

CLAUDIO DE Si10 CESARI

JAVA
FOR

ALIENS

LEARN JAVA FROM SCRATCH
AND BECOME A PRO

Exercises and Solutions

Java for Aliens - Exercises and Solutions
Copyright © 2019 by Claudio De Sio Cesari

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by
any means, without the prior written permission of the author, except in the case of brief quotations permitted
by copyright law. For permission requests, write to the author at the address: claudio@claudiodesio.com

Editor: Emanuele Giuliani (emanuele@giuliani.mi.it)

First Edition (November, 2019)

Font licenses

Libre Baskeruille (https://fonts.google.com/specimen/Libre+Baskerville, Impallari Type): OFL

Libre Franklin (https://fonts.google.com/specimen/Libre+Franklin, Impallari Type): OFL

Cousine (https://fonts.google.com/specimen/Cousine, Steve Matteson): AL

Inconsolata (https://fonts.google.com/specimen/Inconsolata, Raph Levien): OFL

Roboto (https://fonts.google.com/specimen/Roboto, Christian Robertson): AL

Digits (https://www.1001fonts.com/digits-font.html, Dieter Steffmann): FFC

Journal Dingbats 3 (https://www.1001fonts.com/journal-dingbats-3-font.html, Dieter Steffmann): FFC
Musicals (https://www.1001fonts.com/musicals-font.html, Brain Eaters): FFC

Image licenses

Curiosity icon (https://www.flaticon.com/free-icon/toyger-cat_107975, www.freepik.com): FBL

Alien icon (http:/www.iconarchive.com/show/free-space-icons-by-goodstuff-no-nonsense/alien-4-icon.html, goodstuffnononsense.com): CC
Trick icon (https://www.flaticon.com/free-icon/magic-wand_1275106, www.flaticon.com/authors/pause08): FBL

License specifications

Open Free License (OFL): https:/scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=OFL_web
Apache License, Version 2.0 (AL): http://www.apache.org/licenses/LICENSE-2.0

1001Fonts Free For Commercial Use License (FFC): https://www.1001fonts.com/licenses/ffc.html
Flaticon Basic License (FBL): https:/file000.flaticon.com/downloads/license/license.pdf

CC Attribution 4.0 (CC): https:/creativecommons.org/licenses/by/4.0/legalcode

Any other trademarks, service marks, product names or named features are assumed to be the
property of their respective owners, and are used only for reference. There is no implied
endorsement if we use one of these terms.

Table of Contents

Introduction to Exercises IX
Chapter 1 Exercises 1
Chapter 1 Exercise Solutions 9
Chapter 2 Exercises 21
Chapter 2 Exercise Solutions 33
Chapter 3 Exercises 51
Chapter 3 Exercise Solutions 65
Chapter 4 Exercises 79
Chapter 4 Exercise Solutions 89
Chapter 5 Exercises 111
Chapter 5 Exercise Solutions 121

\'

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Table of Contents

Chapter 6 Exercises

137

Chapter 6 Exercise Solutions

151

Chapter 7 Exercises

185

Chapter 7 Exercise Solutions

199

Chapter 8 Exercises

221

Chapter 8 Exercise Solutions 233
Chapter 9 Exercises 257
Chapter 9 Exercise Solutions 267
Chapter 10 Exercises 281
Chapter 10 Exercise Solutions 305
Chapter 11 Exercises 351
Chapter 11 Exercise Solutions 365
Chapter 12 Exercises 387

Chapter 12 Exercise Solutions

401

Vi

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Table of Contents

Chapter 13 Exercises

417

Chapter 13 Exercise Solutions 427
Chapter 14 Exercises 445
Chapter 14 Exercise Solutions 453
Chapter 15 Exercises 469
Chapter 15 Exercise Solutions 479
Chapter 16 Exercises 499
Chapter 16 Exercise Solutions 511
Chapter 17 Exercises 529
Chapter 17 Exercise Solutions 541
Chapter 18 Exercises 557
Chapter 18 Exercise Solutions 567
Chapter 19 Exercises 581
Chapter 19 Exercise Solutions 589

Vil

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Table of Contents

Chapter 20 Exercises

611

Chapter 20 Exercise Solutions

631

Chapter 21 Exercises 693
Chapter 21 Exercise Solutions 695
Chapter 22 Exercises 697
Chapter 22 Exercise Solutions 699
Chapter 23 Exercises 701
Chapter 23 Exercise Solutions 703
Chapter 24 Exercises 705
Chapter 24 Exercise Solutions 707
Appendix E Exercises 709

Appendix E Exercise Solutions

711

vill

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Java for Aliens
Exercises

Introduction to Exercises

This document represents, together with the Appendices document, the natural completion of
the book “Java for Aliens”.

All the exercises have been moved to this document so as not to take space away from the
theory and not to increase the cost of the book.

For each chapter of the book (and for each appendix, where applicable) specific exercises have
been designed to validate (and expand) what has been learned during the study.

The exercises are fundamental, essential. The theory is usually clear, but applying the concepts
learned is far from easy. Developing not only includes the implementation of the code, but
many other components are part of it, and they influence the final result.

The exercises that you will find in this document therefore strive to insist on topics that other
books treat superficially, or do not deal with at all, such as analysis, design and object-oriented
architecture. There are also exercises for all subjects, even for those that may seem trivial to the
more experienced reader, but which may be fundamental for the neophyte. In this book, you
will find over 600 exercises!

(Warning! This document will be updated in the future. Currently
there are some exercises not yet published since they need some fur-
ther revisions. Updates will allow us to carry out further checks on
the quality and correctness of the content, and add more exercises.
The author will notify any news or information via his social media

Uhannels.

IX

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Preface

Based on reader feedback, this file has been organized and improved clarity and the style, and
created exercises that can satisfy all types of readers. There are exercises in which it is required
to add parts of code to fix bugs, code algorithms, design simple applications, or create more
complex applications step by step. Dozens of single or multiple-choice exercises have also been
introduced. They are similar to the test exercises of the Oracle Java programming certification
exams. These exercises help in preparing for certifications, and have been set up in such a way
that the programmer gains confidence. They often consist, essentially, of reading the code and
understanding its meaning and details, and also represent a remarkable test bench for the most
expert readers. I'm sure that the reader will appreciate the effort made to achieve such a large
number of heterogeneous and original exercises.

Unlike many other texts, we have provided solutions for all the exercises (with few excep-
tions). Obviously, when it comes to coding a solution, there are hundreds of valid alterna-
tives, so we must not consider the proposed solutions as, objectively, the better ones. You
can download all the list of solutions and exercises (together with all the code examples
included in the text) at the same address where you have downloaded the file you are
reading: http://www.javaforaliens.com.

Let’s remember once again that, especially for those who are beginners, it is important to start
writing all the code by hand, without using copy-paste or special help from the development
tool chosen. It is also very important to use comments for all of our code. This will allow us to
learn the definitions better, and to have more security when writing code.

So, it is fundamental to write the source code on a text editor such as Windows Notepad (as de-
scribed in the first chapter) and compile using the command line (see Appendix A). We do not
advise performing the exercises of these very first chapters (let’s say the first 4) using a complex
IDE like Eclipse or Netbeans... we could end up studying the IDE rather than Java.

It is, instead, advisable (if you do not want to have too much to do with Notepad and the com-
mand line) to use EJE (https:/sourceforge.net/projects/eje) which offers simple utilities designed
for those who start to program. For example, it allows us to compile and execute our files by
pressing two distinct buttons.

EJE is easy to install (just unzip the file in any folder) and use. How-
ever, Appendix M is dedicated to its description.

Finally we suggest, after having done an exercise, to consult the relative solution before moving
on to the next one (often an exercise is a prerequisite for the next one).

Forany type of communication, you can write directly to the author at: claudio@claudiodesio.com.
You can also contact him via the most important social networks and through his personal

X

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Preface

website (also to keep up to date with news, the Telegram group will notify you only for news
concerning this book):

i8 Telegram: http://t.me/java4aliens
BR Facebook: http://www.facebook.com/claudiodesiocesari
R Twitter: http://twitter.com/cdesio
B8 LinkedIn: http://www.linkedin.com/in/claudiodesio
i2 Internet: http:/www.claudiodesio.com
i8 YouTube: http://www.youtube.com/claudiodesiocesari
#8 Instagram: http://www.instagram.com/cdesio
Happy working!

Claudio De Sio Cesari

Xl

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter1l
Exercises

Introduction to Java

The following exercises are designed for those starting from scratch. These exercises have
the goal of giving a minimum of confidence with the Java programming environment to the
reader.

Let’s remember once again that, especially for those who are beginners, it is important to start
writing all the code by hand, without copy-paste or special help from the development tool
chosen. It is also very important to use comments for every line of code written. This will allow
us to learn better the definitions, and to be more aware when writing code.

So, it will be fundamental to write the source code on a text editor such as Windows Notepad
(as described in the first chapter) and compile using the command line (see Appendix C). We do
not recommend performing the exercises of these very first chapters (let’s say the first 4) using
a complex IDE like Eclipse or Netbeans... we could end up studying the IDE rather than Java.
It is instead advisable (if you do not want to have too much to do with Notepad and the com-
mand line) to use EJE (https://sourceforge.net/projects/eje), which offers simple features designed
for helping the beginners to start to code. For example, it allows us to compile and execute our
files by pressing two distinct buttons.

EJE must be downloaded at https://sourceforge.net/projects/eje. It is easy
to install (just unzip the file in any folder) and use. To run it, double-
click on the eje.bat file. However, you can find more information in
Appendix M.

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercises

From Chapter 5 onwards, it will be easier to switch to an IDE, since other development envi-
ronments will be explained.

Finally we suggest, after having done an exercise, to consult the relative solution before moving
on to the next one (often an exercise is a prerequisite for the next one). This advice applies to
all exercises in all chapters and appendices.

At the same address (http://www.javaforaliens.com/download.html) where you downloaded the appen-
dices you can also download all the sample code contained in the book and in the appendices
(always downloadable at the same address), and all the code of the exercises (with solutions)
related to all the chapters and all the appendices.

Write, save, compile and run the HelloWorld program. We recommend to the reader to do this
exercise twice: the first time using Notepad and the DOS prompt, and the second using EJE.

EJE allows us to insert pre-formatted parts of code via the Insert
menu (or using shortcuts).

Exercise 1.b) Basic Concepts of Computer Science, True or False:

1. A computer is composed of hardware and software.

2. The operating system is part of a computer’s hardware. In fact, a computer cannot func-
tion without an operating system.

. Windows Notepad is software.

. The power supply cable of a computer is hardware.

. Machine language is the language that a computer processor can interpret.
. The machine language is unique and standard.

The machine language has a vocabulary that contains only two symbols: @ and 1.

© N O 0 A W

. Both the compiler and the interpreter have the task of translating the written instructions
with a certain programming language into machine language instructions.

9. In general, a program written in an interpreted language has a faster execution time than
a program written in a compiled language.

10. An executable program is composed of its source files.

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercises

Exercise 1.c) Features of Java, True or False:

1. Java is the name of a technology and at the same time the name of a programming
language.

2. Java is an interpreted language but not a compiled language.
3. Javais a language fast but not robust.

4. Java is a difficult language to learn because in any case it forces you to learn Object
Orientation too.

5. The Java Virtual Machine is a software that supervises execution of the software written
in Java.

. The JVM handles memory automatically through garbage collection.
Platform independence is an unimportant feature.

. AJava system is a closed system.

© ® N O

. Garbage collection guarantees platform independence.

10. Java is a free language that collects the best features of other languages, and excludes
those deemed worse and more dangerous.

Exercise 1.d) Java Code, True or False:

1. The following declaration of the main() method is valid:

public static main(String arguments[]) {...}

2. The following declaration of the main() method is valid:

public static void Main(String args[]){...}

3. The following declaration of the main() method is valid:

public static void main(String arguments[]) {...}

4. The following declaration of the main() method is valid:

public static void main(String Arguments[]) {...}

5. The following class declaration is correct:

public class {...}

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercises

6. The following class declaration is correct:
public Class Car {...}

7. The following class declaration is correct:
public class Car {...}
8. You can declare a method outside the block of code that defines a class.
9. The block of code that defines a method is delimited by two round brackets.

