.claudiodesio.phonebook.factory .
jar --create --file=lib/com.claudiodesio.phonebook.test.jar
 --module-version=1.0 --main-class = com.claudiodesio.phonebook.test.Exercise19V -C
 mods/com.claudiodesio.phonebook.test .

Chapter 19 Exercise Solutions

610
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Then we executed the module with the command:

java -p lib -m com.claudiodesio.phonebook.test FileManager

or alternatively with:

java -p lib -m com.claudiodesio.phonebook.test FileManagerNIO2

Solution 19.z)

With the following command we create the requested runtime:

jlink --module-path "C:/Program Files/Java/jdk-13/jmods"
 --add-modules java.base --output javabasert

While with the following command we execute our modular JAR
com.claudiodesio.phonebook.test using the created runtime:

javabasert\bin\java -p lib -m com.claudiodesio.phonebook.test FileManager

As always, just replace FileManager with FileManagerNIO2 to obtain the serialization in the
alternative way:

javabasert\bin\java -p lib -m com.claudiodesio.phonebook.test FileManagerNIO2

611
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 20
Exercises

Input-Output

The exercises in this chapter will be initially theory oriented, with three “true-false” exercises.
Then we will resume the exercise of the phonebook application we made in the first seven
chapters by adding the serialization of the objects step by step. We will also create a command
line interface using the MVC pattern, creating a considerable degree of complexity, even for
the already experienced programmer. As always, then we will find some preparatory exercises
for the Oracle Programmer certification.

Exercise 20.a) Input - Output, True or False:

The Decorator pattern allows you to implement a sort of dynamic inheritance. This
means that, instead of creating as many classes as there are entities to be abstracted, at
runtime it will be possible to concretize one of these concepts directly with an object.

Readers and writers allow you to read and write characters. For this reason, they are called
Character Stream.

Within the java.io package the Reader interface has the role of ConcreteComponent.

Within the java.io package the InputStream interface has the role of
ConcreteDecorator.

A BufferedWriter is a ConcreteDecorator.

1.

2.

3.

4.

5.

Chapter 20 Exercises

612
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Streams that can communicate directly with a source or destination are called Node
Streams.

The node streams of type OutputStream can use the method:

 int write (cbuf byte [])

to write to a destination.

The following in object:

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

allows to use a readLine() method that will read sentences written with the keyboard
delimited by the keystroke of the Enter key.

The following code:

File outputFile = new File("foo.txt");

creates a text file called foo.txt in the current folder.

 It is not possible to decorate a FileReader.

Exercise 20.b) Serialization, True or False:

The state of an object is defined by the value of its instance variables (at a certain time).

The Serializable interface has no methods.

transient is a modifier applicable to variables and classes. A transient variable is not
serialized with the other variables; a transient class is not serializable.

transient is a modifier applicable to methods and variables. A transient variable is not
serialized with the other variables; a transient method is not serializable.

If you tried to serialize an object that has one of its instance variables of type Reader
declared as transient, we would get a NotSerializableException at runtime.

A static variable will not be serialized.

An instance variable of type OuputStream must be declared transient to be involved in
the serialization process.

It is not possible to use a Serializable implementation as a parameter of a try-with-
resources”.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

Chapter 20 Exercises

613
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

You can create a clone of a transient object using input-output methods.

 An object can also be serialized in Base64.

Exercise 20.c) New Input Output, True or False:

NIO 2.0 completely replaces the input-output model defined with the package java.io.

The use of the File class could be completely replaced by the use of the Files class and
the Path interface.

The toPath() method of the File class returns the equivalent Path object.

Path is an interface because its implementation depends on the platform.

The relativize() method belongs to the Files class and returns the path to get from
the Path specified as the first argument to the Path specified as the second argument.

The subPath() method of the Path interface does not return the root node.

The delete() method of the Path interface will raise an exception if you try to delete a
non-empty directory.

It makes no sense to get a Reader or Writer from a Files object.

The temporary file name is always established by the operating system.

 A temporary file is saved in a directory that depends on the operating system.

Exercise 20.d)

Create an InteractiveEditor class containing a main() method that allows you to write in a
file what you type from the command line.

Exercise 20.e)

Create a More class containing a main() method that simulates the program more that you can
find on Linux operating systems. Once executed, it will wait for the user to specify the input
file to read. Once the file is loaded, the program will wait for user input. If the user presses the
letter “n” followed by the Enter key, then the first 10 lines of the selected file will be displayed,
and each time the action is repeated will print the next 10 lines, up to the end of the file. By
specifying the letter “q” followed by the Enter key the program must end.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 20 Exercises

614
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 20.f)

Starting from the solution of the Exercise 7.y, let’s continue to evolve our appli-
cation that simulates the functioning of a phonebook. In this and the next few
exercises, we will therefore create new classes to add to our application step by step. Later on,
we will integrate the classes created in the Exercise 7.y with those that we will create in the next
exercises.
We will use as a “data persistence layer”, a component that deals with serializing and deserializ-
ing objects on the file system. In other words, we want to create a class called FileManager, be-
longing to the phonebook.integration package, and which exposes the following methods:

insert() which takes an object of type Contact as input, and returns nothing. It will have
the task of serializing on our file system the Contact object that takes as input, in a file
with the name of the contact (variable name of the Contact class) and with suffix .con. For
example, if the contact name is “Ross”, then the file name should be Ross.con.

retrieve() which takes as input the name of the contact to be retrieved through deseri-
alization. For example, if the name “Phoebe Buffay” is passed, the Phoebe Buffay.con file
must be retrieved.

The only class of the Exercise 7.y that we have to reuse for now should be the Contact class, which
however extended the Entity class, which in turn implemented the Data and the Identifiable
interfaces, so let’s start from these files. In order to make the Contact class serialization work,
we have to make that the Entity class also implements the java.io.Serializable interface.
Also replace the printDetails() method of the Contact class with a toString() method
implementation.

Exercise 20.g)

Create an Exercise20G test class that verifies that the methods created in the FileManager
class in the previous exercise are working properly. This class must create an array of three
contacts, serialize them and try to reread them.

Exercise 20.h)

Starting from the solution of the previous exercise, create the Exercise20H class
starting from the Exercise20G class by adding (and calling) two methods that test:

what happens if you try to add an existing contact;

what happens if you try to retrieve a non-existing contact.

1.

2.

1.

2.

Chapter 20 Exercises

615
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Think about the test results and:

design solutions for any problems that have been encountered;

implement the designed solutions.

Exercise 20.i)

Starting from the solution of the previous exercise, let’s add the methods in the
FileManager class:

update() that modifies a contact (you will not have to be able to change the contact
name);

remove() which deletes the contact with the specified name.

Also create the methods in the test class that check the proper functioning of the update() e
remove() methods.

Exercise 20.j)

Starting from the solution of the previous exercise, let’s add another requirement, this time
not functional but architectural: applying the dependency inversion principle (DIP, intro-
duced in paragraph 18.2.1). As previously done for the Contact class, we therefore evolve the
FileManager class, using a generalization to represent an implementation of a generic tool to
interact with any storage mechanism.
So, let’s create a SerializationManager interface to be implemented by FileManager. This
modification will allow us to easily change the way we serialize our objects (see exercise 20.l).

Exercise 20.k)

Starting from the solution of the previous exercise, let’s add another requirement. Let’s do
some code refactoring, removing duplicate code in the created classes. In particular, create the
Exercise20k class, eliminating the duplications of code that were present in the Exercise20j
class. Of course, the reader is free to add any improvements to its code in any class.

During development, it is very important at some point, to stop,
reflect on and enhance your code, by “refactoring”, or change the
internals structure of the software without changing its external be-
havior. This may seem like a waste of time to someone, but it is . . .

1.

2.

1.

2.

Chapter 20 Exercises

616
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

. . . exactly the opposite. Refactoring improves the quality of the non-
functional level code by improving its architectural characteristics. It
favors some of what are called “systemic qualities of the software”, for
example it promotes maintainability and extensibility of the code,
reducing its complexity. In this way we will have less bugs and more
awareness of our code. My personal advice is to dedicate a daily per-
centage of the development time that varies from 10% to 25% to refac-
toring, possibly when you realize you are too tired. For example, on
an 8-hour working day, the last two hours (or at least the last) could be
dedicated to improving the quality of the software. For information
on refactoring you can:

- visit https://refactoring.com

- buy the “Refactoring” book by Martin Fowler, as recommended in
the bibliography of Appendix Z;

- use the refactoring mechanisms offered by the most famous IDEs.

Exercise 20.l)

Starting from the previous Exercise solution, also create an alternative implemen-
tation of the FileManager class using the NIO2 API (FileManagerNIO2 class). Also
implement the Exercise20L test class.

Exercise 20.m)

Starting from the previous exercise, using an object of type Properties (intro-
duced in Chapter 14), create a config.properties configuration file containing a single
property, which our application will exploit to choose whether to use the FileManager class
or FileManagerNIO2 class to serialize objects. Create a SerializationManagerFactory class,
which implements the Factory Method pattern by defining the getSerializationManager()
method. Finally, create the Exercise20M class starting from the Exercise20L class, which takes
advantage of the mechanism just described for serializing objects.

Chapter 20 Exercises

617
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 20.n)

This and the next exercises are particularly complex. They
are hard even for professionals. Sometimes it will be neces-
sary to go on the internet to study libraries and solutions,
and be very focused. So even if the results aren’t so good, you
don’t have to worry. If you get stuck, read the solutions and
move on. If instead you can solve these exercises in some
way, then it means that you have reached a really important
programming level!

Starting with this exercise, we will create a command line user interface. It is a complex exercise
that requires a step-by-step procedure. In this first exercise, using an object of type Scanner,
we will therefore define a PhonebookCLI class, which represents a user interface from the com-
mand line (“CLI” stands for “Command Line Interface”). We will use the Model View Control-
ler (MVC) architectural pattern which is schematized in Figure 20.n.1.

Figure 20.n.1 – Model View Controller.

Note that the arrow that goes from the Model to the View has been
drawn dashed, because even if it represents a responsibility of the
classic MVC pattern, it will not be implemented in our case (as often
happens), to make the Model component independent of the View
component. The updated Model data will be passed to the View di-
rectly from the Controller.

Chapter 20 Exercises

618
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The MVC pattern promotes the separation of responsibilities in a software with different com-
ponents, defining three main roles, precisely the Model, the View and the Controller. This dis-
tinction will guarantee us a series of advantages from the point of view of maintainability, ease
of finding bugs, reusability, and so on. We will assume that the role of Model will be interpreted
by the set of classes (apart from the test classes) that we have already created and that make up
our application so far. The class PhonebookCLI instead, will represent the View component, or
the component that implements the so-called presentation logic. This means that it will have two
fundamental responsibilities:

define the “screens” for the user (which in our case will consist of simple text);

notify the controller component of any user input (implementation that we will do start-
ing from the next exercise).

Also, in our case, we want to emphasize that our PhonebookCLI class will have an additional
responsibility:

handle exceptions (i.e. must use try-catch blocks to view any exceptions that have prop-
agated from the Model component).

Figure 20.n.2 – State Diagram.

1.

2.

3.

Chapter 20 Exercises

619
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

This means that the methods of the Controller and Model components will not handle ex-
ceptions but simply allow their propagation. In other words, the methods of the Controller
and Model components will not use try-catch blocks, but throws clauses, to catch exceptions
thrown with the throw keyword. Our implementation must follow the specifications repre-
sented in the state diagram in Figure 20.n.2.

The state diagram is usually used to describe the states of an entity (for
example an object), which it assumes during its life cycle. It defines
the main elements as states (represented as rectangles with round-
ed edges) and transitions between states. The latter have a verse, and
can be labelled with a syntax consisting of three parts (all optional):
event-trigger [condition] / action. Also, there are the start and end
elements that we have already encountered with the activity diagram.
More information on UML syntax can be found in Appendix G.

The diagram is quite complex, but it will be enough to take it one step at a time to be able to in-
terpret it, and in the end, we will discover that it is a fundamental specification for our program.
In fact, the programming of user interfaces differs a lot from the traditional programming that
we have used so far. A diagram like the one specified in Figure 20.n.2 will allow us not to have
to improvise a solution.
In the diagram we have used states to represent the “text screens” that must be displayed, and
transitions labelled with the event-triggers that lead from one screen to another.

Note that we have specified a very specific protocol, where for each
screen there is a particular set of commands that can be specified, to
move to another screen. All operating commands consist of a single
letter preceded by the symbol “/”.

To create the PhonebookCLI class, we then begin to create the methods represented in the state
diagram. These will have to:

print consistent messages

capture user input with a Scanner object (declare it as an instance variable).

In this exercise, therefore, our tasks must be limited to:

1.

2.

Chapter 20 Exercises

620
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

create the PhonebookCLI class, which has as its instance variable a Scanner object
initialized in a constructor.

Define the showContacts() method which takes as input a List object of contacts and
returns void. For now this method will have to implement the flow described in the
diagram, that is, after having printed the list of contacts it takes as input, and the list of
possible commands to be specified, wait for user input and with conditional constructs
print only (for now) the description of the command typed by the user, then the program
can end. For example, if the user types the “/i” command, then the program must print
“Called insert contact method”. If, on the other hand, the user types the “/v” command
followed by the name of a contact in the list (suppose the name “Giovanni”), the program
must print “Called method show contact for Giovanni”. Finally, if the user specifies the
“/t” command, the program must terminate

Create an exception called InvalidCommandException that must be thrown in the event
that the command specified by the user is not valid.

Throw the (already created) NonExistingContactException exception if the user types
the command to view the contact “/v” followed by a name that is not in the list.

Finally create the Exercise20N class that will be used to launch the application (you must
instantiate the PhonebookCLI object and call the method showContacts() by passing it a
list of Contact objects as input).

In the next few exercises, we will evolve this class until it becomes fully functional.