10. The block of code that defines a method is delimited by two square brackets.

Exercise 1.e) Development Environment and Process, True or False:

1. The JVM is software that simulates hardware.
2. The bytecode is contained in a file with the suffix .class.

3. Java development consists of writing the program, saving it, running it and finally
compiling it.

4. Java development consists of writing the program, saving it, compiling it and finally
running it.

5. The name of the file that contains a Java class must match the name of the class,
regardless of whether the letters are uppercase or lowercase.

6. Once you have compiled a program written in Java, you can run it on any operating
system that has a JVM.

7. To run any Java application, all you need is a browser.

8. The JDK compiler is invoked via the javac command and the JVM is invoked via the java
command.

9. To run a file called Foo.class, we need to run the following command from the prompt:
java Foo. java.

10. To run a file called Foo.class, we need to run the following command from the prompt:
java Foo.class.

Exercise 1.f)

Delete the static modifier of the main() method from the HelloWorld class. Using the DOS

4

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercises

prompt, compile and run the program, and interpret the execution error message.

(Knowing how to interpret error messages is absolutely essential. '

Exercise 1.8)

Delete the first open brace encountered by the HelloWorld class. Using the DOS prompt,
compile the program and interpret the compilation error message.

Exercise 1.h)

Delete the last closed parenthesis (last symbol of the program) from the HelloWorld class.
Using the command line, compile the program and interpret the error message.

Exercise 1.i)

Delete the symbol “;” from the Hel1loWor1ld class. Using the DOS prompt, compile the program
and interpret the error message.

Exercise 1,j)

Double the closing brace of the HelloWorld class. Using the DOS prompt, compile the
program and interpret the error message

Exercise 1.k)
Add a block of braces inside the main() method:

public class Helloworld {
public static void main(String args[]) {

{3
System.out.println("Hello World!");

}

Compile, execute and draw your conclusions.

Exercise 1.1)

Double the symbol “;” in the HelloWorld program, then compile and execute it.
What happens?

0

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercises

Exercise 1.m)

Write the HelloWorld program by writing each word and every symbol on the next line. What
is the problem?

Exercise 1.n)

Change the HelloWorld program in order to print another string instead of the “Hello World!”
string.

Exercise 1.0)
Make the HelloWorld program print a number instead of the “Hello World!” string.

Exercise 1.p)

Try printing the sum of two numbers to the HelloWorld program instead of the “Hello World!”
string, after reading the solution from the previous Exercise 1.0.

Exercise 1.q)

Compile and run the following program:

public class HellowWorld {
public static void main(String args[]) {

by
3

what is the output?

Exercise 1.r)

Compile and run the following program:

public class Helloworld {
public static void main(String args[]) {
System.out.println("");

b
b

what is the output?

Exercise 1.s)

Compile and run the following program:

(2]

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercises

public class HellowWorld {
public static void main(String args[]) {
System.out.println(args);
}
}

what is the output?

Exercise 1.t)

Write a program named ShoppingList that prints a shopping list, where each item to buy re-
sides on its own line.

Exercise 1.u)

Write a program named CompactShoppinglList that prints a shopping list, where each item to
buy is separated from another with a comma.

Exercise 1.v)

Create a new file named SayJava that prints out the string “JAVA” as in the follow- @
ing example.

Exercise 1.w)

Write a program defined by the Arrows class that prints the following output:
P

S22 -==-=>

Exercise 1.x)

Write a program defined by the PrintContacts class that prints the contact list of a phone
book. Each contact must be printed on three lines: in the first there will be the name of the
contact, in the second the address, and in the third the phone number. Each contact must be
separated from the next one by an empty line.

N

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercises

Exercise 1y) .@.
Create a class called PrintEmptyRowClass that prints the following output: @

public class {
public static void main(String args[]) {
System.out.println();

}

Exercise 1.z)

Create a new file named SayMyName that prints out your name as in the following @
example:

Note that to print each character 5 columns and 5 rows were used
(except for the I character). Each character is separated from another
one by 3 columns.

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapterl
Exercise Solutions

Introduction to Java

To solve our exercises, there are often hundreds of different and valid solutions. Each of them
has its pros and cons. Therefore, we must not take the solution proposed for an exercise as the
only existing one. This concept also applies to all other chapters. This does not apply to solu-
tions that do not consist of code (for example “True or False” exercises).

Solution 1.a)

The code could be the following:

public class HellowWorld {
public static void main(String args[]) {
System.out.println("Hello World!");
}

}

For the instructions to be performed from the command line to compile and execute the code,
see sections 1.3.2 and 1.4.3.

Solution 1.b) Basic Concepts of Computer Science, True or False:

1. True.
2. False, the operating system is software.

3. True.

©

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercise Solutions

True.
True.
. False, each processor defines its own machine language.
True.
True.

© ®» N o o a

. False, because an interpreted language must alternate the translation phase with the
execution phase, so it is usually slower.

10. False, an executable program is composed of its binary files.

Solution 1.c) Java Features, True or False:

False.

. False.

© ® N @ O M w NP
?

. False.

10. True.

Solution 1.d) Java Code, True or False:

1. False, the return type (void) is missing.

2. False, the identifier (main) should start with a lowercase letter.
3. True.

4. True.

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercise Solutions

S.
6.
7.
8.
9.

False, the identifier is missing.

False, the keyword (class) must be written with a lowercase letter.
True.

False.

False, round brackets must be braces.

10. False, square brackets must be braces.

Solution 1.e) Development Environment and Process, True or False:

8.
9.

N o w s wNP

True.
True.

. False, you must first compile it and then send it running.

True.

. False, we must also take capital and small letters into account.

True.

False, one browser is sufficient only to run applets (which today are no longer
supported).

True.

False, the right command is java Foo.

10. False, the right command is java Foo.

Solution 1.f)

The code should be the following:

public class HelloWorld {

}

public void main(String args[]) {
System.out.println("Hello World!");
}

The file quietly compiles, but at runtime we’ll be warned that we have defined a main() method
which is not a valid method for starting the application, precisely because it has not been de-

11

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercise Solutions

clared with the static modifier:

Error: Main method is not static in class HellowWorld, please define the main method as:

public static void main(String[] args)

Solution 1.g)

The code should be similar to the following:

public class Helloworld
public static void main(String args[]) {
System.out.println("Hello World!");
}
}

The compiler error message is as follows:

error: '{' expected
public class Helloworld

N

Solution 1.h)

The code should be similar to the following:

public class HellowWorld {
public static void main(String args[]) {
System.out.println("Hello World!");

}

The compiler error message is as follows:

error: reached end of file while parsing

which tells us that the end of the file has been reached... and something is missing.

Solution 1.i)

The code should be similar to the following:

public class Helloworld {
public static void main(String args[]) {

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercise Solutions

System.out.println("Hello World!")
}

The compiler error message is as follows:

error: ';' expected
System.out.println("Hello World!")

N

e O

Where the compiler warns us that a semicolon is missing.

Solution 1.j)

The error message is as follows:

HellowWorld.java:5: error: class, interface, or enum expected

The message is the same as we have already seen in section 1.5.1, where we had defined a class
by mistakenly using the capital letter for the class keyword. In that case, as we know, a Java
source file must necessarily define a class within it. The compiler since it had not found a valid
definition, claimed the definition of a class (or an interface or an enumeration, but these last
two concepts have not yet been defined). In this case instead, the compiler expects that in place
of the superfluous brace, another class (or an interface or an enumeration) will be defined. In
fact, as we will see later, it is possible to define other classes within a single source file

Solution 1.k)

The file is compiled and executed as if the pair of braces did not exist. In fact, it is possible to
use pairs of braces within our methods, perhaps surrounding other instructions. For example
we could also write:

public class HellowWorld {
public static void main(String args[]) {

{
b

System.out.println(args);

}

Also here, the braces are undoubtedly superfluous, but there are rare cases in which the paren-
thesis can be used to isolate pieces of code, from the rest. For now, we just need to know that
braces, if used in pairs, can be used within our source files.

13

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercise Solutions

Solution 1.1)

The code should be similar to the following:

public class HellowWorld {
public static void main(String args[]) {
System.out.println("Hello World!");;

}
}

However, the file is compiled and executed without errors. In fact, the superfluous “;” symbol
is considered by the compiler as a (legal) termination of an empty statement. We could also
write it on the next line (since as we read in Chapter 1 nothing changes) to “see” the empty
statement:

public class HelloWorld {
public static void main(String args[]) {
System.out.println("Hello World!");

}
}
Solution 1.m)
The code should be similar to the following:

public
class
HelloWworld
{
public
static
void
main

(
String
args

println
(
"Hello world!"

14

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercise Solutions

)
}
}

However, the file is compiled and executed without errors. In fact, as we will see in the next
chapters, Java is a free form language. The problem is that it becomes very complicated to read
for us.

Solution 1.n)

The code could be similar to the following:

public class Helloworld {
public static void main(String args[]) {
System.out.println("Una frase a piacere!");

(5]
[

Solution 1.0)

The code could be similar to the following:

public class Helloworld {
public static void main(String args[]) {
System.out.println("8");

}
}
but we printed the number as a string (the strings will be the subject of the third chapter), in fact
we enclosed it in two quotation marks. We could also write directly:
public class HelloWorld {

public static void main(String args[]) {
System.out.println(8);

b
b

This time we are printing a different data type (there are no double quotes). In the next exercise
we will begin to understand the situation better.

Solution 1.p)

The code could be similar to the following:

public class Helloworld {
public static void main(String args[]) {

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercise Solutions

System.out.println("25+7");

}

The output therefore will not print a sum, but simply:

25+7

We could also write this without double quotes:

public class HellowWorld {
public static void main(String args[]) {
System.out.println(25+7);
}
}

In this case the output will be the desired one:

32

In fact, the numeric data types (which are written without double quotes as we will see in
Chapter 3), allow us to perform arithmetic operations.

Solution 1.q)

The program does not print anything because the print instruction is missing
(System.out.println()).

Solution 1.r)

The program does not print anything because nothing is printed in the print instruction
System.out.println(). Note, however, that the cursor has dropped to the next line, due to the
fact that the instruction System.out.println() always wraps after printing (but also after not
printing). In fact, println stands for “print line”.

Solution 1.s)

In this case the output will be similar to the following:

An object (called args) has been “printed” and we will understand in the next few chapters why
it has such a mysterious string representation.

16

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercise Solutions

Solution 1.t)

The code should be similar to the following:

public class ShoppinglList {
public static void main(String args[]) {
System.out.println("bread");
System.out.println("coffee");
System.out.println("tea");
System.out.println("fruit");

}
E l'output e il seguente:

bread
coffee

tea

Solution 1.u)
The code should be similar to the following:

public class CompactShoppingList {
public static void main(String args[]) {
System.out.println("bread, coffee, tea, fruit");

}

}
And the output is the following:

Solution 1.v)

The code could be similar to the following:

public class SayJava {
public static void main(String args[]) {

System.out.println("---------- "),
System.out.println("| JAVA |");
System.out.println("---------- "),

17

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercise Solutions

Solution 1.w)

The required code should be the following:

public class Arrows {
public static void main(String args[]) {

System.out.println("<----<<<");
System.out.println("");
System.out.println(">>>---->");

}

To print an empty line, the natural solution was to use the System.out.println("") state-
ment, which passes an empty string "" as a parameter to the println() method. Actually, it is
also possible to use the System.out.println() statement instead, without passing any param-
eter to the method.

Solution 1.x)

The required code should be similar to the following:

public class PrintContacts {
public static void main(String args[]) {

System.out.println("Contacts List");
System.out.println();
System.out.println("Claudio De Sio Cesari");
System.out.println("13, Java Street");
System.out.println("131313131313");
System.out.println();
System.out.println("Stevie Wonder");
System.out.println("10, Music Avenue");
System.out.println("1010101010");
System.out.println();
System.out.println("Gennaro Capuozzo");
System.out.println("1, Four Days of Naples Square");
System.out.println("111111311311");

}

Note that to print blank lines, we used the System.out.println() method without passing any
parameters. The solution would have been valid even if we had used an empty string like this:
System.out.println("").

Solution 1.y)

The required code should be the following:

18

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 1 Exercise Solutions

public class PrintEmptyRowClass {
public static void main(String args[]) {
System.out.println("public class EmptyRow {");

System.out.println(" public static void main(String args[]) {");
System.out.println(" System.out.println();");
System.out.println(" 1");

System.out.println("}");

}

Note that we did not print anything to the System.out.println() method, because otherwise
we would have had problems with the double quotes. In fact, if we had written:

System.out.println(" System.out.printin("");");

we would get the following error:

PrintEmptyRowClass.java:5: error: ')' expected
System.out.println(" System.out.println("");");
N

1 error

This is because the compiler cannot understand that the second double quotes it encounters
must be considered to be printed, and not as double quotes that close a string! The second dou-
ble quotes are therefore considered to be the closing double quotes of the string highlighted

in bold:
System.out.println(" System.out.println("");");

So the third double quotes is not accepted, because the compiler expects the parenthesis of the
println() method to be closed. We will see in the next chapters how to solve this problem.

Solution 1.z)

The code could be similar to the following:

public class SayMyName {
public static void main(String args[]) {

System.out.println("***** * * ok ok ok kK * * * % * LR DY

. . ’

System.out.println("* * & @ * * * o * * xuy .

System.out.println("* * SITLLD * * * * * * xmy.

. . ’

System.out.println("* * & @ * * * o * * iy,
* kkk*k * * * Kk kkk * k k *

System.out.println("*****

*****") .
4

19

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2
Exercises

Key Components
of a Java Program

Remember that many exercises are preparatory to the following ones, so we
@ recommend doing all the exercises or at least consulting the solutions before going
ahead.

Exercise 2.a)

The following class is provided (copy, save and compile):

public class IntegerNumber {
public int integerNumber;
public IntegerNumber() {

}

public void printNumber() {
System.out.println(integerNumber);

}

}

This class defines the concept of an integer as an object. It declares an integer variable and a method that will print the
variable itself.

Write, compile and execute a class that:

21

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

a8 will instantiate at least two objects from the IntegerNumber class (containing a main()
method);

will change the value of the corresponding variables and test that these values are
correctly assigned, calling the method printNumber() on the two objects;

28 will add a constructor to the IntegerNumber class to initialize the instance variable.

Two more questions:

28 what type of variable is the integerNumber variable defined in the IntegerNumber (local

variable, parameter or instance variable)?

2= If we instantiate an object of the IntegerNumber class, without assigning a new value to

the integer variable, what will be the value of the latter?

Exercise 2.b) Key Components Concepts, True or False:

1. An instance variable must necessarily be initialized by the programmer.
2. Alocal variable shares the life cycle with the object in which it is defined.

3. A parameter has a life cycle coinciding with the method in which it is declared: it is cre-
ated when the method is invoked, it is not more usable when the method ends.

4. An instance variable belongs to the class in which it is declared.
5. A method is synonymous with action, operation.

6. Both variables and methods are usually usable through the dot operator, applied to an
instance of the class where they were declared.

7. A constructor is a method that never returns anything, in fact it has void return type.
8. A constructor is called the “default constructor”, if it has no parameters.

9. A constructor is a method and therefore can be used through the dot operator, applied to
an instance of the class where it was declared.

10. A package is physically a folder containing classes, which explicitly declared to be part of
the package itself in the respective source files.

Exercise 2.c) Key Components Syntax, True or False:

1. In a method declaration (not constructor), the name is always followed by brackets
surrounding the optional parameters, and is always preceded by a return type.

22

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

. The following method is correctly defined:

public void method() {
return 5;

. The following method is correctly defined:

public int method() {
) System.out.println("Ciao");

. The following variable is correctly defined:

public int a = 0;

. The following variable x is correctly used (refer to the Point class defined in this
chapter):

Point p1 = new Point ();
Point.x = 10;

. The following variable x is correctly used (refer to the Point class defined in this
chapter):

Point pl1 = new Point();
Point.pl1.x = 10;

. The following variable x is correctly used (refer to the Point class defined in this
chapter):

Point p1 = new Point();

x = 10;
. The following constructor is correctly used (refer to the Point class defined in this
chapter):

Point p1 = new Point();
pl.Point();

. The following constructor is correctly defined:

public class Computer {
public void Computer(){

) }

10. The following constructor is correctly defined:

public class Computer {
public computer(int a) {

}

23

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

Exercise 2.d)

Create a Square class, which declares a side instance variable of type int. Then cre- @
ate a public method called perimeter() that returns the perimeter of the square,
and a public area() method that returns the area of the square.

Remember that the perimeter is the sum of the sides of the square,
while the area is calculated by multiplying the side by itself. Finally,
the symbol to perform a multiplication in Java is the asterisk *.

Exercise 2.e)

Create a SquareTest class that contains a main() method that instantiates an object of type
Square, with side of value 5. Then print the perimeter and the area of the object just created.

Exercise 2.f)

After doing the previous exercise, you should have set the variable side with a statement like
the following:

objectName.side = 5;

To avoid to write this statement, create a constructor in the Square class of the Exercise 2.d,
which takes the value of the variable side as input. Once done, compile the Square class. The
SquareTest class, on the other hand, will no longer compile due to the instruction specified
above and the non-use of the new constructor. Modify the code of the SquareTest class so that
it compiles and runs correctly.

Exercise 2.g)

In the Square class created in the Exercise 2.d, replace the value 4 used to calculate the perim-
eter, with an instance constant named SIDES_NUMBER.

Note that for the constant, a name consisting of only uppercase letters
separated with an underscore symbol was used. This is a convention
that is used for all constants as explained in section 3.1.

This should not affect the SquareTest class.

24

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

Exercise 2.h)

Create a Rectangle class equivalent to the Square class created in the Exercise 2.d and refined
in subsequent exercises. Before coding the class, decide which variables and methods this class
must have.

Never code directly. It’s a classic mistake that can lead to getting lost
when you're just start learning programming. You first need to define
the specifications in your mind, or even better on a sheet of paper.
The advice is to have clear the various definitions (instance variables,
local variables, methods, parameters, constructors, etc.).

Exercise 2.i)

Create a RectangleTest class that contains a main() method and that tests the Rectangle class,
equivalently as we did in Exercise 2.e. This time, at least two different rectangles must be in-
stantiated.

Exercise 2.j)

Add to both Square and Rectangle classes created in the previous exercises, a @@
method called printDetails(), which prints the details of the geometric figure,

including perimeter and area. Also create a new version of the SquareTest and RectangleTest
classes that directly invoke the printDetails() methods on the instantiated objects

Exercise 2.k)

Starting from the solution of the previous exercise, create an additional method in @@
the Square and Rectangle classes, called getDetails(), which returns the same

string that was printed in the printDetails() method. After creating it, make sure that the
printDetails() method takes advantage of the getDetails() method so as not to duplicate
the code. Create a class called TestQuadrilaters that prints the details of a square and a rect-
angle.

Exercise 2.1)

Abstract the concept of Nation with a class, creating at least one constructor and instance vari-
ables, but no methods.

25

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

Exercise 2.m)

After creating the Nation class of Exercise 2.1, can you create one or more meth- @
ods? If you can, define them within the class. If you can’t, can you explain why?

Exercise 2.n)

Given the following class:
public class Exercise2N {
public String string;
public int integer;
final public String INTEGER = "initialization";
}

Which of the following statements is true (choose only one statement)?

1. The code can be compiled correctly.

2. The code cannot be compiled correctly because it is not possible to declare a variable
with the name string.

3. The code cannot be compiled correctly because it is not possible to declare a variable
with the name integer.

4. The code cannot be compiled correctly because it is not possible to declare a variable of
type String by calling it INTEGER.

5. The code cannot be compiled correctly because the variable with the name integer de-
clares the modifiers in reverse order (it should first be declared public and then final).

Given the following class:

public class Exercise20 {
public String toString() {
return "Exercise20";
}

public void main() {

}

public void static method() {

}

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

static public void main(String arguments[]) {

b
}

There is only one error in this class that will prevent it from being compiled, which one?

If you are unable to answer the question, write the class by hand, com-

pile and interpret the error. Then fix it and compile the file.

Exercise 2.p)

Given the following class:

public class Exercise2P {
public String string;

public static void method(String arguments[]) {
public int integer=0;

}

There is only one error in this class that will prevent it from being compiled, which one?

If you are unable to answer the question, write the class by hand, com-
pile and interpret the error. Then fix it and compile the file.

Exercise 2.q)

Given the following class:

public class Exercise2Q {

public static void main(String arguments) {
System.out.println("Quelo")

b
}

There are three errors in this class that will prevent it from being compiled, which ones?

If you are unable to answer the question, write and complete the class
by hand, and interpret the errors. Then fix the errors and compile the
file.

27

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

Given the following class:

public class Exercise2R {
public int varil;
public int var2;
System.out.println("Exercise 2.r");

public Exercise2R() {

}

public Exercise2R(int a , int b) {
varl = b;
var2 = a;

}
public static void main(String args[]) {
Exercise2R exercise2R = new Exercise2R (4,7);

System.out.println(exercise2R.varl);
System.out.println(exercise2R.var2);

}

Once executed, what will this program print?

1. This program cannot be run.

2. This program does not compile.
3. It will print 74.

4. It will print 47.

Given the following classes:

public class Course {
public String name;

public Course() {

}

public Course(String n) {
name = n;

28

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

3

public class Exercise2S {

public static void main(String args[]) {
Course coursel = new Course();
coursel.name = "Java";
Course course2 = new Course("Java");
System.out.println(coursel.name);
System.out.println(course2.name);

3

Which sequence of instructions among the following is needed to execute the program?

1. javac Course. java, javac Exercise2S. java, java Course
2. javac Course. java, javac Exercise2S. java, java Course.class
3. javac Course. java, javac Exercise2S. java, java Exercise2S

4. javac Course. java, javac Exercise2S. java, java Exercise2S Course

Exercise 2.1)

Given the following classes:

public class Course {
public String name;

public Course() {

}

public Course(String n) {
name = n;

}

3

public class Exercise2T {

public static void main(String args[]) {
Course coursel = new Course();
coursel.name = "Java";
Course course2 = new Course("Java");
System.out.println(coursel.name);
System.out.println(course2.name);

29

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

Once executed, what this program will print?

1. This program cannot be run.
2. This program does not compile.
3. Will print:

NEAYE

4. Will print:

Exercise 2.u)

Q
"
<
a
=]
ot
=
o
S :
=2 .
e}
5
3.
=]
de
o)
o,
(Y
(72}
4

public class Exercise2U {
int ¢ = 3;
public static void main(String args[]) {
int a = 1;
int b =2, ¢, d = 4,
System.out.println(a+b+c+d);

}
Once executed, what this program will print?
1. This program does not compile.

2. Will print:

10

3. Will print:

4. Will print:

Exercise 2.v)

Create a class called Exercise2V that allows you to get the sum of 2, 3, 5 and 10 integers.

by

0

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

Consider the solution in Exercise 1.x, where we created a class that simulated the printing of the
details of some contacts in a phone book:

public class PrintContacts {
public static void main(String args[]) {

System.out.println("Contacts List");
System.out.println();
System.out.println("Claudio De Sio Cesari");
System.out.println("13, Java Street");
System.out.println("131313131313");
System.out.println();
System.out.println("Stevie Wonder");
System.out.println("10, Music Avenue");
System.out.println("1010161010");
System.out.println();
System.out.println("Gennaro Capuozzo");
System.out.println("1, Four Days of Naples Square");
System.out.println("1111131311311");

3

Abstract, save, and compile and a Contact class that contains the necessary variables and one
or more constructors.