Starting from this exercise, to capture user input, we strongly recom-
mend using the nextLine() method of the Scanner class, in order to
make your life easier. In fact, the joint use of nextLine(), and other
methods such as next(), on the same Scanner object, means that the
reading of the user input will be managed in a more complex way. So
always use only the nextLine() method.

Exercise 20.o)

Starting from the solution of the previous exercise, we begin to create
the PhonebookController class, which will play the role of the Controller
component within the MVC architecture. In particular, this class has the task of defining the

1.

2.

3.

4.

5.

Chapter 20 Exercises

621
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

so-called control logic, that is, it will have to implement the following responsibilities:

 capture and interpret user inputs notified by the View component;

 invoke business methods exposed by the Model component (both updating and
retrieving data);

 select the right screen for the View component.

That said, in the previous exercise we created the showContacts() method which was limited
to printing certain messages. The time has come to replace those messages with notifications to
the Controller component (i.e. the View must call methods on the PhonebookController class).
These methods, as we have already said, are represented in the diagram of Figure 20.n.1 as the
transitions that lead from one screen to another. PhonebookController methods will always
start with the word “handle”.
With the previous exercise, we invoked the showContacts() method of the PhonebookCLI class
from the Exercise20N class. The Exercise20N class also took care of passing to the method
showContacts() the list of contacts. In this exercise, however, the Exercise20O class will in-
voke a new method of the PhonebookCLI class which we will call start(). This method in turn
will invoke the start() method of the PhonebookController class. Here, to for the respon-
sibilities of the Controller component, a method called getContacts() (to be created) of the
Model which will return all existing contacts, will be invoked. Once the contacts have been re-
turned by the getContacts() method, the start() method of the PhonebookController class
will invoke the showContacts() method of the PhonebookCLI class. All this is summarized in
the sequence diagram shown in Figure 20.o.1:

Figure 20.o.1 – Sequence Diagram.

1.

2.

3.

Chapter 20 Exercises

622
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

So, in this exercise we will have to:

Create the getContacts() method in the Model component, which returns the contacts
already created. Note that initially we will not have contacts to retrieve, so to test the
getContacts() method, without having to wait for the completion of the next exercise,
you can use the .con files created in the previous exercises (copying them in your current
work directory), or create a test client who inserts some contacts as done in the previous
exercises.

Create the PhonebookController class as a nested class into the PhonebookCLI class (in
this way we will save several lines of code).

We will create the start() method in the PhonebookController class. This must call the
getContacts() method of the Model component, and once the contacts are returned,
it must pass them to the PhonebookCLI showContacts() method. In the previous exer-
cise we had invoked the showContacts() method of the PhonebookCLI class from the
Exercise20N class. In that case the Exercise20N class also took care of creating the list
of contacts to be passed to the showContacts() method. Now, however, the start()
method in the PhonebookController class will retrieve the contacts and pass them to the
showContacts() method of the PhonebookCLI class.

Create the start() method in the PhonebookCLI class which will invoke the start()
method of the PhonebookController class.

Create the Exercise20O class that invokes the start() method of the PhonebookCLI class
to start the application.

Exercise 20.p)

Starting from the solution of the previous exercise, implement the insertion flow
of a contact as described in the diagram shown in Figure 20.n.2. In particular:

Create the handleShowContacts() method in the PhonebookController class, which
must take as input the command entered by the user, and the list of contacts. This meth-
od must be invoked in the showContacts() method (which must be updated) when the
user has typed a command, and must have the responsibility to interpret this command
and invoke the appropriate methods. In particular, it must perform the conditional flow
that we defined in the showContacts() method in the previous exercise, with the ex-
ception of the case of insertion. In fact, if the “/i” command has been typed, then the
insertContact() method of the PhonebookCLI class must be invoked. For now, the

1.

2.

3.

4.

5.

1.

Chapter 20 Exercises

623
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

rest of the code will be the same as before. In practice, it is necessary to move part of
the code that we had in the showContacts() method of the PhonebookCLI class, in the
handleShowContacts() method of the PhonebookController class, changing the inser-
tion condition.

Change the showContacts() method so that after capturing the user’s command, it delegates
the interpretation to the handleShowContacts() method of the PhonebookController
class, i.e. must invoke this method by passing it the typed command and the list of con-
tacts.

Create the insertContact() method in the PhonebookCLI class. This method must re-
quest the user, first to enter the name, then the phone number, and finally the address. Af-
ter collecting the contact information, it must offer the user the opportunity to enter the
“/e” command to confirm the entry, or the “/b” command to return to go back to show all
the contacts (see Figure 20.n.2). Once the command typed by the user has been retrieved,
he must invoke the handleInsertContact() method in the PhonebookController class,
which must be responsible for interpreting this command.

Create the handleInsertContact() method in the PhonebookController class. This
method must take as input the command entered by the user, plus the name, telephone
number and address of the contact. This method must have the responsibility to inter-
pret the typed command and must be invoked in the insertContact() method which
was responsible for capturing the user input. In particular, if the user has entered the
“/b” command, the showContacts() method of the PhonebookCLI class must be invoked
again. If the user has entered the “/e” command, it is necessary to invoke the insert()
method of the Model component, without handling any exceptions, which instead must
be handled directly by the PhonebookCLI methods, as previously mentioned. Finally, it
must invoke the showConfirmation() method of the PhonebookCLI class.

It must not be possible to create an unnamed contact. Then create an exception
called EmptyNameException, to be thrown in the most appropriate method.

Create the showConfirmation() method of the PhonebookCLI class. This method must
be intended as generic and reusable, must print the phrase "Operation confirmed!", and
must take as input the message that it must show immediately after (for example, we
could pass the instruction "Inserted contact:\n" + contact.toString()). Finally, he
must allow the user to enter the commands described in the diagram in Figure 20.n.2, or
the “/b” command to return to the display of the contacts and “/t” to terminate the pro-
gram. After capturing the command of the user, its interpretation must be delegated to
the handleShowMessage() method of the PhonebookController class. The same goes for

2.

3.

4.

5.

6.

Chapter 20 Exercises

624
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

a generic method called showError(), which can be called in all the catch clauses of the
PhonebookCLI methods, to obtain a centralized management of exceptions.

The handleShowMessage() method of the PhonebookController class must take as input
the command retrieved from the showConfirmation() method of the PhonebookCLI class.
Following the diagram in Figure 20.n.2, this method must invoke the showContacts()
method if the command sent by the user is “/b”, or terminate the program if the com-
mand sent by the user is “/t”.

Create the Exercise20P class starting from the Exercise20Q class to test the
application.

Exercise 20.q)

Starting from the solution of the previous exercise, implement the update and re-
moval flows as described in the diagram shown in Figure 20.n.2. In particular:

Update the handleShowContacts() in the PhonebookController class, which takes as
input the command typed by the user, and the list of contacts. If the user specifies the
“/v” command followed by the name of an existing contact, replace the current printing
method with the call to the method of a new method: showContact() of the PhonebookCLI
class, which takes the contact specified as input.

Create the showContact() method of the PhonebookCLI class, which must then show
the details of the selected contact and offer the user the possibility to go back to view all
the contacts by specifying the command “/b”, or specify the command “/u” to update the
selected contact, or specify the “/r” command to remove the selected contact. Then he
must capture the command and delegate its interpretation to the handleShowContact()
method of the PhonebookController class which takes the command and the contact as
input.

Create the handleShowContact() method which must be responsible for interpret-
ing the command typed. In particular, if the user has entered the “/b” command, the
showContacts() method of the PhonebookCLI class must be invoked again. If the user
has entered the “/u” command, it is necessary to invoke the updateContact() meth-
od of the PhonebookCLI class. If instead the user enters the “/r” command, then the
removeContact() method of the PhonebookCLI class must be invoked.

Create the updateContact() method of the PhonebookCLI class which must take the se-
lected contact as input. It must ask the user to specify a new phone number, and a new

7.

8.

1.

2.

3.

4.

Chapter 20 Exercises

625
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

address. Then indicate to the user the possibility for the user to choose between the “/b”
command to return to see all contacts, or the “/e” command to perform the update. Fi-
nally, he must capture the user’s command and delegate its interpretation to the Control-
ler component, invoking the handleUpdateContact() method by passing the command
to it, and the name, telephone number and address of the contact.

Create the handleUpdateContact() method of the PhonebookController class to inter-
pret the command to be executed. In particular, in addition to managing the “/b” com-
mand as usual to return to see all the contacts in the phonebook, if the user has specified
the “/e” command, he must invoke the update() method on the Model component, and
then invoke the showConfirmation() method of the PhonebookCLI class.

Create the removeContact() method of the PhonebookCLI class that must capture as in-
put the name of the selected contact. It must indicate to the user the possibility to choose
between the “/b” command to return to see all contacts, or the “/e” command to perform
the removal of the contact. Finally, it must capture the user’s command and delegate its
interpretation to the PhonebookController class, invoking the handleRemoveContact()
method by passing to it the command and the contact name.

Create the handleRemoveContact() method of the PhonebookController class to inter-
pret the command to be executed. In particular, in addition to managing the “/b” com-
mand as usual to return to see all the contacts in the phonebook, if the user has specified
the “/e” command, he must invoke the remove() method on the Model component, and
then invoke the showConfirmation() method of the PhonebookCLI class.

Create the Exercise20Q class starting from the Exercise20P class to test the
application.

Exercise 20.r)

Which of the following statements are correct?

The File class defines a getPath() method which returns a string.

The File class defines a getParent() method that returns a File object representing a
directory.

pathSeparator is a static constant of the File class, which represents the path separator
dependent on the operating system.

The File class defines a delete() method that returns a boolean true if the file will actu-
ally be deleted, or false otherwise.

5.

6.

7.

8.

1.

2.

3.

4.

Chapter 20 Exercises

626
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 20.s)

Which of the following statements are correct?

InputStream implementations are optimized for reading bytes, OutputStream
implementations are optimized for writing bytes. In fact, they are called “byte streams”.

The classes at the base of the character stream hierarchy are Reader and Writer.

The readLine() method is defined in the Reader class.

The constructor of an ObjectInputStream must take an object of type FileInputStream
as input.

Exercise 20.t)

Which of the following statements are correct?

If we instantiate a File object by specifying the name of a file that does not exist as a con-
structor parameter, it will be created.

To read the contents of a text file, just use the FileReader class.

A directory can be created thanks to the File class.

The File class defines a method that returns file names within a directory.

Exercise 20.u)

Given the following class:

import java.io.*;

public class Exercise20U {
 public static void main(String args[]) throws IOException {
 try (FileOutputStream fos = new FileOutputStream("new file.txt");
 DataOutputStream dos = new DataOutputStream(fos);) {
 dos.writeInt(8);
 dos.writeDouble(0.1176);
 }
 }
}

Once the new file.txt file has been created, how much space it will occupy on the hard disk?

1.

2.

3.

4.

1.

2.

3.

4.

Chapter 20 Exercises

627
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

No file will be created because the file is not closed correctly.

12 bytes.

No file will be created because the file does not compile.

64 bytes.

No file will be created because an exception will be thrown during execution.

128 bytes.

The size of the file depends on the platform on which the program is run.

96 bytes.

Exercise 20.v)

Given the following class:

import java.io.*;

public class Exercise20S {
 public static void main(String args[]) throws Exception {
 try (FileOutputStream fos = new FileOutputStream("nuovo file.txt");
 DataOutputStream dos = new DataOutputStream(fos);) {
 for (int i = 0; i < 100; i++) {
 dos.writeInt(i);
 }
 }
 }
}

Write the class that reads the created file.

Exercise 20.w)

Which of the following statements are correct?

To instantiate a Reader we have to handle an IOException.

To write from an OutputStream we have to handle an IOException.

To read from an InputStream object we have to handle an IOException.

To instantiate a Writer object we have to handle a FileNotFoundException

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

Chapter 20 Exercises

628
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 20.x)

Which of the following statements are correct?

It is important to close a stream, otherwise the memory it occupies will not be deallo-
cated until the end of the program.

The only class that provides Java to read command-line instructions interactively is the
Scanner class.

The BufferedReader class declares a method called readLine() which reads a whole line
of text from the source passed in input to the BufferedReader.

The BufferedReader class declares a method called lines() which returns an object

Stream<String>.

Exercise 20.y)

Which of the following statements are correct?

Path defines a method that returns the names of the files within a directory.

Path declares a method to return the directory in which it is contained.

Path declares a method to return the author (owner) of the file.

Path is an interface.

Exercise 20.z)

Which of the following statements are correct?

The Files class defines a method that returns the names of files within a directory.

The find() method of the Files class returns a Stream of Path objects.

Files and Path belong to the java.nio2.file package.

Files is an interface.

You can copy one file to another with the copy() method.

1.

2.

3.

4.

5.

1.

2.

3.

4.

1.

2.

3.

4.

5.

Chapter 20 Exercises

629
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Exercise 20.aa) Networking, True or False:

At least two sockets must exist in a network communication.

To connect to a server, a client must know at least its IP address and the port on which it
has been listening.

A server can also be listened to on port 80, the default port of HTTP, without necessarily
using that protocol. In fact, it is also possible to communicate with the HTTP protocol on
a port other than 80.

The accept() method locks the server into a “waiting for connections” state. When a
client connects, the accept() method is executed to collect all client information in an
object of type Socket.

A ServerSocket does not need to declare the IP address, but only has to declare the port
on which it will wait for connections.

1.

2.

3.

4.

5.

631
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 20
Exercise Solutions

Input-Output

Solution 20.a) Input - Output, True or False:

True.

True.

False.

False.

True.

True.

True.

True.

False.

 False.

Solution 20.b) Serialization, True or False:

True.

True.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

Chapter 20 Exercises Solutions

632
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

False.

False.

False.

True.

True.

False.

True.

 True.

Solution 20.c) New Input Output, True or False:

True.

True.

True.

True.

False.

True.

True.

False.

False.