Exercise 2.x) .@.
Consider the solution of the Exercise 2.w, create anew version of the PrintContacts @
class of the Exercise 1.x (whose code is also reported in the Exercise 2.w), this time
taking advantage of the Contact class created in the Exercise 2.w. The output of the program
must be the same as the program PrintContacts of the Exercise 1.x.

Tip: use a method similar to printDetails() that we have defined in
the solution of Exercise 2.k.

Exercise 2.y)

Considering the solution in Exercise 2.x, create a PhoneBook class, which contains @
the contacts created in Exercise 2.x. It must define a constructor without param-

eters that instantiate its own instance variables. Create a new version of the PrintContacts
class, which always has the same output. This version must not instantiate the Contact objects,
but retrieve them from the PhoneBook class.

31

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercises

Exercise 2.2)
Create a City class that abstracts the concept of city. Then declare a Nation class @
declaring a capital instance variable of type City. Finally, create an Exercise2Z
class that creates a nation with a capital, and prints a sentence that verifies the actual association
between the nation and the capital.

We recommend that you create constructors for these classes.

32

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2

Exercise Solutions

Key Components
of a Java Program

Solution 2.a)

A class that complies with the requirements is listed below:

public class RequestedClass
public static void main
IntegerNumber one
IntegerNumber two
one.integerNumber
two.integerNumber
one.printNumber();
two.printNumber();

}

{

(String args []) {
new IntegerNumber();
new IntegerNumber();
1;

2;

Furthermore, a constructor for the IntegerNumber class could set the only instance variable

integerNumber:

public class IntegerNumber {

public int integerNumber;

public IntegerNumber() {

}

33

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

public IntegerNumber(int n) {
integerNumber = n;
}

public void printNumber() {
System.out.println(integerNumber);
}

}

In this case, however, to instantiate objects from the IntegerNumber class, it will no longer be
possible to use the default constructor (which will no longer be inserted by the compiler). So,
the following statement would produce a compilation error.

IntegerNumber one = new IntegerNumber();

Instead, create objects by passing the value to the constructor, for example:

IntegerNumber one = new IntegerNumber(1);
Answers to the two questions:

1. This is an instance variable, because declared within a class, outside of methods.

2. The value will be zero, which is the null value for an integer variable. In fact, when an
object is instantiated, instance variables are initialized to null values if not explicitly
initialized to other values.

Solution 2.b) Key Components Concepts. True or False:

1. False, a local variable must necessarily be initialized by the programmer.
2. False, an instance variable shares the life cycle with the object to which it belongs.
3. True.

4. False, an instance variable belongs to an object instantiated by the class in which it is
declared.
S. True.

6. True.
7. False, a constructor is a method that never returns anything, in fact it has no return type.

8. False, a constructor is called the “default constructor” if it is inserted by the compil-
er. It also has no parameters, but not all constructors without parameters are default
constructors.

34

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

9. False, a constructor is a special method that has the characteristic of being invoked once
and only once an object is instantiated.

10. True.

Solution 2.c) Key Components Syntax. True or False:

1. True.
. False, it attempts to return an integer value but declares void as return type.

. False, the method should return an integer value.

True.

oA oW N

. False, the dot operator must be applied to the object and not to the class:

Point pl = new Point();
pl.x = 10;

6. False, the dot operator must be applied to the object and not to the class, furthermore the
class does not “contain” the object.

7. False, the dot operator must be applied to the object. The compiler would not find the
declaration of the x variable.

8. False, a constructor is a special method that has the characteristic of being invoked once
and only once an object is instantiated, using the new operator.

9. False, the constructor does not declare a return type and must have a name coinciding
with the class.

10. False, the constructor must have a name coinciding with the class.

Solution 2.d)

The code should be similar to the following:

public class Square {
public int side;

public int perimeter() {

int perimeter = side * 4;
return perimeter;

35

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

public int area() {
int area = side * side;
return area;

Solution 2.e)

The code should be similar to the following:

public class SquareTest {
public static void main(String args[]) {

Square square = new Square();
square.side = 5;
int perimeter = square.perimeter();
System.out.println(perimeter);
int area = square.area();
System.out.println(area);

}

Note that we have created the perimeter and area local variables with the same name as the
method, and this is not a problem. In fact, the name of a method always differs from the name
of a variable because it is declared with round brackets. We could also have called the variables
differently, but it is a good practice that the names are self-explanatory. However, we could also
completely avoid the use of these variables if we had written the class like this:

public class SquareTest {
public static void main(String args[]) {
Square square = new Square();
square.side = 5;
System.out.println(square.perimeter());
System.out.println(square.area());

3

The code is more compact, but at least at the beginning, it is better to use the variables to better
memorize the definitions.

Solution 2.f)

The Square class code should look like the following:

public class Square {
public int side;

36

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

public Square(int 1) {
side = 1;
}

public int perimeter() {
int perimeter = side * 4;
return perimeter;

}

public int area() {
int area = side * side;
return area;

}
The SquareTest class code should look like the following:

public class SquareTest {
public static void main(String args[]) {
Square square = new Square(5);
int perimeter = square.perimeter();
System.out.println(perimeter);
int area = square.area();
System.out.println(area);

Solution 2.g)

The code could be similar to the following

public class Square {
public final int SIDES_NUMBER = 4;
public int side;

public Square(int 1) {
side = 1;
}

public int perimeter() {
int perimeter = side * SIDES_NUMBER;
return perimeter;

}

public int area() {
int area = side * side;
return area;

37

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

Solution 2.h)

The Rectangle class code should look like the following:

public class Rectangle {
public final int NUMBER_OF_EQUAL_SIDES = 2;
public int base;
public int height;

public Rectangle(int b, int h) {
base = b;
height = h;

}

public int perimeter() {
int perimeter = (base + height) * NUMBER_OF_EQUAL_SIDES;
return perimeter;

}

public int area() {
int area = base * height;
return area;

}
}
Solution 2.i)
The RectangleTest class code should look like the following:

public class RectangleTest {
public static void main(String args[]) {

Rectangle rectanglel = new Rectangle(5,6);

Rectangle rectangle2 = new Rectangle(8,9);

System.out.println("Perimeter of rectangle 1
+ rectanglel.perimeter());

System.out.println("Area of rectangle 1 ="
+ rectanglel.area());

System.out.println("Perimeter of rectangle 2
+ rectangle2.perimeter());

System.out.println("Area of rectangle 2 = " + rectangle2.area());

}
}
Solution 2.j)

The code of the Square class could be the following (in bold the new method requested):

public class Square {
public final int SIDES_NUMBER = 4;

38

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

public int side;

public Square(int 1) {
side = 1;

}

public int perimeter() {
// int perimeter = side * 4;
int perimeter = side * SIDES_NUMBER;
return perimeter;

}

public int area() {
int area = side * side;
return area;

}
public void printDetails(){
System.out.println("This square, has side = " + side + ", perimeter = "
+ perimeter()+ ", area = " + area());

3
The code of the Rectangle class could be the following (in bold the new method requested):

public class Rectangle {
public final int NUMBER_OF_EQUAL_SIDES = 2;
public int base;
public int height;

public Rectangle(int b, int h) {
base = b;
height = h;

3

public int perimeter() {
int perimeter = (base + height) * NUMBER_OF_EQUAL_SIDES;
return perimeter;

}

public int area() {
int area = base * height;
return area;

3
public void printDetails(){
System.out.println("This rectangle, has base = " + base + ", height = "
+ height + ", perimeter = " + perimeter()+ ", area = " + area());

39

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

The code of the SquareTest class could be the following (note how the code is simpler, shorter
and more readable):
public class SquareTest {
public static void main(String args[]) {

Square square = new Square(5);
square.printDetails();

3
Same goes for the TestRettangolo class, whose code could be the following:

public class RectangleTest {
public static void main(String args[]) {
Rectangle rectanglel = new Rectangle(5,6);
Rectangle rectangle2 = new Rectangle(8,9);
rectanglel.printDetails();
rectangle2.printDetails();

Solution 2.k)

The code of the Square class could be the following (in bold the modified code):

public class Square {

public final int SIDES_NUMBER = 4;
public int side;

public Square(int 1) {

side = 1;
}
public int perimeter() {
// int perimeter = side * 4;
int perimeter = side * SIDES_NUMBER;
return perimeter;
}

public int area() {
int area = side * side;
return area;

3

public void printDetails(){
System.out.println(getDetails());
}

40

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

public String getDetails(){
return "This square, has side = " + side + ", perimeter = " +
perimeter()+ ", area = " + area();

}

With the same criterion we could modify the Rectangle class with the following code (in bold
the modified code):

public class Rectangle {
public final int NUMBER_OF_EQUAL_SIDES = 2;
public int base;
public int height;

public Rectangle(int b, int h) {
base = b;
height = h;

3

public int perimeter() {
int perimeter = (base + height) * NUMBER_OF_EQUAL_SIDES;
return perimeter;

}

public int area() {
int area = base * height;
return area;

}

public void printDetails(){
System.out.println(getDetails());

3
public String getDetails(){
return "This rectangle, has base = " + base + ", height = " +
height + ", perimeter = " + perimeter()+ ", area = " + area();

}
The code of the QuadrilateralsTest class could be the following

public class QuadrilateralsTest {
public static void main(String args[]) {
Square square = new Square(5);
square.printDetails();
Rectangle rectangle = new Rectangle(5,6);
rectangle.printDetails();

41

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

Solution 2.1)

The Nation class code should look like the following:

public class Nation {
public String name;
public String capital;
public int population;

public Nation (String n, String c, int p) {
name = n;
capital = c;
population = p;

}

This abstraction, although very generic, seems correct. The only defined constructor implies
that we have to specify three input parameters for every instance, so that they must be consid-
ered to be mandatory:

Nation italy = new Nation("Italy", "Rome", "60000000");

You didn’t have to create a class with the same variables, the impor-
tant thing is to have a correct abstraction.

Solution 2.m)

It is possible that someone has succeeded in creating methods within this class. In the previ-
ous exercise, an abstraction of the Nation class was requested only in a generic way, without
specifying the context or program in which this class will have a role. This is why it is difficult
for us to create methods, since we are currently ignoring the program in which Nation will be
used. We could use this class in a program that preserves the physical data of the nations, but we
could also use it in a video game that simulates the famous board game Risiko. The methods
(but also the instance variables) to be defined, could drastically change from context to context.
In the first case we would define instance variables like rivers, lakes, mountains, surfaces,
etc., and methods like produce(), export(), import(). In the second case we could define the
boundaries variable, and the method defend().

In conclusion, we have made the definition of the Nation class extremely generic, precisely
because we had no constraints to exploit.

42

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

Solution 2.n)

The answer is the number 1, which means the code can be compiled without errors. Don’t be
misled by the names of the variables (see other possible answers) that could lead to confusion.
Also, the order in which the modifiers are specified is not a problem.

Solution 2.0)

The mistake is that there is no ; next to the toString() method statement:

return "Exercise20"

which should be corrected this way:

return "Exercise20";

The other methods are all correct.

Solution 2.p)

The error is that a local variable cannot be declared public within a method. In fact, public
defines the visibility outside the class of an instance variable, not outside a method.

Note that we have named argz the parameter of the main() method, instead of the standard
args. This is legal because it is only a parameter name.

Solution 2.q)

The first error is that braces are missing for the args parameter of the main() method. The
second is that there is no ; next to the only statement in the main() method. The third is due
to an extra closing brace. Once these errors are corrected, the class compiles and can also be
executed since it contains a main() method. The correct class will be the following:

public class Exercise2Q OK {

public static void main(String args) {
System.out.println("Quelo");

-
(o)

Solution 2.r)

The program will not compile because of the statement:

System.out.println("Exercise 2.r");

£
w

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

which does not belong to any method code block. But we have seen that within a class only vari-
ables and methods are defined, not statements. By eliminating that statement, the program:

public class Exercise2R_OK {
public int vari;
public int var2;

public Exercise2R_O0OK() {

}

public Exercise2R_O0OK(int a , int b) {
varl = b;
var2 = a;

}

public static void main(String args[]) {
Exercise2R_0OK exercise2R = new Exercise2R _0K(4,7);
System.out.println(exercise2R.varl);
System.out.println(exercise2R.var2);

}

will compile and will print at runtime:

|

Solution 2.s)
The correct answer is 3. It would also be possible to compile only the Exercise2S class, since
using the Course class, it will oblige the compiler to compile the latter as well. So, we can also
execute this sequence

javac Exercise2S.java
java Exercise2S

Solution 2.t)

The correct answer is 3.

Solution 2.u)

The correct answer is 1. In fact, the local variable ¢ has not been initialized and will cause the
following error:

H

4

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

Exercise2U.java:6: error: variable c might not have been initialized
System.out.println(a+b+c+d);
AN

O
__
As stated in this chapter, the instance variable has nothing to do with the local variable with the
same name. In any case, once initialized to 3:

public class Exercise2u_OK {
int ¢ = 3;
public static void main(String args[]) {
int a = 1;
int b =2, ¢c =3, d=4;
System.out.println(a+b+c+d);

will print:

Solution 2.v)

The code for the Exercise2V class, could be the following:

public class Exercise2V {
public int sum2Int(int a, int b) {
return a+b;
}

public int sum5Int(int a, int b, int c, int d, int e) {
return a+b+c+d+e;
}

public int suml@Int(int a, int b, int c, int d, int e,
int f, int g, int h, int i, int 1) {
return a+b+c+d+e+f+g+h+i+l;

}

//Just for test

public static void main(String args[]) {
Exercise2V ex = new Exercise2V();
System.out.println(ex.sum2Int(1,1));
System.out.println(ex.sum5Int(1,1,1,1,1));
System.out.println(ex.sum1®Int(1,1,1,1,41,1,1,1,1,1));

45

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

It would not be entirely correct to use a varargs, since it would allow us to do many other opera-
tions that are not required.

Soluzionle 2.w)

The code of the Contact class could be the following:
public class Contact {
public String name;
public String address;
public String phoneNumber;

public Contact(String nam, String num) {
name = nam;
phoneNumber = num;

}

public Contact(String nam, String add, String num) {
name = nam;
address = add;
phoneNumber = num;

}

Note that we have decided to define two constructors, one that takes the values of the three
variables as input, the other that does without the address. We have not introduced other con-
structors since we consider it useless for a contact to be created without specifying at least a
name and a phone number.

Soluzione 2.x)

The code of the PrintContacts class could be the following:

public class PrintContacts {
public static void main(String args[]) {
System.out.println("Contacts List");
System.out.println();
Contact contactl = new Contact("Claudio De Sio Cesari",

"13, Java Street", '"131313131313");

Contact contact2 = new Contact("Stevie Wonder", "10, Music Avenue",

"1010101010");

Contact contact3 = new Contact("Gennaro Capuozzo",

"1, Four Days of Naples Square" ,"1111111111");
System.out.println(contactl.name);
System.out.println(contactl.address);
System.out.println(contactl.phoneNumber);

46

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

System.
System.
System.
System.
System.
System.
System.
System.

}

out
out
out
out
out
out
out
out

.println();

.println(contact2.
.println(contact2.
.println(contact2.

.println();

.println(contact3.
.println(contact3.
.println(contact3.

However, the code is rather verbose.
As recommended, we add a printDetails() method in the Contact class (see code in bold):

public class Contact {
public String name;

public String address;

public String phoneNumber;

public Contact(String nam,

name =

}

public Contact(String nam,

name =

}

nam;
phoneNumber = num;

nam;
address =
phoneNumber = num;

add;

public void printDetails() {
.out.println(name);
.out.println(address);

.out.println(phoneNumber);
.out.println();

System
System
System
System

}

name) ;
address);
phoneNumber) ;

name) ;
address);
phoneNumber) ;

String num) {

String add, String num) {

We can rewrite the PrintContacts class more easily (changes in bold):

public class PrintContactsVv2 {
public static void main(String args[]) {
System.out.println("Contacts List");
System.out.println();

Contact contactl = new Contact('"Claudio De Sio Cesari",

"13, J

ava Street", "131313131313");
Contact contact2 = new Contact('"Stevie Wonder",
"1010101010");

"10, Music Avenue",

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

47

Chapter 2 Exercise Solutions

Contact contact3 = new Contact('"Gennaro Capuozzo",
"1, Four Days of Naples Square", "1111111111");

contactl.printDetails();

contact2.printDetails();

contact3.printDetails();

Solution 2.y)

The code of the PhoneBook class could be the following

public class PhoneBook {
public Contact contactil;
public Contact contact2;
public Contact contacts3;
public PhoneBook() {
contactl = new Contact("Claudio De Sio Cesari",
"13, Java Street", "131313131313");
contact2 = new Contact("Stevie Wonder",
"10, Music Avenue", "1010101010");
contact3 = new Contact("Gennaro Capuozzo",
"1, Four Days of Naples Square'", "1111111111");

i
As aresult, the PrintContacts class can be changed as follows (changes in bold):

public class PrintContacts {
public static void main(String args[]) {
System.out.println("Contacts List");
System.out.println();
PhoneBook phoneBook = new PhoneBook();
phoneBook.contactl.printDetails();
phoneBook.contact2.printDetails();
phoneBook.contact3.printDetails();

Solution 2.z)

One solution could be the coding of the following classes:

public class City {
public String name;

public City(String n) {
name = n;

48

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 2 Exercise Solutions

public class Nation {
public String name;
public City capital;
public int population;

public Nation(String n, City c, int p) {
name = n;
capital = c;
population = p;

3

public class Exercise2z {
public static void main(String args[]) {
City city = new City("Rome");
Nation nation = new Nation("Italy", city, 60000000);
System.out.println(nation.name + " has " + city.name
+ " as its capital");

49

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3
Exercises

Coding Style,
Data Types and Arrays

Below is a series of exercises to practice what was learned in Chapter 3. We remember once
again, that many exercises are preparatory to the following ones, so it is not worth skipping
some, and we recommend you to consult at least the solutions before going ahead.

Exercise 3.a) -@-
Write a simple program that performs the following arithmetic operations cor- @

rectly, carefully choosing the data types to be used to store their results.

1. A division (use the / symbol) between two integers a = 5, and b = 3. Store the result in a
variable r1, choosing the data type appropriately.

2. A multiplication (use the * symbol) between a char c = ‘@’ and a short s = 5000. Store the
result in a variable r2, choosing the type of data appropriately.

3. A sum (use the + symbol) between an int i = 6 and a float f = 3. 14F. Store the result in
avariable r3, choosing the data type appropriately.

4. A subtraction (use the - symbol) between r1, r2 and r3. Store the result in a variable r4,
choosing the data type appropriately.

Verify the correctness of the operations by printing the partial results and the final result. Keep

51

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

in mind the automatic promotion in expressions, and use the casting appropriately. Write all
the code in a class with a main() method.

Exercise 3.b)

Write a program with the following requirements. @

2@ Implement a Person class that declares the variables name, surname, age.
Also create a details() method that returns information about the person object with a
string. Remember to use the conventions and rules described in this chapter.

28 Implement a Main class that, in the main() method, presents two objects called person1
and person? of the Person class, initializing the relative fields for each of them through
the dot operator.

a8 Declare a third reference (person3) that points to one of the objects already instantiated.
Check that actually person3 points to the desired object, printing the person3 fields al-
ways using the dot operator.

28 Adequately comment the code and use the javadoc tool to produce the related documen-
tation.

All the rules and conventions described in this chapter are used in
the standard Java documentation. Just observe that String starts with
a capital letter, being a class. Obviously, System is also a class.

Exercise 3.c) Arrays, True or False:

1. An array is an object and can therefore be declared, instantiated and initialized.
2. A two-dimensional array is an array whose elements are other arrays.

3. The length method returns the number of elements of an array.

4. An array is not resizable.

5. An array is heterogeneous by default.

52

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

6. An array of integers can contain byte types as elements, that is, the following lines of
code do not produce compilation errors:

int arr [] = new int[2];
byte a = 1, b=2;

T o~

7. An array of integers can contain char types as elements, that is, the following lines of
code do not produce compilation errors:
char a = 'a', b = 'b';
int arr [] = {a,b};

8. An array of strings can contain char types as elements, that is, the following lines of code
do not produce compilation errors:

String arr [] = {'a' , 'b'};

9. An array of strings is a two-dimensional array, because strings are nothing more than ar-
rays of characters. For example:

String arr [] = {"a" , "b"};
is a two-dimensional array.

10. Given the following two-dimensional array:

int arr [][]= {
{11 2/ 3}[
{1,2},
{11 2! 3/ 4/ 5}

}
it will turn out that:

arr.length = 3;

arr[0].length = 3;
arr[1].length = 2;
arr[2].length = 5;
arr[0][0] = 1;
arr[0][1] = 2;
arr[0][2] = 3;
arr[1][e] = 1;
arr[1][1] = 2;
arr[1][2] = 3;
arr[2][0] = 1;
arr[2][1] = 2;
arr[2][2] = 3;
arr[2][3] = 4;
arr[2][4] = 5;

53

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

Exercise 3.d)

Create a PrintMyName class with a main() method, which prints your name using an array of
characters.

Exercise 3.e)

Create a class Result that declares a single instance variable of type float named @
result. Add any useful methods and constructors. Create a ChangeResult class

that declares a public method of name changeResult() which takes an object of type Result
and changes its local variable result by adding to it another value.

Create a class with amain() method named ResultTest that prints the result variable of an ob-
jectof type Result, before and after this object is passed as input to the method changeResult ()
of an object of type ChangeResult.

Exercise 3.f)

After having done the previous exercise, add a method called changeResult() to @
the class ChangeResult which takes a float parameter as input and changes the

result variable.

Then create an equivalent ResultFloatTest class, which performs the same operations as the
ResultTest class realized in the previous exercise.

Exercise 3.8)

Create a class named ArgsTest with a main() method that prints the variable args[0]. Then
test it by passing various arguments by command line (see section 3.6.5).

Exercise 3.h)
The following class declares several string identifiers:

public class Exercise3H {
public String Break,
String,
character,
bit,
continues,
exports,
Class,
imports,
AAA_;

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

@,
,
Are they all valid? Once the invalid ones have been identified, use the comments appropriately
to exclude them from the compilation.

Given the following class:

package com.claudiodesio.java.exercises;

public class Exercise3I {
public final String languageName = "Java";
public int integer;
public void printString(){
System.out.println(languageName);
}

3

Is there any convention not respected for identifiers? If yes, which changes should be done? If
the naming conventions are not respected, the code does not compile?

Exercise 3.j)

Considering the Exercise 1y, create a class called PrintVoidRowClass that prints the following
ouput:
public class VoidRow {

public static void main(String args[]) {
System.out.println("");
b

Exercise 3.k) .@
Given the following class: @

public class Exercise3K {
public static void main(String args[]) {
char d = (char)100;
float \u0E66 = (float)d*1_000_000_000;
System.out.println((long)f);

55

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

Keeping in mind that the letter f, is encoded in Unicode by the hexadecimal number 66, which
of the following outputs will be produces once executed?

1.

© ® N O U A W N

None, we will have a compile error for a syntax error on the second line of the main()
method.

. An unknown number.
. 100000000000

. 100_000_000_000

. 100.000.000.000

. 100,000,000,000

66000000000
0.0

. An unpredictable Unicode character.

10. The code compiles but at runtime we will have an exception in the first line of the

main() method because it is not possible to cast from int to char.

11. The code compiles but at runtime we will have an exception in the second line of the

main() method because it is not possible to cast from int to float.

12. The code compiles but at runtime we will have an exception i the third line of the main()

method because it is not possible to cast from float to long.