 True.

Solution 20.d)

The code should be similar to the following:

package com.claudiodesio.io;

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Scanner;

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Chapter 20 Exercises Solutions

633
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class InteractiveEditor {

 public static void main(String args[]) {
 File file = new File("file.txt");
 try (Scanner scanner = new Scanner(System.in);
 FileWriter fileWriter = new FileWriter(file);) {
 String string = "";
 System.out.println("Type something and type enter, " +
 "or type \"end\" to terminate the program");
 while (!(string = scanner.nextLine()).equals("end")) {
 System.out.println("You typed " + string);
 fileWriter.append(string);
 fileWriter.flush();
 }

 } catch (IOException ex) {
 ex.printStackTrace();
 }
 System.out.println("Program terminated");
 }
}

Solution 20.e)

The code should be similar to the following:

package com.claudiodesio.io;

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class More {

 private final static int numberOfLines = 10;
 private static final String QUIT_COMMAND = "q";
 private static final String NEXT_COMMAND = "n";

 public static void main(String args[]) {
 String character;
 System.out.println("Type the name of a file and type enter, or "
 + "type \"" + QUIT_COMMAND + "\" to terminate the program");
 try (Scanner in = new Scanner(System.in);) {
 String fileName;
 if (!(fileName = in.nextLine()).equals(QUIT_COMMAND)) {
 File file = new File(fileName);
 try (Scanner fileScanner = new Scanner(file)) {
 System.out.println("File found! \"" + fileName +

Chapter 20 Exercises Solutions

634
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 "\" , press \"n\" to see the next 10 lines");
 while (!(character = in.nextLine()).equals(QUIT_COMMAND)) {
 if (character.equals(NEXT_COMMAND)) {
 for (int i = 0; fileScanner.hasNext() &&
 i < numberOfLines; i++) {
 System.out.println(fileScanner.nextLine());
 }
 }
 }
 } catch (FileNotFoundException exc) {
 System.out.println("File not found!");
 }
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 System.out.println("Program terminated!");
 }
}

Below is an example of output:

java com.claudiodesio.io.More

Type the name of a file and type enter, or type "q" to terminate the program
More.java
File found! "More.java", press "n" to see the next 10 lines
n
package com.claudiodesio.io;

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class More {

 private final static int numberOfLines = 10;
 private static final String QUIT_COMMAND = "q";
n
 private static final String NEXT_COMMAND = "n";

 public static void main(String args[]) {
 String character;
 System.out.println("Type the name of a file and type enter, or "
 + "type \"" + QUIT_COMMAND + "\" to terminate the program");
 try (Scanner in = new Scanner(System.in);) {
 String fileName;
 if (!(fileName = in.nextLine()).equals(QUIT_COMMAND)) {
 File file = new File(fileName);
n
 try (Scanner fileScanner = new Scanner(file)) {
 System.out.println("File found! \"" + fileName

Chapter 20 Exercises Solutions

635
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 + "\", press \"n\" to see the next 10 lines");
 while (!(character = in.nextLine()).equals(QUIT_COMMAND)) {
 if (character.equals(NEXT_COMMAND)) {
 for (int i = 0; fileScanner.hasNext() &&
 i < numberOfLines; i++) {
 System.out.println(fileScanner.nextLine());
 }
 }
n
 }
 } catch (FileNotFoundException exc) {
 System.out.println("File not found!" + fileName);
 }
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 System.out.println("Program terminated!");
 }
n
}
q
Program terminated!

Solution 20.f)

We decided to define a FileUtils utility class defined as follows:

package phonebook.util;

public class FileUtils {

 public static final String SUFFIX = ".con";

 public static String getFileName(String name) {
 return name + SUFFIX;
 }
}

Then we have decided to implement the FileManager class, which takes care of implementing
the two required methods, insert() and retrieve(), in the following way:

package phonebook.integration;
import java.util.*;
import java.io.*;
import phonebook.util.*;
import phonebook.data.*;

public class FileManager {

Chapter 20 Exercises Solutions

636
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void insert(Contact contact) throws IOException {
 try (FileOutputStream fos =
 new FileOutputStream (new File(FileUtils.getFileName(
 contact.getName())));
 ObjectOutputStream s = new ObjectOutputStream (fos);) {
 s.writeObject (contact);
 }
 }

 public Contact retrieve(String name) throws IOException,
 ClassNotFoundException {
 Contact contact = null;
 try (FileInputStream fis = new FileInputStream(
 new File(name + FileUtils.SUFFIX));
 ObjectInputStream ois = new ObjectInputStream (fis);) {
 contact = (Contact)ois.readObject();
 }
 return contact;
 }
}

Note that we used the try-with-resources construct in both methods.

Solution 20.g)

The required test class follows:

package phonebook.test ;

import phonebook.data.*;
import phonebook.integration.*;

public class Exercise20G {

 private FileManager fileManager;
 private Contact[] contacts;

 Exercise20G() {
 contacts = getContacts();
 fileManager = new FileManager();
 }

 private void executeTest() {
 System.out.println("TESTING THE CREATION OF THE THREE CONTACTS...");
 createContacts();
 System.out.println("RETRIEVING THE THREE CONTACTS...");
 retrieveContacts();
 }

Chapter 20 Exercises Solutions

637
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void createContacts() {
 for (Contact contact : contacts) {
 createContact(contact);
 }
 }

 public void retrieveContacts() {
 for (Contact contact : contacts) {
 retrieveContact(contact.getName());
 }
 }

 public void retrieveContact(String contactName) {
 try {
 Contact contact = fileManager.retrieve(contactName);
 System.out.println("Retrieved contact:\n" + contact);
 }
 catch (Exception exc) {
 exc.printStackTrace();
 }
 }

 private void createContact(Contact contact) {
 try {
 fileManager.insert(contact);
 System.out.println("Created contact:\n" + contact);
 }
 catch (Exception exc) {
 exc.printStackTrace();
 }
 }

 private Contact[] getContacts() {
 Contact contact1 = new Contact("Daniele", "01234560",
 "Guitars Street 1");
 Contact contact2 = new Contact("Giovanni", "0565432190",
 "Sciences Square 2");
 Contact contact3 = new Contact("Ligeia", "07899921",
 "Secrets Avenue 3");
 Contact[] contacts = {
 contact1, contact2, contact3
 } ;
 return contacts;
 }

 public static void main(String args[]) {
 Exercise20G exercise20G = new Exercise20G();
 exercise20G.executeTest();
 }
}

Chapter 20 Exercises Solutions

638
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

that will produce the following output:

TESTING THE CREATION OF THE THREE CONTACTS...
Created contact:
Name:	Daniele
Phone:	 01234560
Address:	 Guitars Street 1
Created contact:
Name:	Giovanni
Phone:	 0565432190
Address:	 Sciences Square 2
Created contact:
Name:	Ligeia
Phone:	 07899921
Address:	 Secrets Avenue 3
RETRIEVING THE THREE CONTACTS...
Retrieved contact:
Name:	Daniele
Phone:	 01234560
Address:	 Guitars Street 1
Retrieved contact:
Name:	Giovanni
Phone:	 0565432190
Address:	 Sciences Square 2
Retrieved contact:
Name:	Ligeia
Phone:	 07899921
Address:	 Secrets Avenue 3

Solution 20.h)

We could code the new methods as in the following file (in bold the new code):

package phonebook.test;

import phonebook.exceptions.*;
import phonebook.integration.*;
import phonebook.data.*;

public class Exercise20H {
 private FileManager fileManager;
 private Contact[] contacts;

 Exercise20H() {
 contacts = getContacts();
 fileManager = new FileManager();
 }

 private void executeTest() {
 System.out.println("TESTING THE CREATION OF THE THREE CONTACTS...");
 createContacts();

Chapter 20 Exercises Solutions

639
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println("RETRIEVING THE THREE CONTACTS...");
 retrieveContacts();
 System.out.println(
 "TESTING THE CREATION OF AN ALREADY EXISTING CONTACT");
 createExistingContact();
 System.out.println("TRYING TO RECOVER A NON-EXISTING CONTACT");
 retrieveNonExistingContact();
 }

 public void createExistingContact() {
 createContact(contacts[0]);
 }

 public void retrieveNonExistingContact() {
 retrieveContact("Foo");
 }

 public void createContacts() {
 for (Contact contact : contacts) {
 createContact(contact);
 }
 }

 public void retrieveContacts() {
 for (Contact contact : contacts) {
 retrieveContact(contact.getName());
 }
 }

 public void retrieveContact(String contactName) {
 try {
 Contact contact = fileManager.retrieve(contactName);
 System.out.println("Retrieved contact:\n" + contact);
 }
 catch (Exception exc) {
 exc.printStackTrace();
 }
 }

 private void createContact(Contact contact) {
 try {
 fileManager.insert(contact);
 System.out.println("Created contact:\n" + contact);
 }
 catch (Exception exc) {
 exc.printStackTrace();
 }
 }

Chapter 20 Exercises Solutions

640
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private Contact[] getContacts() {
 Contact contact1 = new Contact("Daniele", "01234560",
 "Guitars Street 1");
 Contact contact2 = new Contact("Giovanni", "0565432190",
 "Sciences Square 2");
 Contact contact3 = new Contact("Ligeia", "07899921",
 "Secrets Avenue 3");
 Contact[] contacts = {
 contact1, contact2, contact3
 };
 return contacts;
 }

 public static void main(String args[]) {
 Exercise20H exercise20H = new Exercise20H();
 exercise20H.executeTest();
 }
}

The output will be:

TESTING THE CREATION OF THE THREE CONTACTS...
Created contact:
Name: Daniele
Phone: 01234560
Address: Guitars Street 1
Created contact:
Name: Giovanni
Phone: 0565432190
Address: Sciences Square 2
Created contact:
Name: Ligeia
Phone: 07899921
Address: Secrets Avenue 3
RETRIEVING THE THREE CONTACTS...
Retrieved contact:
Name: Daniele
Phone: 01234560
Address: Guitars Street 1
Retrieved contact:
Name: Giovanni
Phone: 0565432190
Address: Sciences Square 2
Retrieved contact:
Name: Ligeia
Phone: 07899921
Address: Secrets Avenue 3
TESTING THE CREATION OF AN ALREADY EXISTING CONTACT
Created contact:
Name: Daniele
Phone: 01234560
Address: Guitars Street 1
TRYING TO RECOVER A NON-EXISTING CONTACT

Chapter 20 Exercises Solutions

641
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

java.io.FileNotFoundException: Foo.con (Impossibile trovare il file specificato)
 at java.base/java.io.FileInputStream.open0(Native Method)
 at java.base/java.io.FileInputStream.open(FileInputStream.java:213)
 at java.base/java.io.FileInputStream.<init>(FileInputStream.java:155)
 at phonebook.integration.FileManager.retrieve(FileManager.java:52)
 at phonebook.test.Exercise20H.retrieveContact(Exercise20H.java:49)
 at phonebook.test.Exercise20H.retrieveNonExistingContact(Exercise20H.java:32)
 at phonebook.test.Exercise20H.executeTest(Exercise20H.java:24)
 at phonebook.test.Exercise20H.main(Exercise20H.java:79)

Note that the test showed that:

adding an existing contact causes the old contact to be overwritten;

recovering a non-existent contact causes a FileNotFoundException.

We are not satisfied with both test results. In the first case, it does not seem correct to us that
the old contact has been replaced without the user even being aware of it. We decided to imple-
ment a simple solution that always check if a contact already exists before serialize it, and in the
case throw a custom exception that could be called DuplicateContactException.
In the second case, it would be preferable to create a custom exception that we could call
NonExistingContactException, containing a readable message.
Let’s now implement the solution.
First, let’s define the exceptions in a simple way. Here it is the NonExistingContactException
class:

package phonebook.exceptions;

import java.io.IOException;

public class NonExistingContactException extends IOException {

 private static final long serialVersionUID = 8942402240056525663L;

 public NonExistingContactException(String message) {
 super(message);
 }
}

And then follows the ContattoEsistenteException class:

package phonebook.exceptions;

import java.io.IOException;

public class DuplicateContactException extends IOException {

1.

2.

Chapter 20 Exercises Solutions

642
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private static final long serialVersionUID = 8942402240056525662L;

 public DuplicateContactException(String message) {
 super(message);
 }
}

Note that we both classes extend the IOException class. So, let’s modify the FileManager class
in the following way:

package phonebook.integration;

import java.util.*;
import java.io.*;
import phonebook.exceptions.*;
import phonebook.util.*;
import phonebook.data.*;

public class FileManager {
 public void insert(Contact contact) throws DuplicateContactException,
 FileNotFoundException, IOException {
 Contact existingContact = getContact(
 FileUtils.getFileName(contact.getName()));
 if (existingContact != null) {
 throw new DuplicateContactException(contact.getName()
 + ": contact already existing!");
 }
 try (FileOutputStream fos = new FileOutputStream (
 new File(FileUtils.getFileName(contact.getName())));
 ObjectOutputStream s = new ObjectOutputStream (fos);) {
 s.writeObject (contact);
 }
 }

 public Contact retrieve(String name) throws NonExistingContactException {
 Contact contact = getContact(FileUtils.getFileName(name));
 if (contact == null) {
 throw new NonExistingContactException(
 name + ": contact not found!");
 }
 return contact;
 }

 private Contact getContact(String name) {
 try (FileInputStream fis = new FileInputStream(new File(name));
 ObjectInputStream ois = new ObjectInputStream (fis);) {
 Contact contact = (Contact)ois.readObject();
 return contact;
 } catch (Exception exc) {

Chapter 20 Exercises Solutions

643
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 return null;
 }
 }
}

Note that we have added the private method getContact(), which returns the contact if it ex-
ists, or null if it is not found. This method is used by both the insert() and the retrieve()
method, in order to handle any exceptions. Finally, we also modified the test class by replacing,
with the printing of the getMessage() method of the exceptions, the statement that printed
the stack trace of the exception (see the bold statements):

package phonebook.test;

import phonebook.exceptions.*;
import phonebook.integration.*;
import phonebook.data.*;

public class Exercise20H {
 private FileManager fileManager;
 private Contact[] contacts;

 Exercise20H() {
 contacts = getContacts();
 fileManager = new FileManager();
 }

 private void executeTest() {
 System.out.println("TESTING THE CREATION OF THE THREE CONTACTS...");
 createContacts();
 System.out.println("RETRIEVING THE THREE CONTACTS...");
 retrieveContacts();
 System.out.println("TESTING THE CREATION OF AN ALREADY EXISTING CONTACT");
 createExistingContact();
 System.out.println("TRYING TO RECOVER A NON-EXISTING CONTACT");
 retrieveNonExistingContact();
 }

 public void createExistingContact() {
 createContact(contacts[0]);
 }

 public void retrieveNonExistingContact() {
 retrieveContact("Foo");
 }

 public void createContacts() {
 for (Contact contact : contacts) {

Chapter 20 Exercises Solutions

644
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 createContact(contact);
 }
 }

 public void retrieveContacts() {
 for (Contact contact : contacts) {
 retrieveContact(contact.getName());
 }
 }

 public void retrieveContact(String contactName) {
 try {
 Contact contact = fileManager.retrieve(contactName);
 System.out.println("Retrieved contact:\n" + contact);
 }
 catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 private void createContact(Contact contact) {
 try {
 fileManager.insert(contact);
 System.out.println("Created contact:\n" + contact);
 }
 catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 private Contact[] getContacts() {
 Contact contact1 = new Contact("Daniele", "01234560",
 "Guitars Street 1");
 Contact contact2 = new Contact("Giovanni", "0565432190",
 "Sciences Square 2");
 Contact contact3 = new Contact("Ligeia", "07899921",
 "Secrets Avenue 3");
 Contact[] contacts = {
 contact1, contact2, contact3
 } ;
 return contacts;
 }

 public static void main(String args[]) {
 Exercise20H exercise20H = new Exercise20H();
 exercise20H.executeTest();
 }
}

Chapter 20 Exercises Solutions

645
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Delete the.con files generated by the previous execution of the test, in
order not to get false results in the test.

The output will be:

TESTING THE CREATION OF THE THREE CONTACTS...
Created contact:
Name:	Daniele
Address:	 Guitars Street 1
Phone:	 01234560
Created contact:
Name:	Giovanni
Address:	 Sciences Square 2
Phone:	 0565432190
Created contact:
Name:	Ligeia
Address:	 Secrets Avenue 3
Phone:	 07899921
RETRIEVING THE THREE CONTACTS...
Retrieved contact:
Name:	Daniele
Address:	 Guitars Street 1
Phone:	 01234560
Retrieved contact:
Name:	Giovanni
Address:	 Sciences Square 2
Phone:	 0565432190
Retrieved contact:
Name:	Ligeia
Address:	 Secrets Avenue 3
Phone:	 07899921
TESTING THE CREATION OF AN ALREADY EXISTING CONTACT
Daniele: contact already existing!
TRYING TO RECOVER A NON-EXISTING CONTACT
Foo: contact not found!

Solution 20.i)

Consistent with the development line held so far, the FileManager file could evolve as follows
(changes in bold):

package phonebook.integration;

import java.util.*;
import java.io.*;
import phonebook.exceptions.*;
import phonebook.util.*;
import phonebook.data.*;

Chapter 20 Exercises Solutions

646
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

public class FileManager {

 public void insert(Contact contact) throws DuplicateContactException,
 FileNotFoundException, IOException {
 Contact existingContact = getContact(
 FileUtils.getFileName(contact.getName()));
 if (existingContact != null) {
 throw new DuplicateContactException(contact.getName() +
 ": contact already existing!");
 }
 register(contact);
 }

 public Contact retrieve(String name) throws NonExistingContactException {
 Contact contact = getContact(FileUtils.getFileName(name));
 if (contact == null) {
 throw new NonExistingContactException(name
 + ": contact not found!");
 }
 return contact;
 }

 public void update(Contact contact) throws NonExistingContactException,
 DuplicateContactException, FileNotFoundException, IOException {
 if (isExistingContact(contact.getName())) {
 register(contact);
 } else {
 throw new NonExistingContactException(contact.getName() +
 ": contact not found!");
 }
 }

 public void remove(String name) throws NonExistingContactException,
 DuplicateContactException, FileNotFoundException, IOException {
 File file = new File(FileUtils.getFileName(name));
 if (!file.delete()) {
 throw new NonExistingContactException(name
 + ": contact not found!");
 }
 }

 private void register(Contact contact) throws FileNotFoundException,
 IOException {
 try (FileOutputStream fos = new FileOutputStream (
 new File(FileUtils.getFileName(contact.getName())));
 ObjectOutputStream s = new ObjectOutputStream (fos);) {
 s.writeObject (contact);
 }
 }

Chapter 20 Exercises Solutions

647
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private boolean isExistingContact(String name) {
 File file = new File(FileUtils.getFileName(name));
 return file.exists();
 }

 private Contact getContact(String name) {
 try (FileInputStream fis = new FileInputStream(new File(name));
 ObjectInputStream ois = new ObjectInputStream (fis);) {
 Contact contact = (Contact)ois.readObject();
 return contact;
 } catch (Exception exc) {
 return null;
 }
 }
}

Note that the private method isExistingContact() only checks if a file with the contact name
specified exists, and this in our case should be sufficient. We invoke this method from the
update() method before recording (and overwriting) the old contact. If the file does not exist,
we would get a NonExistingContactException. The remove() method instead takes advan-
tage of the delete() method of the File class. This returns true if and only if it successful
delete the file. We could modify the test class in the following way, to test the modification and
cancellation scenarios (changes in bold):

package phonebook.test;

import phonebook.exceptions.*;
import phonebook.integration.*;
import phonebook.data.*;

public class Exercise20I {

 private FileManager fileManager;

 private Contact[] contacts;

 Exercise20I() {
 contacts = getContacts();
 fileManager = new FileManager();
 }

 private void executeTest() {
 System.out.println("TESTING THE CREATION OF THE THREE CONTACTS...");
 createContacts();
 System.out.println("RETRIEVING THE THREE CONTACTS...");
 retrieveContacts();

Chapter 20 Exercises Solutions

648
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println(
 "TESTING THE CREATION OF A ALREADY EXISTING CONTACT");
 createExistingContact();
 System.out.println("TRYING TO RECOVER A NON-EXISTING CONTACT");
 retrieveNonExistingContact();
 System.out.println("UPDATING AN EXISTING CONTACT");
 updateExistingContact();
 System.out.println("REMOVING AN EXISTING CONTACT");
 removeExistingContact();
 System.out.println("UPDATING A NON-EXISTING CONTACT");
 updateNonExistingContact();
 System.out.println("REMOVING A NON-EXISTING CONTACT");
 removeNonExistingContact();
 }

 public void createContacts() {
 for (Contact contact : contacts) {
 createContact(contact);
 }
 }

 public void retrieveContacts() {
 for (Contact contact : contacts) {
 retrieveContact(contact.getName());
 }
 }

 public void createExistingContact() {
 createContact(contacts[0]);
 }

 public void retrieveNonExistingContact() {
 retrieveContact("Foo");
 }

 public void updateExistingContact() {
 try {
 Contact contact = new Contact("Daniele","Mics Street 1","07890");
 fileManager.update(contact);
 System.out.println("Contact " + contact.getName()
 + " updated!\n" + contact);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void removeExistingContact() {
 try {
 fileManager.remove(contacts[2].getName());
 System.out.println("Contact " + contacts[2].getName()
 + " removed!");

Chapter 20 Exercises Solutions

649
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void updateNonExistingContact() {
 try {
 Contact contact = new Contact("Bar","Mics Street 1","07890");
 fileManager.update(contact);
 System.out.println("Contact " + contact.getName()
 + " updated!");
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void removeNonExistingContact() {
 try {
 String name = "Ligeia";
 fileManager.remove(name);
 System.out.println("Contact " + name + " removed!");
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void retrieveContact(String contactName) {
 try {
 Contact contact = fileManager.retrieve(contactName);
 System.out.println("Retrieved contact:\n" + contact);
 }
 catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 private void createContact(Contact contact) {
 try {
 fileManager.insert(contact);
 System.out.println("Created contact:\n" + contact);
 }
 catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 private Contact[] getContacts() {
 Contact contact1 = new Contact("Daniele", "01234560",
 "Guitars Street 1");

Chapter 20 Exercises Solutions

650
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Contact contact2 = new Contact("Giovanni", "0565432190",
 "Sciences Square 2");
 Contact contact3 = new Contact("Ligeia", "07899921",
 "Secrets Avenue 3");
 Contact[] contacts = {
 contact1, contact2, contact3
 };
 return contacts;
 }

 public static void main(String args[]) {
 Exercise20I exercise20I = new Exercise20I();
 exercise20I.executeTest();
 }
}

The output will be:

TESTING THE CREATION OF THE THREE CONTACTS...
Created contact:
Name:	Daniele
Address:	 Guitars Street 1
Phone:	 01234560
Created contact:
Name:	Giovanni
Address:	 Sciences Square 2
Phone:	 0565432190
Created contact:
Name:	Ligeia
Address:	 Secrets Avenue 3
Phone:	 07899921
RETRIEVING THE THREE CONTACTS...
Retrieved contact:
Name:	Daniele
Address:	 Guitars Street 1
Phone:	 01234560
Retrieved contact:
Name:	Giovanni
Address:	 Sciences Square 2
Phone:	 0565432190
Retrieved contact:
Name:	Ligeia
Address:	 Secrets Avenue 3
Phone:	 07899921
TESTING THE CREATION OF AN ALREADY EXISTING CONTACT
Daniele: contact already existing!
TRYING TO RECOVER A NON-EXISTING CONTACT
Foo: contact not found!
UPDATING AN EXISTING CONTACT
Contact Daniele updated!
Name:	Daniele
Address:	 07890
Phone:	 Mics Street 1
REMOVING AN EXISTING CONTACT

Chapter 20 Exercises Solutions

651
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Contact Ligeia removed!
UPDATING A NON-EXISTING CONTACT
Bar: contact not found!
REMOVING A NON-EXISTING CONTACT
Ligeia: contact not found!

Solution 20.j)

We could create the following SerializationManager abstract class:

import java.io.*;

import java.util.*;

public interface SerializationManager<T extends Data> {

 void insert(T data) throws IOException;

 T retrieve(String id) throws IOException, ClassNotFoundException;

 void update(T data) throws IOException;

 void remove(String id) throws IOException;
}

to have it implemented by FileManager:

import java.util.*;
import java.io.*;

public class FileManager implements SerializationManager<Contact> {

 @Override
 public void insert(Contact contact) throws DuplicateContactException,
 FileNotFoundException, IOException {
 Contact existingContact = getContact(
 FileUtils.getFileName(contact.getName()));
 if (existingContact != null) {
 throw new DuplicateContactException(contact.getName() +
 ": contact already existing!");
 }
 store(contact);
 }

 @Override
 public Contact retrieve(String name) throws NonExistingContactException {
 Contact contact = getContact(FileUtils.getFileName(name));
 if (contact == null) {

Chapter 20 Exercises Solutions

652
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 throw new NonExistingContactException(name
 + ": contact not found!");
 }
 return contact;
 }

 @Override
 public void update(Contact contact) throws NonExistingContactException,
 DuplicateContactException, FileNotFoundException, IOException {
 if (isExistingContact(contact.getName())) {
 store(contact);
 } else {
 throw new NonExistingContactException(contact.getName() +
 ": contact not found!");
 }
 }

 @Override
 public void remove(String name) throws NonExistingContactException,
 DuplicateContactException, FileNotFoundException, IOException {
 File file = new File(FileUtils.getFileName(name));
 if (file.delete()) {
 System.out.println("Contact " + name + " deleted!");
 } else {
 throw new NonExistingContactException(name + ": contact not found!");
 }
 }

 private void store(Contact contact) throws FileNotFoundException,
 IOException {
 try (FileOutputStream fos =
 new FileOutputStream (new File(FileUtils.getFileName(
 contact.getName())));
 ObjectOutputStream s = new ObjectOutputStream (fos);) {
 s.writeObject (contact);
 System.out.println("Contact storeed:\n" + contact);
 }
 }

 private boolean isExistingContact(String name) {
 File file = new File(FileUtils.getFileName(name));
 return file.exists();
 }

 private Contact getContact(String name) {
 try (FileInputStream fis = new FileInputStream (new File(name));
 ObjectInputStream ois = new ObjectInputStream (fis);) {
 Contact contact = (Contact)ois.readObject();
 System.out.println("Contact retrieved:\n" + contact);

Chapter 20 Exercises Solutions

653
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 return contact;
 } catch (Exception exc) {
 return null;
 }
 }

Finally, the test class follows:

package phonebook.test;

import phonebook.exceptions.*;
import phonebook.integration.*;
import phonebook.data.*;

public class Exercise20J {

 private SerializationManager<Contact> fileManager;

 private Contact[] contacts;

 Exercise20J() {
 contacts = getContacts();
 fileManager = new FileManager();
 }

 private void executeTest() {
 System.out.println("TESTING THE CREATION OF THE THREE CONTACTS...");
 createContacts();
 System.out.println("RETRIEVING THE THREE CONTACTS...");
 retrieveContacts();
 System.out.println("TESTING THE CREATION OF A ALREADY EXISTING CONTACT");
 createExistingContact();
 System.out.println("TRYING TO RECOVER A NON-EXISTING CONTACT");
 retrieveNonExistingContact();
 System.out.println("UPDATING AN EXISTING CONTACT");
 updateExistingContact();
 System.out.println("REMOVING AN EXISTING CONTACT");
 removeExistingContact();
 System.out.println("UPDATING A NON-EXISTING CONTACT");
 updateNonExistingContact();
 System.out.println("REMOVING A NON-EXISTING CONTACT");
 removeNonExistingContact();
 }

 public void createContacts() {
 for (Contact contact : contacts) {
 createContact(contact);
 }
 }