13. The code does not compile for other reasons.

14. The code throws a runtime exception for other reasons.

Exercise 3.1)

Given the following class:

public class Exercise3L {

56

public static void main(String args[]) {

bit i1 = 8;

short i2 = -1024;
integer i3 = 638;

long i5 888_666_777;

float i6 0;
double i7 = Ox11B;
System.out.println(i7);

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

Are the variables inside the main() method all declared correctly? And are all the assigned val-
ues within the range of representation of the respective types?

Exercise 3.m)

Given the following class: @

public class Exercise3M {
public static void main(String args[]) {
boolean b = true;
char c = 'I"';
System.out.println(b);
System.out.println(c+1);

}

Bearing in mind that the letter I is encoded by the number 73, which of the following outputs
will be produced once executed?

=

We will have an error in compilation.

. true to the first line and 74 to the second.
. true to the first line and L to the second.
. true to the first line and J to the second.
. 0 to the first line and 74 to the second.

. 0 to the first line and J to the second.

N o ;oA W N

0 to the first line and L to the second,

Given the following class:

public class Exercise3N {
public static void main(String args[]) {
String s = "Jav";
char ¢ = "a";
System.out.println(s+c+1);

}

which of the following outputs will be produced once executed?

1. We will have an error in compilation.

57

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

2. Java
3. Javal
4. Javb

Given the following class:
package parking;

public class Car {
public String type;

public Car(String t){
type = t;
}

}
For the following class to compile:

package workers;
//Insert code here

public class Driver {

public void drive(Car car) {
3 System.out.println("I'm driving a " + car.type + " car");

}

You must insert a line of code. Which between the following lines would allow the Driver class
to be compiled (choose all that applies)?

import parking.Car;
. import parking.*;
. import parking.workers.x*;

1
2
3
4. import parking.Car.x*;
5. import parking.*.Car;
6

. import workers.parking.Car;

Exercise 3.p)

Considering the Car and Driver classes of the previous exercise, which piece of code must be
added to the following class:

58

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

public class Exercise3P {

//Insert code here

public static void main(String args[]) {
Car car = new Car("Toyota Yaris");
Driver driver = new Driver();
driver.drive(car);

3

Choose only one of the following options:
1. import parking.x*;
2. import workers.x*;
3. import parking.Car; e import workers.Driver;

4. No code needs to be added. The code can already be compiled.

Exercise 3.q)

The following statement is correct?

28 When we pass a reference of an object to a method as input, we are sure that once the
method has been executed, our reference will always point to the same object it was
pointing to before the method was executed. This does not mean that the internal struc-
ture of the object cannot be modified within the method. In fact, the local parameter of
the method will have the same address as the reference passed, and can therefore work
on the same object.

Write a program that takes an argument as input (variable args of the main() method) and
store it as a third element of an array of local strings named array.

This program will only work if at least one argument is passed. Any
parameters passed from the command line beyond the first one will
be ignored by the program.

59

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

Exercise 3.s)

Given the following class:

public class Car {
public String type;

public Car(String t){
type = t;
}

}

Create a Boat class that abstracts the concept of a boat that loads cars. This class must define
a loadCar () method to which a Car object will be passed. Each Car object will be stored in an
array instance variable called carArray, as first element. Also create a test class that you can call
Exercise3sS.

Exercise 3.t)

Create an Exercise3T class that must be launched by passing a command line ar- @
gument representing an integer, as follows:

With EJE it is possible to pass command line arguments with the key-
board shortcut Shift - F9, or by clicking on the menu execute with args.

You can replace the number 9 with any other integer number.
The program will have to:

1. use args[0], which contains an integer, to create an array of integers of the same size
specified by the argument;

2. print a sentence that will confirm the creation of the array, printing its size.

Since the parameters are stored in the args string array elements, we need to convert the
parameter passed as input from string to integer. Search the library for the parseInt()
method of the Integer class. Read the documentation, understand how it works and use it in
the program.

In case you are not able to do some task, search Google for help, the
web is full of solutions.

60

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

Create a program that:

1. create an array of character types, containing all the letters of the alphabet;

2. use a (static) method of the java.util.Arrays class to print its contents as a string. Look
for the appropriate method in the official documentation.

In case you are not able to do some task, search Google for help, the
web is full of solutions.

Create a class that prints integer random numbers.

Hint: there is a method of a class in the Java library that does exactly
this. To find it, search for the word “random” in the documentation.

Given the following class:

public class Exercise3W {
public static void main(String args[]) {
var var = "var";
var
var
var
var ;
var e c + d;
System.out.println(var + a + "i" + b + c +d);

o 00T

[I I T ||
©

}

Is it possible to compile this application?

1. No, we will have a compilation error due to a syntax error on the first line of the main()
method.

61

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

. No, we will have a compilation error due to a syntax error on the second line of the

main() method.

. No, we will have a compilation error due to a syntax error on the third line of the main()

method.

. No, we will have a compilation error due to a syntax error on the fourth line of the main()

method.

. No, we will have a compile error for a syntax error on the fifth line of the main()

method.

No, we will have a compile error for a syntax error on the sixth line of the main()
method.

No, we will have a compilation error due to a syntax error on the seventh line of the
main() method.

8. Yes

Exercise 3.x)

Rewrite the solution of the Exercise 2.y, using the word var, wherever it is possible to use it. Also
in the PhoneBook class, replace the three instance variables contact1, contact2 and contact3
with an array, and modify the PrintContacts class accordingly.

Exercise 3.y)

Which of the following snippets can be compiled without errors:

1.
2.
3.
4.
S.

public class var {}
private class var {}
public var MyClass {}
var var[] = new int[8];

public var var = 1;

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercises

Exercise 3.z)

Create a ReportCard class that abstracts the concept of school report. It must have @
the following information:

1. name, surname and class of the student;

2. a table of votes that you associate for each subject, the vote and the judgment
3. It must also declare a method that reads the report data legibly.

4. Also create an Exercise3Z class that prints one or more report cards.

63

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3
Exercise Solutions

Coding Style,
Data Types and Arrays

Solution 3.a)

public class Exercise3A {
public static void main (String args[]) {

int a =5, b = 3;
double r1 = (double)a/b;
System.out.println("r1 = " + r1);
char ¢ = 'a';
short s = 5000;
int r2 = c*s;

System.out.println("r2 = " + r2);
int i = 6;

float £ = 3.14F;

float r3 = 1 + f;
System.out.println("r3 = " + r3);
double r4 = r1 - r2 - r3;
System.out.println("r4 = " + r4);

65

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

Solution 3.b)

public class Person {

}

public String name;
public String surname;
public int age;
public String details() {
return name + " " + surname + " years " + age;

}

public class Main {

public static void main (String args []) {
Person personl = new Person();
Person person2 = new Person();
personl.name = "Alessandro";
personl.surname = '"Scarlatti";
personl.age = 30;
System.out.println("personl "+personl.details());
person2.name = "Antonio";
person2.surname = "Vivaldi";
person2.age = 40;
System.out.println("person2 "+person2.details());
Person person3 = personil;
System.out.println("person3 "+person3.details());

Solution 3.c) Array, True or False:

1.

o v A W N

True.
True.

. False, the length variable returns the number of elements in an array.

True.

. False.

. True, a byte (which takes only 8 bits) can be stored in an int variable (which takes 32

bits).

7. True, a char (which takes 16 bits) can be stored in an int variable (which takes 32 bits).

8. False, a char is a primitive data type and String is a class. The two types of data are not

66

compatible.

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

9. False, in Java the string is an object instantiated by the String class and not an array of
characters (even if internally uses an array of characters).

10. False, all the statements are correct except arr[11[2] = 3; because this element does
not exist.

Solution 3.d)

The code should be similar to the following:

public class PrintMyName {
public static void main(String args[]) {
char [] name = {'Cc', '1', 'a', 'u', 'd', 'i', 'o'};
System.out. prlntln(name),

3
3
Solution 3.e)

The code of the Result class could be the following:

public class Result {
public float result;

public Result (float res) {
result = res;

}

public void print() {
System.out.println(result);
}

}
Note that we have created a constructor and a method to facilitate printing.
The code of the ChangeResult class could be the following:

public class ChangeResult {

public void changeResult(Result result) {
result.result += 1;

3
b

The code of the ResultTest class could be the following:

public class ResultTest {
public static void main(String args[]) {
Result result = new Result(5.0F);

67

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

result.print();

ChangeResult cr = new ChangeResult();
cr.changeResult(result);
result.print();

}

The output of the previous code will be:
5.0
6.0

Solution 3.1)
The code of the ChangeResult class should change as follows:

public class ChangeResult {
public void changeResult(Result result) {
result.result += 1;

}
public float changeResult(float result) {

result += 1;
return result;

3

Note that this time the method must return the new value of the variable since it is a primitive
type variable (see section 3.3).
The code of the ResultFloatTest class could be the following:
public class ResultFloatTest {
public static void main(String args[]) {

float result = 5.0F;

System.out.println(result);

ChangeResult cr = new ChangeResult();

result = cr.changeResult(result);
System.out.println(result);

}

Note that we had to reassign the value of the result variable after the computation of the
changeResult () method.

Solution 3.8)

The code should be similar to:

68

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

public class TestArgs {
public static void main(String args[]) {
System.out.println(args[0]);

b
b

Note that if you don’t specify an argument when you launch the application you will get an
exception at runtime:

java TestArgs

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: O

main A

d Args.ma g ava:

The exceptions are discussed in Chapter 9.

Solution 3.h)

Only the last two identifiers are not valid, in fact:

1. The Break identifier is different from break (all keywords do not have uppercase let-
ters).

2. The String identifier coincides with the name of the String class, but not being a key-
word, you can use it as an identifier. Nevertheless, it is a bad practice.

. The character identifier is not a keyword (there is char instead).
. The bit identifier is not a keyword (there is byte instead).

. The continues identifier is not a keyword (there is continue instead).

O U A~ W

. The exports identifier is a restricted word, and would be unusable within the declaration
of a module, but in this context, it does not create problems.

7. The Class identifier is not a keyword (there is class instead).

8. The imports identifier is not a keyword (there is import instead).

9. The _AAA_ identifier is not a keyword.

10. The identifier _@_ is not legal because we can’t use the @ symbol as part of identifiers.

11. The identifier _ is a reserved word starting from Java 9.

You can comment out the invalid identifiers in the following way:

public class Exercise3H {
public String Break,

69

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

String,
character,
bit,
continues,
exports,
Class,
imports,
AAA/*,
@,
M

}

We have used a multi-line comment to comment out only on what should be commented.
Clearly this approach does not favour to the readability of the code. The most appropriate

“ “

way to comment out our code requires the replacement of the “,” symbol with the “;” sym-
bol immediately after the declaration of the identifier _AAA_, and the use of the single-line
comments:

public class Exercise3H {
public String Break,
String,
character,
bit,
continues,
exports,
Class,
imports,
AAA;
/7 _@_,
// _*/;
}

Solution 3.i)

The only convention not used correctly concerns the constant (we remind you that the conven-
tions do not affect the compilation of the code).
The code should be corrected as follows:

package com.claudiodesio.java.exercises;

public class ExerciseSolution3I {
public final String LANGUAGE_NAME = '"Java'";
public int integer;
public void printString(){
System.out.println(LANGUAGE_NAME);

}

70

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

Solution 3.j)

The problem arises for printing double quotes defined within the println() method. The so-
lution is to escape the double quotes (in bold):
public class PrintVoidRowClass {

public static void main(String args[]) {
System.out.println("public class VoidRow {");

System.out.println(" public static void main(String args[]) {");
System.out.println(" System.out.println(\"\");");
System.out.println(" "),

System.out.println("}");

(5]
(5]

Solution 3.k)
The code compiles and runs without errors, and prints:

that is, an unknown number. Indeed, the float types, due to the limitations of the IEEE-754 stan-
dard, when exceed the 9 decimal places can use approximate numbers (see section 3.3.2.1).
The correct answer is therefore to number 2.

Solution 3.1)

The bit and integer types do not exist (if anything, there are byte and int). All declared val-
ues are compatible with the respective representation ranges, including the value 0x11B which
is 283. 0 for the decimal system and which, being stored in a double, is absolutely compatible.