Chapter 20 Exercises Solutions

654
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void retrieveContacts() {
 for (Contact contact : contacts) {
 retrieveContact(contact.getName());
 }
 }

 public void createExistingContact() {
 createContact(contacts[0]);
 }

 public void retrieveNonExistingContact() {
 retrieveContact("Foo");
 }

 public void updateExistingContact() {
 try {
 Contact contact = new Contact("Daniele","Mics Street 1","07890");
 fileManager.update(contact);
 System.out.println("Contact " + contact.getName() + " updated!\n"
 + contact);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void removeExistingContact() {
 try {
 fileManager.remove(contacts[2].getName());
 System.out.println("Contact " + contacts[2].getName() + " removed!");
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void updateNonExistingContact() {
 try {
 Contact contact = new Contact("Bar","Mics Street 1","07890");
 fileManager.update(contact);
 System.out.println("Contact " + contact.getName() + " updated!");
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void removeNonExistingContact() {
 try {
 String name = "Ligeia";
 fileManager.remove(name);
 System.out.println("Contact " + name + " removed!");

Chapter 20 Exercises Solutions

655
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void retrieveContact(String contactName) {
 try {
 Contact contact = fileManager.retrieve(contactName);
 System.out.println("Retrieved contact:\n" + contact);
 }
 catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 private void createContact(Contact contact) {
 try {
 fileManager.insert(contact);
 System.out.println("Created contact:\n" + contact);
 }
 catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 private Contact[] getContacts() {
 Contact contact1 = new Contact("Daniele", "01234560",
 "Guitars Street 1");
 Contact contact2 = new Contact("Giovanni", "0565432190",
 "Sciences Square 2");
 Contact contact3 = new Contact("Ligeia", "07899921",
 "Secrets Avenue 3");
 Contact[] contacts = {
 contact1, contact2, contact3
 } ;
 return contacts;
 }

 public static void main(String args[]) {
 Exercise20J exercise20J = new Exercise20J();
 exercise20J.executeTest();
 }
}

Solution 20.k)

A solution would be to use lambda expressions to avoid rewriting the various methods while
always handling exceptions in the same way. In particular, we can create two types of functional

Chapter 20 Exercises Solutions

656
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

interfaces. One that defines a method that returns void:

package phonebook.util;

@FunctionalInterface
public interface Executor {

 void execute() throws Exception;
}

And another that returns a generic type:

package phonebook.util;

@FunctionalInterface
public interface Retriever<O> {

 O execute() throws Exception;
}

We did not use a java.util.function.Consumer functional interface in
place of Executor, and the java.util.function.Supplier functional in-
terface in place of Retriever, because we needed the SAM methods to
declare the throws clause to Exception

We can exploit these functional interfaces in the Exercise20K class in the following way (the
parts modified as usual are in bold):

package phonebook.test;

import phonebook.exceptions.*;
import phonebook.integration.*;
import phonebook.data.*;
import phonebook.util.*;

public class Exercise20K {

 private SerializationManager<Contact> fileManager;

 private Contact[] contacts;

 Exercise20K() {
 contacts = getContacts();
 fileManager = new FileManager();
 }

Chapter 20 Exercises Solutions

657
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private void executeTest() {
 System.out.println("TESTING THE CREATION OF THE THREE CONTACTS...");
 createContacts();
 System.out.println("RETRIEVING THE THREE CONTACTS...");
 retrieveContacts();
 System.out.println("TESTING THE CREATION OF A ALREADY EXISTING CONTACT");
 createExistingContact();
 System.out.println("TRYING TO RECOVER A NON-EXISTING CONTACT");
 retrieveNonExistingContact();
 System.out.println("UPDATING AN EXISTING CONTACT");
 updateExistingContact();
 System.out.println("REMOVING AN EXISTING CONTACT");
 removeExistingContact();
 System.out.println("UPDATING A NON-EXISTING CONTACT");
 updateNonExistingContact();
 System.out.println("REMOVING A NON-EXISTING CONTACT");
 removeNonExistingContact();
 }

 public void retrieveContacts() {
 for (Contact contact : contacts) {
 retrieveContact(contact.getName());
 }
 }

 public void createContacts() {
 for (Contact contact : contacts) {
 createContact(contact);
 }
 }

 public void createExistingContact() {
 createContact(contacts[0]);
 }

 public void updateExistingContact() {
 Contact contact = new Contact("Daniele","07890", "Mics Street 1");
 String message = "Contact " + contact.getName() + " updated!\n"
 + contact;
 execute(()->fileManager.update(contact), message);
 }

 public void removeExistingContact() {
 String name = contacts[2].getName();
 String message = "Contact " + name + " removed!";
 execute(()->fileManager.remove(name), message);
 }

Chapter 20 Exercises Solutions

658
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void updateNonExistingContact() {
 Contact contact = new Contact("Bar", "07890", "Mics Street 1");
 String message = "Contact " + contact.getName() + " updated!";
 execute(()->fileManager.update(contact), message);
 }

 public void removeNonExistingContact() {
 String name = "Ligeia";
 String message = "Contact " + name + " removed!";
 execute(()->fileManager.remove(name), message);
 }

 public void retrieveNonExistingContact() {
 retrieveContact("Foo");
 }

 public void retrieveContact(String contactName) {
 execute(()->fileManager.retrieve(contactName));
 }

 private void createContact(Contact contact) {
 String message = "Contact " + contact.getName() + " created!\n"
 + contact;
 execute(()->fileManager.insert(contact), message);
 }

 public <O> O execute(Retriever<O> retriever) {
 O output = null;
 try {
 output = retriever.execute();
 System.out.println("Retrieved contact:\n" + output);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 return output;
 }

 public void execute(Executor executor, String message) {
 try {
 executor.execute();
 System.out.println(message);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public static void main(String args[]) {
 Exercise20K exercise20K = new Exercise20K();
 exercise20K.executeTest();
 }
}

Chapter 20 Exercises Solutions

659
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Note that we had to create the two execute() methods of which, one takes a Retriever object,
and the other an Executor object as input. These methods insert the call to the execute()
method of Retriever or Executor within code block that manage exceptions that was previ-
ously replicated in each method. In this way, by passing a lambda expression containing the
code to be executed to these two new methods, we were able to avoid duplications that were in
the Exercise20J class.
The output follows:

TESTING THE CREATION OF THE THREE CONTACTS...
Daniele: contact already existing!
Giovanni: contact already existing!
Contact Ligeia created!
Name:	Ligeia
Address:	 Secrets Avenue 3
Phone:	 07899921
RETRIEVING THE THREE CONTACTS...
Retrieved contact:
Name:	Daniele
Address:	 Mics Street 1
Phone:	 07890
Retrieved contact:
Name:	Giovanni
Address:	 Sciences Square 2
Phone:	 0565432190
Retrieved contact:
Name:	Ligeia
Address:	 Secrets Avenue 3
Phone:	 07899921
TESTING THE CREATION OF AN ALREADY EXISTING CONTACT
Daniele: contact already existing!
TRYING TO RECOVER A NON-EXISTING CONTACT
Foo: contact not found!
UPDATING AN EXISTING CONTACT
Contact Daniele updated!
Name:	Daniele
Address:	 Mics Street 1
Phone:	 07890
REMOVING AN EXISTING CONTACT
Contact Ligeia removed!
UPDATING A NON-EXISTING CONTACT
Bar: contact not found!
REMOVING A NON-EXISTING CONTACT
Ligeia: contact not found!

Solution 20.l)

A possible solution could be:

package phonebook.integration;

Chapter 20 Exercises Solutions

660
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import java.util.*;
import java.io.*;
import phonebook.exceptions.*;
import phonebook.util.*;
import phonebook.data.*;
import java.nio.file.*;

public class FileNIO2Manager implements SerializationManager<Contact> {

 @Override
 public void insert(Contact contact) throws DuplicateContactException,
 FileNotFoundException, IOException {
 Path path = Paths.get(FileUtils.getFileName(contact.getName()));
 if (Files.exists(path)) {
 throw new DuplicateContactException(contact.getName() +
 ": contact already existing!");
 }
 register(contact);
 }

 @Override
 public Contact retrieve(String name) throws NonExistingContactException {
 Contact contact = getContact(FileUtils.getFileName(name));
 if (contact == null) {
 throw new NonExistingContactException(name + ": contact not found!");
 }
 return contact;
 }

 @Override
 public void update(Contact contact) throws NonExistingContactException,
 DuplicateContactException, FileNotFoundException, IOException {
 if (isExistingContact(contact.getName())) {
 register(contact);
 } else {
 throw new NonExistingContactException(contact.getName() +
 ": contact not found!");
 }
 }

 @Override
 public void remove(String name) throws NonExistingContactException,
 DuplicateContactException, FileNotFoundException, IOException {
 Path path = Paths.get(FileUtils.getFileName(name));
 if (Files.exists(path)) {
 Files.delete(path);
 System.out.println("Contact " + name + " deleted!");
 } else {
 throw new NonExistingContactException(name + ": contact not found!");
 }
 }

Chapter 20 Exercises Solutions

661
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private void register(Contact contact) throws FileNotFoundException,
 IOException {
 Path path = Paths.get(FileUtils.getFileName(contact.getName()));
 Files.write(path, getBytesFromObject(contact));
 System.out.println("Contact registered:\n" + contact);
 }

 private byte[] getBytesFromObject(Object object) throws IOException {
 try (ByteArrayOutputStream bos = new ByteArrayOutputStream();
 ObjectOutput out = new ObjectOutputStream(bos)) {
 out.writeObject(object);
 return bos.toByteArray();
 }
 }

 private Object getObjectFromBytes(byte[] bytes) throws IOException,
 ClassNotFoundException {
 try (ByteArrayInputStream bis = new ByteArrayInputStream(bytes);
 ObjectInput in = new ObjectInputStream(bis)) {
 return in.readObject();
 }
 }

 private boolean isExistingContact(String name) {
 Path path = Paths.get(FileUtils.getFileName(name));
 return Files.exists(path);
 }

 private Contact getContact(String name) {
 Path path = Paths.get(name);
 byte[] bytes = null;
 Contact contact = null;
 try {
 bytes = Files.readAllBytes(path);
 contact = (Contact)getObjectFromBytes(bytes);
 System.out.println("Contact retrieved:\n" + contact);
 } catch (Exception exc) {
 return null;
 }
 return contact;
 }
}

The class for testing Exercise20L, differs from the class Exercise20K only by the application
of the DIP principle which instantiates the new class FileNIO2Manager, using a reference of
type SerializationManager. Everything else does not change:

package phonebook.test;

Chapter 20 Exercises Solutions

662
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import phonebook.exceptions.*;
import phonebook.integration.*;
import phonebook.data.*;
import phonebook.util.*;

public class Exercise20L {

 private SerializationManager<Contact> fileManager;

 private Contact[] contacts;

 Exercise20L() {
 contacts = getContacts();
 fileManager = new FileNIO2Manager();
 }

 private void executeTest() {
 System.out.println("TESTING THE CREATION OF THE THREE CONTACTS...");
 createContacts();
 System.out.println("RETRIEVING THE THREE CONTACTS...");
 retrieveContacts();
 System.out.println("TESTING THE CREATION OF A ALREADY EXISTING CONTACT");
 createExistingContact();
 System.out.println("TRYING TO RECOVER A NON-EXISTING CONTACT");
 retrieveNonExistingContact();
 System.out.println("UPDATING AN EXISTING CONTACT");
 updateExistingContact();
 System.out.println("REMOVING AN EXISTING CONTACT");
 removeExistingContact();
 System.out.println("UPDATING A NON-EXISTING CONTACT");
 updateNonExistingContact();
 System.out.println("REMOVING A NON-EXISTING CONTACT");
 removeNonExistingContact();
 }

 public void retrieveContacts() {
 for (Contact contact : contacts) {
 retrieveContact(contact.getName());
 }
 }

 public void createContacts() {
 for (Contact contact : contacts) {
 createContact(contact);
 }
 }

 public void createExistingContact() {
 createContact(contacts[0]);
 }

Chapter 20 Exercises Solutions

663
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void updateExistingContact() {
 Contact contact = new Contact("Daniele","07890", "Mics Street 1");
 String message = "Contact " + contact.getName() + " updated!\n"
 + contact;
 execute(()->fileManager.update(contact), message);
 }

 public void removeExistingContact() {
 String name = contacts[2].getName();
 String message = "Contact " + name + " removed!";
 execute(()->fileManager.remove(name), message);
 }

 public void updateNonExistingContact() {
 Contact contact = new Contact("Bar","07890", "Mics Street 1");
 String message = "Contact " + contact.getName() + " updated!";
 execute(()->fileManager.update(contact), message);
 }

 public void removeNonExistingContact() {
 String name = "Ligeia";
 String message = "Contact " + name + " removed!";
 execute(()->fileManager.remove(name), message);
 }

 public void retrieveNonExistingContact() {
 retrieveContact("Foo");
 }

 public void retrieveContact(String contactName) {
 execute(()->fileManager.retrieve(contactName));
 }

 private void createContact(Contact contact) {
 String message = "Contact " + contact.getName() + " created!\n"
 + contact;
 execute(()->fileManager.insert(contact), message);
 }

 public <O> O execute(Retriever<O> retriever) {
 O output = null;
 try {
 output = retriever.execute();
 System.out.println("Retrieved contact:\n" + output);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 return output;
 }

Chapter 20 Exercises Solutions

664
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void execute(Executor executor, String message) {
 try {
 executor.execute();
 System.out.println(message);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public static void main(String args[]) {
 Exercise20L exercise20L = new Exercise20L();
 exercise20L.executeTest();
 }
}

We can return to the old version by simply replacing the instance of FileNIO2Manager with the
instance of FileManager.

Solution 20.m)

We have implemented the SerializationManagerFactory class using the Reflection API.
However, a solution that made use of a switch expression or any conditional construct would
also have been valid:

package phonebook.integration;

import phonebook.data.Contact;
import java.util.Properties;
import java.io.*;

public class SerializationManagerFactory {
 private static final String PACKAGE = "phonebook.integration.";
 private static final String SERIALIZATION_METHOD = "phonebook.ser";
 private static Properties properties;
 static {
 properties = new Properties();
 try {
 loadProperties();
 } catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static SerializationManager<Contact> getSerializationManager()
 throws InstantiationException, ClassNotFoundException,
 IllegalAccessException {
 String className = properties.getProperty(SERIALIZATION_METHOD);

Chapter 20 Exercises Solutions

665
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println("Loading the " + className + " class");
 Class<?> classObject = Class.forName(PACKAGE + className);
 return (SerializationManager<Contact>)classObject.newInstance();
 }

 private static void loadProperties() throws IOException {
 try (FileInputStream inputStream =
 new FileInputStream("config.properties");) {
 properties.load(inputStream);
 }
 }
}

Obviously, we assumed that the value of the property coincides with the name of the class to be
loaded. For example, we could save the config.properties file with the following content:

phonebook.ser=FileManager

Finally we can test our implementation with the following class Exercise20M (as usual in bold
there are changes from the version Exercise20L):

package phonebook.test;

import phonebook.exceptions.*;
import phonebook.integration.*;
import phonebook.data.*;
import phonebook.util.*;

public class Exercise20M {
 private SerializationManager<Contact> fileManager;

 private Contact[] contacts;

 Exercise20M() {
 contacts = getContacts();
 try {
 fileManager = SerializationManagerFactory.getSerializationManager();
 } catch (Exception exc) {
 exc.printStackTrace();
 System.exit(1);
 }
 }

 private void executeTest() {
 System.out.println("TESTING THE CREATION OF THE THREE CONTACTS...");
 createContacts();
 System.out.println("RETRIEVING THE THREE CONTACTS...");
 retrieveContacts();
 System.out.println("TESTING THE CREATION OF A ALREADY EXISTING CONTACT");

Chapter 20 Exercises Solutions

666
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 createExistingContact();
 System.out.println("TRYING TO RECOVER A NON-EXISTING CONTACT");
 retrieveNonExistingContact();
 System.out.println("UPDATING AN EXISTING CONTACT");
 updateExistingContact();
 System.out.println("REMOVING AN EXISTING CONTACT");
 removeExistingContact();
 System.out.println("UPDATING A NON-EXISTING CONTACT");
 updateNonExistingContact();
 System.out.println("REMOVING A NON-EXISTING CONTACT");
 removeNonExistingContact();
 }

 public void retrieveContacts() {
 for (Contact contact : contacts) {
 retrieveContact(contact.getName());
 }
 }

 public void createContacts() {
 for (Contact contact : contacts) {
 createContact(contact);
 }
 }

 public void createExistingContact() {
 createContact(contacts[0]);
 }

 public void updateExistingContact() {
 Contact contact = new Contact("Daniele","07890", "Mics Street 1");
 String message = "Contact " + contact.getName() + " updated!\n"
 + contact;
 execute(()->fileManager.update(contact), message);
 }

 public void removeExistingContact() {
 String name = contacts[2].getName();
 String message = "Contact " + name + " removed!";
 execute(()->fileManager.remove(name), message);
 }

 public void updateNonExistingContact() {
 Contact contact = new Contact("Bar","07890", "Mics Street 1");
 String message = "Contact " + contact.getName() + " updated!";
 execute(()->fileManager.update(contact), message);
 }

 public void removeNonExistingContact() {
 String name = "Ligeia";
 String message = "Contact " + name + " removed!";

Chapter 20 Exercises Solutions

667
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 execute(()->fileManager.remove(name), message);
 }

 public void retrieveNonExistingContact() {
 retrieveContact("Foo");
 }

 public void retrieveContact(String contactName) {
 execute(()->fileManager.retrieve(contactName));
 }

 private void createContact(Contact contact) {
 String message = "Contact " + contact.getName() + " created!\n"
 + contact;
 execute(()->fileManager.insert(contact), message);
 }

 public <O> O execute(Retriever<O> retriever) {
 O output = null;
 try {
 output = retriever.execute();
 System.out.println("Retrieved contact:\n" + output);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 return output;
 }

 public void execute(Executor executor, String message) {
 try {
 executor.execute();
 System.out.println(message);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public static void main(String args[]) {
 Exercise20M exercise20M = new Exercise20M();
 exercise20M.executeTest();
 }
}

Solution 20.n)

We decided to create the InvalidCommandException exception extending IOException in the
following way:

Chapter 20 Exercises Solutions

668
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

package phonebook.exceptions;

import java.io.IOException;

public class InvalidCommandException extends IOException {

 private static final long serialVersionUID = 6742493040156525789L;

 public InvalidCommandException(String command) {
 super("Invalid command:" + command);
 }
}

Here it is the implementation of the PhonebookCLI class:

package phonebook.presentation;

import phonebook.data.*;
import phonebook.exceptions.*;
import java.util.*;
import java.io.*;

public class PhonebookCLI {
 private Scanner scanner;
 private static final String INSERT = "/i";
 private static final String SHOW_CONTACT = "/v";
 private static final String END = "/t";

 public PhonebookCLI() {
 scanner = new Scanner(System.in);
 }

 public void showContacts(List<Contact> contacts) {
 try {
 int numberOfContacts = contacts.size();
 if (numberOfContacts == 0) {
 System.out.println("No contact found");
 } else {
 System.out.println("Contacts list in the phonebook:");
 for (Contact contact : contacts) {
 System.out.println(contact.getName());
 }
 System.out.printf("Type '%s' followed by the name of a contact,"
 + " to see the details\n", SHOW_CONTACT);
 }
 System.out.printf("Type '%s' to insert a new contact\n", INSERT);
 System.out.printf("Type '%s' to terminate the program\n", END);
 String command = scanner.nextLine();

Chapter 20 Exercises Solutions

669
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 if (command.equals(INSERT)) {
 System.out.println("Insert contact method called");
 } else if (command.equals(END)) {
 System.out.println("Program terminated");
 System.exit(1);
 } else if (isValidCommandToShowAContact(contacts, command)) {
 System.out.printf("Show contact method called for %s\n", " +
 extractContactName(command));
 } else {
 throw new InvalidCommandException(command);
 }
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 private boolean isValidCommandToShowAContact(List<Contact> contacts,
 String command) throws NonExistingContactException,
 InvalidCommandException {
 boolean result = false;
 if (command.startsWith(SHOW_CONTACT)) {
 for (Contact contact : contacts) {
 if (command.endsWith(contact.getName())) {
 return true;
 }
 }
 } else {
 throw new InvalidCommandException(command);
 }
 throw new NonExistingContactException(String.format(
 "Contact %s not found!", extractContactName(command)));
 }

 public String extractContactName(String command) {
 return command.substring(command.indexOf(" ")+1, command.length());
 }
}

Finally, this is the Exercise20N class:

package phonebook.test;

import phonebook.presentation.*;
import phonebook.data.*;
import phonebook.exceptions.*;
import java.util.*;

public class Exercise20N {

Chapter 20 Exercises Solutions

670
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private void executeTest() {
 PhonebookCLI cli = new PhonebookCLI();
 cli.showContacts(getContacts());
 }

 private List<Contact> getContacts() {
 List<Contact> contacts = new ArrayList<>();
 Contact contact1 = new Contact("Daniele", "01234560", "Guitars Street 1");
 Contact contact2 = new Contact("Giovanni", "0565432190", "Sciences Square 2");
 Contact contact3 = new Contact("Ligeia", "07899921", "Secrets Avenue 3");
 contacts.add(contact1);
 contacts.add(contact2);
 contacts.add(contact3);
 return contacts;
 }

 public static void main(String args[]) {
 Exercise20N exercise20N = new Exercise20N();
 exercise20N.executeTest();
 }
}

Solution 20.o)

First, let’s start to modify the Model, adding the new getContacts() method to the
SerializationManager interface:

package phonebook.integration;

import java.util.*;
import java.io.*;
import phonebook.exceptions.*;
import phonebook.util.*;
import phonebook.data.*;

public interface SerializationManager<T extends Data> {
 void insert(T data) throws IOException;

 T retrieve(String id) throws IOException, ClassNotFoundException;

 void update(T data) throws IOException;

 void remove(String id) throws IOException;

 List<Contact> getContacts() throws IOException;
}

Then we have to implement this method in its two implementations FileManager and

Chapter 20 Exercises Solutions

671
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

FileManagerNIO2. Here it is the new version of the FileManager class:

package phonebook.integration;

import java.util.*;
import java.io.*;
import phonebook.exceptions.*;
import phonebook.util.*;
import phonebook.data.*;

public class FileManager implements SerializationManager<Contact> {
 @Override
 public void insert(Contact contact) throws DuplicateContactException,
 FileNotFoundException, IOException {
 Contact existingContact = getContact(contact.getName());
 if (existingContact != null) {
 throw new DuplicateContactException(contact.getName() +
 ": contact already existing!");
 }
 store(contact);
 }

 @Override
 public Contact retrieve(String name) throws NonExistingContactException {
 Contact contact = getContact(name);
 if (contact == null) {
 throw new NonExistingContactException(name + ": contact not found!");
 }
 return contact;
 }

 @Override
 public void update(Contact contact) throws NonExistingContactException,
 DuplicateContactException, FileNotFoundException, IOException {
 if (isExistingContact(contact.getName())) {
 store(contact);
 } else {
 throw new NonExistingContactException(contact.getName() +
 ": contact not found!");
 }
 }

 @Override
 public void remove(String name) throws NonExistingContactException,
 DuplicateContactException, FileNotFoundException, IOException {
 File file = new File(FileUtils.getFileName(name));
 if (!file.delete()) {
 throw new NonExistingContactException(name + ": contact not found!");
 }
 }

Chapter 20 Exercises Solutions

672
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 @Override
 public List<Contact> getContacts() throws IOException {
 List<Contact> contacts = new ArrayList<Contact>();
 File directory = new File(".");
 for (File file : directory.listFiles()) {
 if (file.isFile()) {
 String fileName = file.getName();
 if (fileName.endsWith(".con")) {
 contacts.add(getContact(fileName));
 }
 }
 }
 return contacts;
 }

 private void store(Contact contact) throws FileNotFoundException,
 IOException {
 try (FileOutputStream fos =
 new FileOutputStream (new File(FileUtils.getFileName(
 contact.getName())));
 ObjectOutputStream s = new ObjectOutputStream (fos);) {
 s.writeObject (contact);
 }
 }

 private boolean isExistingContact(String name) {
 File file = new File(FileUtils.getFileName(name));
 return file.exists();
 }

 private Contact getContact(String name) {
 try (FileInputStream fis = new FileInputStream (new File(name));
 ObjectInputStream ois = new ObjectInputStream (fis);) {
 Contact contact = (Contact)ois.readObject();
 return contact;
 } catch (Exception exc) {
 exc.printStackTrace();
 return null;
 }
 }
}

While the following is the new version of the GestoreFileNIO2 class:

package phonebook.integration;

import java.util.*;
import java.io.*;
import phonebook.exceptions.*;

Chapter 20 Exercises Solutions

673
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import phonebook.util.*;
import phonebook.data.*;
import java.nio.file.*;
import java.util.stream.*;

public class FileManagerNIO2 implements SerializationManager<Contact> {
 @Override
 public void insert(Contact contact) throws DuplicateContactException,
 FileNotFoundException, IOException {
 Path path = Paths.get(FileUtils.getFileName(contact.getName()));
 if (Files.exists(path)) {
 throw new DuplicateContactException(contact.getName() +
 ": contact already existing!");
 }
 register(contact);
 }

 @Override
 public Contact retrieve(String name) throws NonExistingContactException {
 Contact contact = getContact(name);
 if (contact == null) {
 throw new NonExistingContactException(name + ": contact not found!");
 }
 return contact;
 }

 @Override
 public void update(Contact contact) throws NonExistingContactException,
 DuplicateContactException, FileNotFoundException, IOException {
 if (isExistingContact(contact.getName())) {
 register(contact);
 } else {
 throw new NonExistingContactException(contact.getName() +
 ": contact not found!");
 }
 }

 @Override
 public void remove(String name) throws NonExistingContactException,
 DuplicateContactException, FileNotFoundException, IOException {
 Path path = Paths.get(FileUtils.getFileName(name));
 if (Files.exists(path)) {
 Files.delete(path);
 } else {
 throw new NonExistingContactException(name + ": contact not found!");
 }
 }

Chapter 20 Exercises Solutions

674
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 @Override
 public List<Contact> getContacts() throws IOException {
 List<Contact> contacts = new ArrayList<>();
 try (Stream<Path> walk = Files.walk(Paths.get("."))) {
 contacts = walk.map(p -> p.toString())
 .filter(f -> f.endsWith(".con")).map(
 f -> getContact(f)).collect(Collectors.toList());
 }
 return contacts;
 }

 private void register(Contact contact) throws FileNotFoundException,
 IOException {
 Path path = Paths.get(FileUtils.getFileName(contact.getName()));
 Files.write(path, getBytesFromObject(contact));
 }

 private byte[] getBytesFromObject(Object object) throws IOException {
 try (ByteArrayOutputStream bos = new ByteArrayOutputStream();
 ObjectOutput out = new ObjectOutputStream(bos)) {
 out.writeObject(object);
 return bos.toByteArray();
 }
 }

 private Object getObjectFromBytes(byte[] bytes) throws IOException,
 ClassNotFoundException {
 try (ByteArrayInputStream bis = new ByteArrayInputStream(bytes);
 ObjectInput in = new ObjectInputStream(bis)) {
 return in.readObject();
 }
 }

 private boolean isExistingContact(String name) {
 Path path = Paths.get(FileUtils.getFileName(name));
 return Files.exists(path);
 }

 private Contact getContact(String name) {
 Path path = Paths.get(FileUtils.getFileName(name));
 byte[] bytes = null;
 Contact contact = null;
 try {
 bytes = Files.readAllBytes(path);
 contact = (Contact)getObjectFromBytes(bytes);
 }
 catch (Exception exc) {
 return null;
 }