Solution 3.m)

The right answer is the number 2. In fact, a boolean literal will be printed exactly as its literal
value (true in this case). Instead ¢ + 1 is promoted to an integer, and from 73 it becomes 74. To
be able to print the relative character value (J) we should cast the whole operation in this way:

System.out.println((char)(c+1));

Solution 3.n)

We will have a compile-time error because the value assigned to the character c, is a string (note
the double quotes instead of the single quotes).

7

=

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

Solution 3.0)

The correct answers are 1 and 2, all the others are incorrect contain syntax errors.

Solution 3.p)

The correct answer is 8 because both Car and Driver classes were used in the code.

Solution 3.q)

Yes, the reasoning is correct.

Solution 3.r)

The code should be similar to:

public class Exercise3R {
public static void main(String args[]) {
String[] array = new String[5];
array[2] = args[0];

Solution 3.s)

The required code should be similar to this:

(o]
-

public class Boat {
int index = 0;
public Car[] carArray;

public Boat () {
carArray = new Car[100];
}

public void loadCar(Car car) {
carArray[index] = car;
System.out.println("Car: "+ car.type +" loaded");
index++;

}

Where we used an index to keep track of the positions already occupied on the boat. This is
increased each time a car is loaded, and then used to load the next one.
The following test class satisfies the request:

N
N

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

public class Exercise3S {
public static void main(String args[]) {

Boat boat = new Boat();
Car carl = new Car("Renault");
Car car2 = new Car("Volkswagen");
Car car3 = new Car('"Nissan");
boat.loadCar(carl);
boat.loadCar(car2);
boat.loadCar(car3);

}
}
Solution 3.t)

The required code should be similar to the following:

public class Exercise3T {
public static void main(String args[]) {
int arrayDimension = Integer.parseInt(args[0]);
int [] array = new int[arrayDimension];
System.out.println("The array has dimension " + array.length);

}

Note that the parseInt() method is static (argument not yet addressed) and can be used with
the syntax: ClassName.parseInt(), but it is also possible to instantiate an object and invoke it
as it was an ordinary method (but it is useless to instantiate the object).

Solution 3.u)

The required code should be similar to the following:

import java.util.Arrays;

public class Exercise3U {
public static void main(String args[]) {
Char[] array = {Iall |bl, ICII Idl, Iel, lfl, lgl, lhl,
Iil, |jl, Ikll Ill, Iml, lnl, IOI, lp|’ lq', Irl, 'S',
Itl, |uI’ IVII le, IXl, lyl, IZI}’.
System.out.println(Arrays.toString(array));

}

The toString() method of the Arrays class was the required method. To use it you need to
import the Arrays class.

73

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

Solution 3.v)

The required code should be similar to the following:
import java.util.Random;

public class Exercise3V {
public static void main(String args[]) {
Random random = new Random();
System.out.println(random.nextInt());

(o]
()

Solution 3.w)

The Exercise3W class will be compiled correctly and when executed will print:

var i = 8

Solution 3.x)

We can replace instance variables of the PhoneBook class with an array, using the following
code:

||

public class PhoneBook {
public Contact [] contacts;
public PhoneBook () {
contacts = new Contact[]{
new Contact('"Claudio De Sio Cesari", " 13, Java Street ", "131313131313"),
new Contact("Stevie Wonder'", "10, Music Avenue", "1010101010"),
new Contact("Gennaro Capuozzo", " 1, "Four Days of Naples Square ",
"1111111111")};

}
but we can also use the ordinary syntax of the array:

public class PhoneBook {
public Contact [] contacts;
public PhoneBook () {
contacts = new Contact[3];
contacts[0@] = new Contact("Claudio De Sio Cesari'", "13, Java Street",
"1131313131313");
contacts[1] = new Contact("Stevie Wonder", "10, Music Avenue",
"1010101010");
contacts[2] = new Contact("Gennaro Capuozzo",
"1, Four Days of Naples Square", "1111111111");

.q

4

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

As for the introduction of the word var, in the Contact and PhoneBook classes, since no local
variable is defined, it is not possible to use the word var, so these classes should not be modified.
The PrintContacts class instead, can be modified in this way (in bold the change):

public class PrintContacts {
public static void main(String args[]) {
System.out.println("Contacts List");
System.out.println();
var phoneBook = new PhoneBook();
phoneBook.contacts[@].printDetails();
phoneBook.contacts[1].printDetails();
phoneBook.contacts[2].printDetails();

3
}
Solution 3.y)

No snippets are correct. The numbers 1 and 2 show classes with the var identifier, but it is not
possible to use the word var as an identifier for any type (see section 3.7.2). Furthermore, in the
case of the snippet number 2, it is not even possible to use the private keyword to define a class
(we will see it better in the next chapters). In snippet 3, there is a syntax that tries to define a
class using the var keyword instead of the class keyword, but this is not the function for which
the word var was created. In the fourth snippet we try to use the word var as an identifier of an
array, but again in section 3.7.2, it is clearly specified that this is illegal. Finally, in snippet num-
ber 5, we can infer from the presence of the public modifier, that it is a definition of an instance
variable and not a local variable, and therefore the use of the word var is not allowed.

Solution 3.2)

We decide to create an abstraction for the Student class:

public class Student {
public String name;
public String surname;
public String schoolClass;

public Student(String nam, String sur, String sc) {
name = nam;
surname = sur;
schoolClass = sc;

}

public String toString() {
return "Student: "+ name +" "+ surname +"\nClass "+ schoolClass;

75

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

We have declared the essential information required, and we have created a constructor to set
this information. We also created a toString() method that returns a descriptive string of the
object.

We will see later that this method will be used very often in Java pro-
gramming, because it is already present in every class.

Then we create a ReportCard class that abstracts the concept of a table of votes:

import java.util.Arrays;

public class ReportCard {
public Student student;
public String[][] tableOfVotes;

public ReportCard (Student stu, String [][] tab){
student = stu;
tableOfVotes = tab;

}

public void printReportCard() {

System.out.println(student.toString());

System.out.println(Arrays.toString(tableOfVotes[0]))
System.out.println(Arrays.toString(tableOfVotes[1]))
System.out.println(Arrays.toString(tableOfVotes[2]))
System.out.println(Arrays.toString(tableOfVotes[3]))
System.out.println(Arrays.toString(tableOfVotes[4]))
System.out.println(Arrays.toString(tableOfVotes[5]))
System.out.println(Arrays.toString(tableOfVotes[6]))

4
4
4
4
4
4

4

}

Note that this class declares a student object and a two-dimensional array tableOfVotes,
both to be set when the object is instantiated with the provided constructor. It also de-
clares the method printingReportCard() which uses the static method toString() of the
class java.util.Arrays to format the content of each “row” of the two-dimensional array
tableOfVotes.
Finally, with the following class, let’s print two report cards:
public class Exercise3zZ {
public static void main(String args[]) {
Student studentl = new Student("Giovanni",6 "Battista", "5A");
String [][] tabellavotil = {

{"English","7","Does not engage too much."},
{"Maths","9", "He is very fit for this subject."} ,

76

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 3 Exercise Solutions

{"History","7","He could do more."} ,
{"Geography","8", "Passionate."} ,
{"French","9", "Able to support dialogues."},
{"Physical Education and Sports","6'", "Vote of encouragement."},
{"Music","7", "He has passion for the subject."}
}i
ReportCard reportCardl = new ReportCard (studentl, tabellaVotil);

Student student2 = new Student('"Daniele", "Sapore",6 "2A");
String [][] tabellavVoti2 = {
{"English",6"8", "He shows enthusiasm for the subject."},
{"Maths","5","Not at all interested."} ,
{"History","6", "Interested, but makes little effort."} ,
{"Geography","6", "He could do more."} ,
{"French","8", "Excellent pronunciation."},
{"Physical Education and Sports",6"7", "A bit lazy."},
{"Music", "9",
"He plays different instruments and has a great voice.'"}

}
ReportCard reportCard2 = new ReportCard (student2, tabellaVoti2);

reportCardil.printReportCard();
reportCard2.printReportCard();

}
The output will be the following:

Student: Giovanni Battista

Class 5A

[English, 7, Does not engage too much.]

[Maths, 9, He is very fit for this subject.]

[History, 7, He could do more.]

[Geography, 8, Passionate.]

[French, 9, Able to support dialogues.]

[Physical Education and Sports, 6, Vote of encouragement.]
[Music, 7, He has passion for the subject.]

Student: Daniele Sapore

Class 2A

[English, 8, He shows enthusiasm for the subject.]

[Maths, 5, Not at all interested.]

[History, 6, Interested, but makes little effort.]
[Geography, 6, He could do more.]

[French, 8, Excellent pronunciation.]

[Physical Education and Sports, 7, A bit lazy.]

[Music, 9, He plays different instruments and has a great voice.]

77

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4
Exercises

Operators and
Execution Flow Management

After studying the fourth chapter, we should already be able to write programs with Java. What
is still missing are the concepts of Object Orientation that we will study starting from the next
chapter. Meanwhile, we should be familiar with the execution flow.

Exercise 4.a)

Write a simple program consisting of a single class, which using only an infinite @
loop, the modulo operator, two if constructs, a break and a continue, print only
the first five even numbers.

Exercise 4.b)

Write an application that prints the 26 characters of the alphabet with a loop.

Exercise 4.c)

Write a simple class that prints out the multiplication table. @

Tip 1: Arrays are not required.

79

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercises

Tip 2: the System.out.println() method prints the argument passed as
input to it, and then moves the cursor to the next line; in fact, println
stands for “print line”. There is also the System.out.print() method
which instead prints only the argument passed to it.

Tip 3: take advantage of a double nested loop.

Exercise 4.d) Operators and Execution Flow, True or False:

1. The unary pre-increment and post-increment operators applied to a variable give the
same result. In fact, if we have:
int i = 5;
or

i++;

or
++1;

nothing changes; the value of i is updated to 6;

2. d += 1 1is the same as d++, where d is a double.

3. If we have:

int i = 5;

int j = ++i;

int k = j++;

int h = k--;

boolean flag = ((1i !'= 3J) && ((J <=k) || (1 <= h)));

flag will be false.
4. The instruction:
System.out.println(1 + 2 + "3");
will print 33.

5. The switch construct in any case can replace the if construct.

6. The ternary operator in any case can replace the if construct.

80

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercises

7. The for construct in any case can replace the while construct.
8. The do construct in any case can replace the while construct.
9. The switch construct in any case can replace the while construct.

10. The break and continue instructions can be used in the switch, for, while and do
constructs, but not in the if construct,

Exercise 4.e)

Modify the ArgsTest created in the Exercise 8.g, so as to avoid runtime exceptions, with a con-
struct learned in this chapter.

Exercise 4.1)

It is good practice to add the default clause in a switch construct. Can you explain why?

Exercise 4.g)

It is a good idea to add the else clause to an if construct. Can you explain why?

Exercise 4.h)

Create a class with amain() method that selects the first 10 numbers divisible by 3, and concat-
enate and print them with a string, so that the output of the program is:

Number multiple of 3
Number multiple of 3

Number multiple of 3

Use an ordinary for loop.

Exercise 4.i)

Repeat the Exercise 4.h using a while loop instead of a for loop.

Exercise 4.j)

Repeat the Exercise 4.j using a do-while loop instead of a for loop.

81

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercises

Exercise 4.k)

Create a class called EvenOro0dd that defines a method called getEvenOr0dd(), which randomly
returns the string “Even” or “Odd”. Also create a test class that invokes this method and prints
the result.

Tip: see the solution of the Exercise 3.v.

Exercise 4.1)

Using the Even0r0dd class created in the previous exercise, create a class called HeadsOrTails
that defines a method called getHeadsOrTails() that using a switch expression, returns the
string “Heads” or “Tails”. Also create a test class that invokes this method and prints the result.