Chapter 20 Exercises Solutions

675
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 return contact;
 }
}

The new version of the PhonebookCLI class follows, which contains the PhonebookController
nested class:

package phonebook.presentation;

import phonebook.data.*;
import phonebook.exceptions.*;
import phonebook.integration.*;
import java.util.*;
import java.io.*;

public class PhonebookCLI {
 private Scanner scanner;
 private PhonebookController controller;
 private static final String INSERT = "/i";
 private static final String SHOW_CONTACT = "/v";
 private static final String END = "/t";

 public PhonebookCLI() {
 scanner = new Scanner(System.in);
 controller = new PhonebookController();
 }

 public void start() {
 try {
 controller.start();
 } catch (IOException exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void showContacts(List<Contact> contacts) {
 try {
 int numberOfContacts = contacts.size();
 if (numberOfContacts == 0) {
 System.out.println("No contact found");
 } else {
 System.out.println("Contacts list in the phonebook:");
 for (Contact contact : contacts) {
 System.out.println(contact.getName());
 }
 System.out.printf("Type '%s' followed by the name of a contact,"
 + " to see the details\n", SHOW_CONTACT);
 }
 System.out.printf("Type '%s' to insert a new contact\n", INSERT);

Chapter 20 Exercises Solutions

676
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.printf("Type '%s' to terminate the program\n", END);
 String command = scanner.nextLine();
 if (command.equals(INSERT)) {
 System.out.println("Insert contact method called");
 } else if (command.equals(END)) {
 System.out.println("Program terminated");
 System.exit(1);
 } else if (isValidCommandToShowAContact(contacts, command)) {
 System.out.printf("Show contact method called for %s\n", +
 "extractContactName(command));
 } else {
 throw new InvalidCommandException(command);
 }
 } catch (Exception exc) {
 exc.printStackTrace();
 System.out.println(exc.getMessage());
 }
 }

 private boolean isValidCommandToShowAContact(List<Contact> contacts,
 String command) throws NonExistingContactException,
 InvalidCommandException {
 boolean result = false;
 if (command.startsWith(SHOW_CONTACT)) {
 for (Contact contact : contacts) {
 if (command.endsWith(contact.getName())) {
 return true;
 }
 }
 } else {
 throw new InvalidCommandException(command);
 }
 throw new NonExistingContactException(String.format(
 "Contact %s not found!", extractContactName(command)));
 }

 public String extractContactName(String command) {
 return command.substring(command.indexOf(" ")+1, command.length());
 }

 class PhonebookController {
 SerializationManager fileManager;
 public PhonebookController () {
 try {
 fileManager =
 SerializationManagerFactory.getSerializationManager();
 } catch (Exception exc) {
 exc.printStackTrace();
 System.exit(1);

Chapter 20 Exercises Solutions

677
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 }
 }

 public void start() throws IOException {
 List<Contact> contacts = fileManager.getContacts();
 showContacts(contacts);
 }
 }
}

Soluzione 20.p)

First, we have defined the EmptyNameException exception requested like this:

package phonebook.exceptions;

public class EmptyNameException extends Exception {
 private static final long serialVersionUID = 8290498479156525745L;

 public EmptyNameException() {
 super("The contact name cannot be empty!");
 }
}

Obviously, we have implemented the check of the empty name, within the Contact class using
encapsulation:

package phonebook.data;

import phonebook.exceptions.*;

public class Contact extends Entity {
 protected static final String UNKNOWN = "unknown";
 private String name;
 private String phoneNumber;
 private String address;

 public Contact(String name, String phoneNumber) throws EmptyNameException {
 this.setName(name);
 this.setPhoneNumber(phoneNumber);
 this.setAddress(UNKNOWN);
 }

 public Contact(String name, String phoneNumber, String address)
 throws EmptyNameException {
 this.setName(name);
 this.setPhoneNumber(phoneNumber);
 this.setAddress(address);
 }

Chapter 20 Exercises Solutions

678
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 public void setAddress(String address) {
 this.address = address;
 }

 public String getAddress() {
 return address;
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }

 public void setName(String name) throws EmptyNameException {
 if (name == null || name.trim().length() == 0) {
 throw new EmptyNameException();
 }
 this.name = name;
 }

 public String getName() {
 return name;
 }

 @Override
 public String toString() {
 return "Name:\t" + name + "\nAddress:\t" + address + "\nPhone:\t" +
 phoneNumber;
 }
}

As for the changes of the PhonebookCLI and PhonebookController classes required, we
highlight them below in bold:

package phonebook.presentation;

import phonebook.data.*;
import phonebook.exceptions.*;
import phonebook.integration.*;
import java.util.*;
import java.io.*;

public class PhonebookCLI {
 private Scanner scanner;
 private PhonebookController controller;
 private static final String INSERT = "/i";

Chapter 20 Exercises Solutions

679
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 private static final String SHOW_CONTACT = "/v";
 private static final String EXECUTE = "/e";
 private static final String BACK = "/b";
 private static final String END = "/t";

 public PhonebookCLI() {
 scanner = new Scanner(System.in);
 controller = new PhonebookController();
 }

 public void start() {
 try {
 controller.start();
 } catch (IOException exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void showContacts(List<Contact> contacts) {
 try {
 int numberOfContacts = contacts.size();
 if (numberOfContacts == 0) {
 System.out.println("No contact found");
 } else {
 System.out.println("Contacts list in the phonebook:");
 int size = contacts.size();
 for (int i = 1; i <= size; ++i) {
 System.out.println(i + "\t" +contacts.get(i-1).getName());
 }
 System.out.printf("Type '%s' followed by the name of a contact,"
 + " to see the details\n", SHOW_CONTACT);
 }
 System.out.printf("Type '%s' to insert a new contact\n", INSERT);
 System.out.printf("Type '%s' to terminate the program\n", END);
 String command = scanner.nextLine();
 controller.handleShowContacts(command, contacts);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void insertContact() {
 try {
 String name = getContactData("name");
 String telephoneNumber = getContactData("telephone number");
 String address = getContactData("address");
 System.out.printf("Type '%s' to confirm the insertion\n", EXECUTE);
 System.out.printf("Type '%s' to go back and show contacts\n", BACK);
 String command = scanner.nextLine();

Chapter 20 Exercises Solutions

680
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 controller.handleInsertContact(command, name, telephoneNumber,
 address);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void showConfirmation(String message) {
 try {
 System.out.println("Operation Confirmed!");
 showMessage(message);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 private void showMessage(String message) throws IOException,
 InvalidCommandException {
 System.out.println(message + "\n");
 System.out.printf("Type '%s' to go back and show contacts\n", BACK);
 System.out.printf("Type '%s' to terminate the program\n", END);
 String command = scanner.nextLine();
 controller.handleShowConfirmation(command);
 }

 private String getContactData(String data) {
 String message = String.format("Insert the %s of the contact:", data);
 return getUserInput(message);
 }

 private String getUserInput(String message) {
 System.out.printf(message);
 return scanner.nextLine();
 }

 class PhonebookController {
 SerializationManager fileManager;
 public PhonebookController () {
 try {
 fileManager =
 SerializationManagerFactory.getSerializationManager();
 } catch (Exception exc) {
 exc.printStackTrace();
 System.exit(1);
 }
 }

 public void start() throws IOException {
 List<Contact> contacts = fileManager.getContacts();

Chapter 20 Exercises Solutions

681
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 showContacts(contacts);
 }

 public void handleShowContacts(String command, List<Contact> contacts)
 throws IOException {
 if (command.equals(INSERT)) {
 insertContact();
 } else if (command.equals(END)) {
 System.out.println("Program terminated");
 System.exit(1);
 } else if (isValidCommandToShowAContact(contacts, command)) {
 System.out.printf("Show contact method called for %s\n",
 extractContactName(command));
 } else {
 throw new InvalidCommandException(command);
 }
 }

 public void handleInsertContact(String command, String name,
 String telephoneNumber, String address) throws IOException,
 EmptyNameException {
 if (command.equals(EXECUTE)) {
 Contact contact = new Contact(name, telephoneNumber, address);
 fileManager.insert(contact);
 showConfirmation("Contact inserted:\n" + contact);
 } else if (command.equals(BACK)) {
 showContacts(fileManager.getContacts());
 } else {
 throw new InvalidCommandException(command);
 }
 }

 public void handleShowConfirmation(String command) throws IOException,
 InvalidCommandException {
 if (command.equals(END)) {
 System.out.println("Program terminated");
 System.exit(1);
 } else if (command.equals(BACK)) {
 showContacts(fileManager.getContacts());
 } else {
 throw new InvalidCommandException(command);
 }
 }

 private boolean isValidCommandToShowAContact(List<Contact> contacts,
 String command) throws NonExistingContactException,
 InvalidCommandException {
 boolean result = false;
 if (command.startsWith(SHOW_CONTACT)) {

Chapter 20 Exercises Solutions

682
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 for (Contact contact : contacts) {
 if (command.endsWith(contact.getName())) {
 return true;
 }
 }
 } else {
 throw new InvalidCommandException(command);
 }
 throw new NonExistingContactException(String.format(
 "Contact %s not" + " found!", extractContactName(command)));
 }

 public String extractContactName(String command) {
 return command.substring(command.indexOf(" ")+1, command.length());
 }
 }
}

Finally, follows the Exercise20P:

package phonebook.test;

import phonebook.presentation.*;
import phonebook.data.*;
import phonebook.exceptions.*;
import java.util.*;

public class Exercise20P {

 private void executeTest() {
 PhonebookCLI cli = new PhonebookCLI();
 cli.start();
 }

 public static void main(String args[]) {
 Exercise20P exercise20P = new Exercise20P();
 exercise20P.executeTest();
 }
}

Solution 20.q)

The PhonebookCLI and PhonebookController classes have been modified as follows (changes
in bold):

package phonebook.presentation;

import phonebook.data.*;

Chapter 20 Exercises Solutions

683
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

import phonebook.exceptions.*;
import phonebook.integration.*;
import java.util.*;
import java.io.*;

public class PhonebookCLI {
 private Scanner scanner;
 private PhonebookController controller;
 private static final String INSERT = "/i";
 private static final String SHOW_CONTACT = "/v";
 private static final String UPDATE_CONTACT = "/u";
 private static final String REMOVE_CONTACT = "/r";
 private static final String EXECUTE = "/e";
 private static final String BACK = "/b";
 private static final String END = "/t";

 public PhonebookCLI() {
 scanner = new Scanner(System.in);
 controller = new PhonebookController();
 }

 public void start() {
 try {
 controller.start();
 } catch (IOException exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void showContact(Contact contact) {
 try {
 System.out.println("Details of the contact selected:\n" + contact);
 System.out.printf("Type '%s' to update the contact\n",
 UPDATE_CONTACT);
 System.out.printf("Type '%s' to remove the contact\n",
 REMOVE_CONTACT);
 System.out.printf("Type '%s' to go back and show contacts\n", BACK);
 String command = scanner.nextLine();
 controller.handleShowContact(command, contact);
 } catch (Exception exc) {
 showError(exc);
 }
 }

 public void updateContact(Contact contact) {
 try {
 String telephoneNumber = getContactData("telephone number");
 String address = getContactData("address");
 System.out.printf("Type '%s' to confirm the update\n", EXECUTE);

Chapter 20 Exercises Solutions

684
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.printf("Type '%s' to go back and show contacts\n", BACK);
 String command = scanner.nextLine();
 controller.handleUpdateContact(command, contact.getName(),
 telephoneNumber, address);
 } catch (Exception exc) {
 showError(exc);
 }
 }

 public void removeContact(Contact contact) {
 try {
 System.out.printf("Type '%s' to confirm the removal\n", EXECUTE);
 System.out.printf("Type '%s' to go back and show contacts\n",
 BACK);
 String command = scanner.nextLine();
 controller.handleRemoveContact(command, contact.getName());
 }
 catch (Exception exc) {
 showError(exc);
 }
 }

 public void showContacts(List<Contact> contacts) {
 try {
 int numberOfContacts = contacts.size();
 if (numberOfContacts == 0) {
 System.out.println("No contact found");
 } else {
 System.out.println("Contacts list in the phonebook:");
 int size = contacts.size();
 for (int i = 1; i <= size; ++i) {
 System.out.println(i + "\t" + contacts.get(i-1).getName());
 }
 System.out.printf("Type '%s' followed by the name of a contact,"
 + " to see the details\n", SHOW_CONTACT);
 }
 System.out.printf("Type '%s' to insert a new contact\n", INSERT);
 System.out.printf("Type '%s' to terminate the program\n", END);
 String command = scanner.nextLine();
 controller.handleShowContacts(command, contacts);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void insertContact() {
 try {
 String name = getContactData("name");
 String telephoneNumber = getContactData("telephone number");

Chapter 20 Exercises Solutions

685
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 String address = getContactData("address");
 System.out.printf("Type '%s' to confirm the insertion\n", EXECUTE);
 System.out.printf("Type '%s' to go back and show contacts\n", BACK);
 String command = scanner.nextLine();
 controller.handleInsertContact(command, name, telephoneNumber,
 address);
 } catch (Exception exc) {
 System.out.println(exc.getMessage());
 }
 }

 public void showConfirmation(String message) {
 System.out.println("Operation confirmed!");
 showMessage(message);
 }

 public void showError(Exception exc) {
 System.out.println("There's a problem!");
 showMessage(exc.toString());
 }

 private void showMessage(String message) {
 try {
 System.out.println(message + "\n");
 System.out.printf("Type '%s' to go back and show contacts\n",
 BACK);
 System.out.printf("Type '%s' to terminate the program\n", END);
 String command = scanner.nextLine();
 controller.handleShowMessage(command);
 }
 catch (Exception exc) {
 showMessage(message);
 }
 }

 private String getContactData(String data) {
 String message = String.format("Insert the %s of the contact:", data);
 return getUserInput(message);
 }

 private String getUserInput(String message) {
 System.out.printf(message);
 return scanner.nextLine();
 }

 class PhonebookController {
 SerializationManager<Contact> fileManager;
 public PhonebookController () {
 try {

Chapter 20 Exercises Solutions

686
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 fileManager =
 SerializationManagerFactory.getSerializationManager();
 } catch (Exception exc) {
 exc.printStackTrace();
 System.exit(1);
 }
 }

 public void start() throws IOException {
 List<Contact> contacts = fileManager.getContacts();
 showContacts(contacts);
 }

 public void handleShowContacts(String command, List<Contact> contacts)
 throws IOException, ClassNotFoundException {
 if (command.equals(INSERT)) {
 insertContact();
 } else if (command.equals(END)) {
 System.out.println("Program terminated");
 System.exit(1);
 } else if (isValidCommandToShowAContact(contacts, command)) {
 String contactName = extractContactName(command);
 System.out.printf("Show contact method called for %s\n",
 contactName);
 Contact contact = fileManager.retrieve(contactName);
 showContact(contact);
 } else {
 throw new InvalidCommandException(command);
 }
 }

 public void handleShowContact(String command,Contact contact)
 throws IOException, ClassNotFoundException {
 if (command.equals(UPDATE_CONTACT)) {
 updateContact(contact);
 } else if (command.equals(REMOVE_CONTACT)) {
 removeContact(contact);
 } else if (command.equals(BACK)) {
 showContacts(fileManager.getContacts());
 } else {
 throw new InvalidCommandException(command);
 }
 }

 public void handleInsertContact(String command, String name, String
 telephoneNumber, String address) throws IOException, EmptyNameException {
 if (command.equals(EXECUTE)) {
 Contact contact = new Contact(name, telephoneNumber, address);
 fileManager.insert(contact);

Chapter 20 Exercises Solutions

687
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 showConfirmation("Contact inserted:\n" + contact);
 } else if (command.equals(BACK)) {
 showContacts(fileManager.getContacts());
 } else {
 throw new InvalidCommandException(command);
 }
 }

 public void handleUpdateContact(String command, String name,
 String telephoneNumber, String address) throws IOException,
 EmptyNameException {
 if (command.equals(EXECUTE)) {
 Contact contact = new Contact(name, telephoneNumber, address);
 fileManager.update(contact);
 showConfirmation("Update confirmed:\n" + contact);
 } else if (command.equals(BACK)) {
 showContacts(fileManager.getContacts());
 } else {
 throw new InvalidCommandException(command);
 }
 }

 public void handleRemoveContact(String command, String name)
 throws IOException {
 if (command.equals(EXECUTE)) {
 fileManager.remove(name);
 showConfirmation("Removal confirmed:\n" + name);
 } else if (command.equals(BACK)) {
 showContacts(fileManager.getContacts());
 } else {
 throw new InvalidCommandException(command);
 }
 }

 public void handleShowConfirmation(String command) throws IOException,
 InvalidCommandException {
 if (command.equals(END)) {
 System.out.println("Program terminated");
 System.exit(1);
 } else if (command.equals(BACK)) {
 showContacts(fileManager.getContacts());
 } else {
 throw new InvalidCommandException(command);
 }
 }

 public void handleShowMessage(String command) throws IOException {
 if (command.equals(BACK)) {
 showContacts(fileManager.getContacts());

Chapter 20 Exercises Solutions

688
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 } else if (command.equals(BACK)) {
 showContacts(fileManager.getContacts());
 } else {
 throw new InvalidCommandException(command);
 }
 }

 private boolean isValidCommandToShowAContact(List<Contact> contacts,
 String command) throws NonExistingContactException,
 InvalidCommandException {
 boolean result = false;
 if (command.startsWith(SHOW_CONTACT)) {
 for (Contact contact : contacts) {
 if (command.endsWith(contact.getName())) {
 return true;
 }
 }
 } else {
 throw new InvalidCommandException(command);
 }
 throw new NonExistingContactException(
 String.format("Contact %s not" + " found!",
 extractContactName(command)));
 }

 public String extractContactName(String command) {
 return command.substring(command.indexOf(" ")+1, command.length());
 }
 }
}

Obviously, the Exercise20Q class is the following:

package phonebook.test;

import phonebook.presentation.*;
import phonebook.data.*;
import phonebook.exceptions.*;
import java.util.*;

public class Exercise20Q {

 private void executeTest() {
 PhonebookCLI cli = new PhonebookCLI();
 cli.start();
 }

 public static void main(String args[]) {
 Exercise20Q exercise20Q = new Exercise20Q();

Chapter 20 Exercises Solutions

689
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 exercise20Q.executeTest();
 }
}

Solution 20.r)

The correct statements are the first and fourth. Statement 2 is incorrect since the getParent()
returns a string that represents a directory. Statement 3 is incorrect because pathSeparator is
a static variable of the File class, which represents the path separator dependent on the oper-
ating system. It could be deduced both from the name which is written in lower case (the con-
stants instead are conventionally written in upper case), and from the fact that it cannot assume
an a priori value since it depends on the operating system.

Solution 20.s)

The only correct statement is the first. Statement 2 is incorrect because Reader and Writer are
interfaces and not classes. Statement 3 is incorrect because the readLine() method is defined
within the BufferedReader class. Statement number 4 is incorrect since the constructor of an
ObjectInputStream can take as input any object of type InputStream.

Solution 20.t)

The only incorrect statement is number 1. Statement number 2 is correct even if the efficiency
and convenience of reading would undoubtedly be improved by “connecting” a BufferedReader
to the FileReader. For example we could read a file with a code similar to the following:

Reader fileReader = new FileReader("c:/myfile.txt");
int data = fileReader.read();
while (data != -1) {
 System.out.print(data);
 data = fileReader.read();
}
fileReader.close();

Statement number 3 is correct, because the File class defines the mkDir() method, and also the
4 is correct because the File class defines the list() method.

Solution 20.u)

The correct answer is number 2, which is 12 bytes. In fact, an int type (32 bit = 4 byte) and a
double (64 bit = 8 byte) are written within the file.

Chapter 20 Exercises Solutions

690
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Solution 20.v)

The solution could be the following:

import java.io.*;

public class Solution20S {
 public static void main(String args[]) throws Exception {
 try (FileInputStream fis = new FileInputStream("new file.txt");
 DataInputStream dis = new DataInputStream(fis);) {
 for (int i = 0; i < 50; i++) {
 System.out.print(dis.readInt());
 }
 }
 }
}

The output will be:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
20
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Chapter 20 Exercises Solutions

691
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Solution 20.w)

The correct statements are numbers 2 and 3. The 1 is incorrect because there are Reader imple-
mentations, such as StringReader, that do not declare throws clauses to IOException. State-
ment 4 is incorrect as only Writer implementations dealing with files such as FileWriter need
to manage these implementations.

Solution 20.x)

The correct statements are numbers 1, 3 and 4. Statement 2 is incorrect because we have seen,
also in paragraph 20.4.1, that it is possible to obtain the same result by linking a BufferedReader
to an InputStreamReader whose reading source is the System.in object (i.e. the default in-
put device, probably the keyboard). For convenience, the class defined in paragraph 20.4.1
KeyboardInput is shown below:

import java.io.*;

public class KeyboardInput {
 public static void main (String args[]) throws IOException{
 String string = null;
 System.out.println("Type something then press enter...\nType \"end\" to"
 + " terminate the program.");
 try (InputStreamReader ir = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(ir)) {
 string = in.readLine();
 while (string != null) {
 if (string.equals("end")) {
 System.out.println("Program terminated");
 break;
 }

Chapter 20 Exercises Solutions

692
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 System.out.println("You wrote: " + string);
 string = in.readLine();
 }
 }
 }
}

Solution 20.y)

Only statements 1 and 3 are incorrect. In particular, statement 2 is correct since the existence
of the getParent() method. The 3 instead is incorrect since the getOwner() method is defined
by the Files class.

Solution 20.z)

Only statements 2 and 5 are correct. Statement 1 is incorrect because the Files list() method
returns a Stream of Path objects. The 3 is incorrect because the Files and Path types belong to
the java.nio.file package. While 4 is incorrect because Files is an abstract class.

Solution 20.aa) Networking, True or False:

True.

True.

True.

True.

True.

1.

2.

3.

4.

5.

693
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 21
Exercises

Java Database Connectivity

To create and fix the exercises of this chapter faster, we have decided to publish them in html
format on https://www.javaforaliens.com. Please visit the website to find the new exercises. If
you subscribe to the telegram channel of Java for Aliens (https://t.me/java4aliens), you will be
notified of all updates.

695
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 21
Exercise Solutions

Java Database Connectivity

To create and fix the exercises of this chapter faster, we have decided to publish them in html
format on https://www.javaforaliens.com. Please visit the website to find the new exercises. If
you subscribe to the telegram channel of Java for Aliens (https://t.me/java4aliens), you will be
notified of all updates.

697
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 22
Exercises

Java and the XML World

To create and fix the exercises of this chapter faster, we have decided to publish them in html
format on https://www.javaforaliens.com. Please visit the website to find the new exercises. If
you subscribe to the telegram channel of Java for Aliens (https://t.me/java4aliens), you will be
notified of all updates.

699
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 22
Exercise Solutions

Java and the XML World

To create and fix the exercises of this chapter faster, we have decided to publish them in html
format on https://www.javaforaliens.com. Please visit the website to find the new exercises. If
you subscribe to the telegram channel of Java for Aliens (https://t.me/java4aliens), you will be
notified of all updates.

701
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 23
Exercises

Graphical User Interfaces (GUIs)

To create and fix the exercises of this chapter faster, we have decided to publish them in html
format on https://www.javaforaliens.com. Please visit the website to find the new exercises. If
you subscribe to the telegram channel of Java for Aliens (https://t.me/java4aliens), you will be
notified of all updates.

703
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 23
Exercise Solutions

Graphical User Interfaces (GUIs)

To create and fix the exercises of this chapter faster, we have decided to publish them in html
format on https://www.javaforaliens.com. Please visit the website to find the new exercises. If
you subscribe to the telegram channel of Java for Aliens (https://t.me/java4aliens), you will be
notified of all updates.

705
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 24
Exercises

Introduction to JavaFX

To create and fix the exercises of this chapter faster, we have decided to publish them in html
format on https://www.javaforaliens.com. Please visit the website to find the new exercises. If
you subscribe to the telegram channel of Java for Aliens (https://t.me/java4aliens), you will be
notified of all updates.

707
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 24
Exercise Solutions

Introduction to JavaFX

To create and fix the exercises of this chapter faster, we have decided to publish them in html
format on https://www.javaforaliens.com. Please visit the website to find the new exercises. If
you subscribe to the telegram channel of Java for Aliens (https://t.me/java4aliens), you will be
notified of all updates.

709
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix E
Exercises

The CLASSPATH
Environment Variable

Exercise E.a)

Package the authentication package designed and built in exercise 5.z.

711
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix E
Exercise Solutions

The CLASSPATH
Environment Variable

Solution E.a)

The command to package the files is:

jar -cvfm authentication.jar manifest.txt com/claudiodesio/authentication/*.class

where manifest.txt is a file (which must be present in the folder from where the command is
being executed):

Main-Class: com.claudiodesio.authentication.Authentication

Note that you have to wrap after the line, otherwise the command will
not be executed.

To run the application, use the following command:

java -jar authentication.jar

	Java for Aliens Exercises
	Chapter 1 Exercises
	Chapter 1 Exercise Solutions
	Chapter 2 Exercises
	Chapter 2 Exercise Solutions
	Chapter 3 Exercises
	Chapter 3 Exercise Solutions
	Chapter 4 Exercises
	Chapter 4 Exercise Solutions
	Chapter 5 Exercises
	Chapter 5 Exercise Solutions
	Chapter 6 Exercises
	Chapter 6 Exercise Solutions
	Chapter 7 Exercises
	Chapter 7 Exercise Solutions
	Chapter 8 Exercises
	Chapter 8 Exercise Solutions
	Chapter 9 Exercises
	Chapter 9 Exercise Solutions
	Chapter 10 Exercises
	Chapter 10 Exercise Solutions
	Chapter 11 Exercises
	Chapter 11 Exercise Solutions
	Chapter 12 Exercises
	Chapter 12 Exercise Solutions
	Chapter 13 Exercises
	Chapter 13 Exercise Solutions
	Chapter 14 Exercises
	Chapter 14 Exercise Solutions
	Chapter 15 Exercises
	Chapter 15 Exercise Solutions
	Chapter 16 Exercises
	Chapter 16 Exercise Solutions
	Chapter 17 Exercises
	Chapter 17 Exercise Solutions
	Chapter 18 Exercises
	Chapter 18 Exercise Solutions
	Chapter 19 Exercises
	Chapter 19 Exercise Solutions
	Chapter 20 Exercises
	Chapter 20 Exercise Solutions
	Chapter 21 Exercises
	Chapter 21 Exercise Solutions
	Chapter 22 Exercises
	Chapter 22 Exercise Solutions
	Chapter 23 Exercises
	Chapter 23 Exercise Solutions
	Chapter 24 Exercises
	Chapter 24 Exercise Solutions
	Appendix E Exercises
	Appendix E Exercise Solutions