Exercise 4.m) @
Consider the following code: @

import java.util.Scanner;

public class InteractiveApp {

public static void main(String args[]) {
Scanner scanner = new Scanner (System.in);
String string = "";
System.out.println("Type something then press enter, " +
"or type \"end\" to end the program");

while (!(string = scanner.next()).equals("end")) {
System.out.println("You typed " + string.toUpperCase() + "!");

System.out.println("Program ended!");

}

This class reads keyboard input using the Scanner class of the java.util package (which we
will discuss in the Chapter 14). The next () method used in the while construct (with a complex
syntax that also includes the assignment to the string variable) is a blocking method (that is, that
blocks the execution of the code waiting for user input) that reads the input from the keyboard,
until the enter key is pressed. The program ends when you type the word “end”.

Edit the previous program so that it becomes a word moderator, meaning that it must censor
some words you type.

82

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercises

Perform the exercise only by censoring the words typed individually
(not within a sentence), unless you are convinced that you are able to
do it (the documentation is as always at your disposal to find methods
useful to do what you want).

Which of the following operators can be used with boolean variables?

=
+

N oo opow N
T

8. >>>

What is the output of the following program?

public class Exercise40 {
public static void main(String args[]) {
int i = 99;
if (i++ >= 100) {
System.out.println(i+=10);
} else {
System.out.println(--i==99?2i++:++1i);

}
}
}
Choose from the following options:
1. 10
2. 101

83

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercises

3.
4.

99
110

Exercise 4.p)

What is the output of the following program?

public class Exercise4P {

}

public static void main(String args[]) {

int i = 22;

int j = 1i++%3;

i= jl=0?j:1;

switch (i) {
case 1:
System.out.println(8<<2);
case 0:
System.out.println(8>>2);
break;
case 2:
System.out.println(i!=j);
break;
case 3:
System.out.println(++j);
break;
default:
System.out.println(i++);
break;

Choose from the following options:

=

®
B

® N o o s W N

24
6 and on the next line 10
10

true

false

22

21

32 and on the next line 2

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

@@

Chapter 4 Exercises

Exercise 4.q)

Write a program that asks the user to enter the number of days passed since his last vacation.
Once this number is entered, the program will have to print how many minutes have passed
since the last vacation.

Exercise 4.r) -@-
Given the following class: @

public class Exercise4R {

private static int matrix[][] = {
{2, 7, 3, 9, 5, 3},

{6, 2, 3},
{7, 5, 1, 4, 0},
{1, o, 2, 9, 6, 3, 7, 8, 4}

i ¥

public static void main(String args[]) {

b
3

implement the main() method so that it reads a number (between @ and 9) as parameter
args[0], and find the position (row and column) of the first occurrence of the number speci-
fied within the two-dimensional array called matrix.

Exercise 4.s)

The solution of the previous exercise fails when: @

1. no command line argument is specified;
2. an integer argument from the command line is specified, that is not within the range 0-9;

3. an argument from the command line is specified that is not an integer.

Add, to the solution of the Exercise 4.r, the code that manages the three cases (specifying a
message with the instructions to follow for correct use).

The third case can be managed with what has been studied so far,
but later we will study methods to simplify our code. In particular in
Chapter 9 where we talk about exception handling, and in Chapter...

85

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercises

. . . 14 where we talk about regular expressions, we will see that there
are quite simple solutions for managing the third case.

Exercise 4.t)

Declare a SimpleCalc class that given two numbers, defines the methods for:

Summing them.

Subtract the second from the first.

Multiply.

Divide them.

Return the rest of the division.

Return the largest number (the maximum).
Return the smallest number (the minimum).

Return the average of the two numbers

© ® N o 0k w dNHF

Create a class that tests all methods.

Exercise 4.u)

Declare a class using the Scanner class, which allows the user to interact with the @
SimpleCalc class: the user must be able to write the first operand, select the opera-

tion to be performed from a list and specify the second operand. The program must return the
right result.

Exercise 4.v)

Declare a StrangeCalc class that given an unspecified number of numbers, defines the
methods for:

1. Summing them.

2. Subtract the second from the first.
3. Multiply.

4. Divide them.

86

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercises

5. Return the rest of the division.
6. Return the largest number (the maximum).
7. Return the smallest number (the minimum).

8. Return the average of the two numbers.

Exercise 4.w)

Declare a class that uses the Scanner class, which allows the user to interact with
the StrangeCalc class. The reader is free to decide how the user will interact with
the program.

Exercise 4.x)

Using the HeadsOrTails class defined in the solution of the Exercise 4.1, create a
class called HeadsOrTailsGame, which simulates the tossing of a coin, and which
allows the user to guess whether “heads” or “tails” will come out. The program will have to print
a final message stating if the user has won or not.

R By

Exercise 4.y)

Change the HeadsOrTailsGame class created in the previous exercise, so that the
program initially allows you to specify the number of attempts to do. The program
will have to count the number of times the user has guessed the result of the coin toss, and the
number of times he has not guessed, and will have to decide whether he has won the game or
not.

B

Exercise 4.z)

Considering the PhoneBook class created in Exercise 3.x, create a method called
searchContactsbyName(String name) which takes as input a string that can rep-
resent a name or part of it, and must return an array of Contact objects that contain this string
in its name. Also create a test class called SearchContacts which allows the user to specify the
string to be passed as a search criterion to the searchContactsByName() method and which
prints the search results.

By

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4
Exercise Solutions

Operators and
Execution Flow Management

Solution 4.a)

public class PairTest {
public static void main(String args[]){
int 1 = 0;
while (true)
{ .
i++;
if (i > 10)
break;
if ((1 % 2) '= 0)
continue;
System.out.println(i);
3
3
3

In the main() method we first declare a variable i that acts as an index and that we initialize
to 0. Then we declare a while infinite loop, whose condition is always true. Within the loop
we immediately increase by one unit the value of the variable i. Then we check if the value of
the aforesaid variable is greater than 10, if the answer is yes, the following break construct will

89

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

make us exit the loop that had to be infinite, and consequently the program will terminate im-
mediately after. If the value is less than 10, using the modulo operator (%), checks if the rest of
the division between i and 2 is different from 0. But this rest will be different from 0 if and only
if i is an odd number. If therefore the number is odd, with the continue construct the flow will
pass to the next iteration starting from the first statement of the while loop (i++). If i is an even
number, then it will be printed.

The output of the previous program is the following:

Solution 4.b)

public class ArrayTest {
public static void main(String args[]) {
for (int i = 0; i < 26; ++i) {
char ¢ = (char)('a' + 1i);
System.out.println(c);

}

We execute a loop with the index i that varies from 0 to 25. Adding to the character 'a' the
value of the index i (which at each iteration increases by one unit), we will get the other char-
acters of the alphabet. The cast to char is necessary because the sum between a character and
an integer is promoted to integer.

Solution 4.c)

The code could be the following:

public class MultiplicationTables {
public static void main(String args[]) {
for (int i = 1; i <= 10; ++i) {
for (int j = 1; j <= 10; ++j) {
System.out.print(i*j + "\t");
}
System.out.println();

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

With this double nested loop and using the escape character \t, we can print the multiplication
table with a few lines of code.

Solution 4.d) Operators and Execution Flow, True or False:

1.

True.

2. True.

. False, the boolean variable flag will be true. The atomic expressions have value

true-false-true, respectively. Indeed, it’s true that: 1 = 6, j = 7,k = 5, h = 6. In fact,
(i !'= j)istrueandalso (i <= h)is true.Theexpression ((j <=k) || (i <=h)))
is true. Finally, the AND operator cause the flag value is true.

4. True.

5. False, switch can only check an integer variable (or a compatible type) by comparing

its equality with the constants. From version 5 we can also use enumerations and the
Integer type (or a compatible type), and from version 7 also strings. The if construct
allows to perform cross-checks using objects, boolean expressions, etc.

. False, the ternary operator is equivalent to an expression that returns a value. In particu-

lar it always produces a value, and this must necessarily be assigned or used in some way
(assigning it to a variable, passing it as an argument to a method, etc.). For example, if i
and j are two integers, the following expression: i < j ? i : j; would cause a compila-
tion error (besides not making sense), since the result is not used.

7. True.

9.

. False, the do loop, unlike the while loop, guarantees the execution of the first iteration

on the code block in any case.

False, the switch is a condition construct, not a loop construct.

10. False, the continue cannot be used within a switch construct, but only within loops.

Solution 4.e)

The code could be the following:

public class ArgsTest {

public static void main(String args[]) {
if (args.length == 1) {
System.out.println(args[0]);

91

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

} else {
System.out.println("Please, specify a value from the command line'");

-
(5]
-

Solution 4.f)

This is because we do not know a priori how our program will evolve, and therefore, even if
the default clause might not be needed when writing the program, modifying the program
could create a new unexpected condition, creating a bug in our application. In fact, a new case
will not be expected and the execution flow will not enter into any case clause of the switch
construct. Even using the default construct just to print a sentence “Unexpected case” could
be a good habit.

Solution 4.g)

The answer is identical to the previous one. The else clause for an if construct is equivalent to
a default clause for the switch construct.

Solution 4.h)
The requested code could be the following:

public class Exercise4H {
public static void main(String args[]) {
for (int 1 =1, j = 1; j <= 10; i++) {
if (1 % 3 == 0){
System.out.println("Number multiple of 3 = " + 1i);
J++,;

-
-
-
o

Solution 4.i)
The requested code could be the following:

public class Exercise4I {
public static void main(String args[]) {
int i =1, j = 1;
while(j <= 10) {
if (1 % 3 == 0){

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

System.out.println("Number multiple of 3 = " + 1i);
J++;
}

i++;

}
}
}
Solution 4.j)
The requested code could be the following:

public class Exercise4J {
public static void main(String args[]) {
int i =1, j = 1;

do {
if (1 % 3 == 0){
System.out.println("Number multiple of 3 = " + 1i);
Jj++;
3
i++;

} while(j <= 10) ;

}
}
Solution 4.k)

The required EvenOr0dd class code could be the following:
import java.util.*;

public class EvenOrodd {
public String getEvenOrodd() {
Random random = new Random();
return random.nextInt() % 2 == @ ? "Even" : "0dd";

Note that we used a ternary operator because it seems the best choice,
but we could have used a simple if construct as well.

While the EvenOrOddTest class code could be:

93

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

public class EvenOrOddTest {
public static void main(String args[]) {
EvenOr0dd evenOrOdd = new EvenOrodd();
System.out.println(evenOrodd.getEvenOrodd());

3

Solution 4.1)

The code of the requested HeadsOrTails class could be the following

public class HeadsOrTails {
public String getHeadsOrTails() {

EvenOr0odd evenOrOdd = new EvenOrodd();

String evenOr0ddString = evenOr0dd.getEvenOrodd();

String headsOrTails = switch (evenOr0ddString) {
case "Even" -> '"Heads";
case "0dd" -> "Tails";
default -> "There's a Bug!!!";

3

return headsOrTails;

}
while the class code that HeadsOrTailsTest could be the following

public class HeadsOrTailsTest {
public static void main(String args[]) {
HeadsOrTails headsOrTails = new HeadsOrTails();
System.out.println(headsOrTails.getHeadsOrTails());

Solution 4.m)

The requested code could be the following:

import java.util.Scanner;
public class Moderator {

public static void main(String args[]) {
Scanner scanner = new Scanner (System.in);
String string = "";
System.out.println("Type something then press enter, or type"
+ " \"end\" to end the program");
while (!(string = scanner.next()).equals("end")) {
string = moderateString(string);

94

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

System.out.println("You typed " + string.toUpperCase() + "!");
}

System.out.println("Program ended!");

}

private static String moderateString(String string) {
switch (string) {
case '"gosh":
case '"golly":
case "hilarious":
case "jocund":
string = "CENSORED!";
break;
default:
break;

3

return string;

3

It’s just one of the solutions (certainly not the most elegant).

Solution 4.n)

Let’s list all the cases:

1. +no, if used as a sum operator, but as a string concatenation operator it allows to concat-
enate a string to a boolean.

. % no.

. t+ no.

2

3

4. /=no.
5. &yes, i.e. (true & false) = true.

6. = yes, is an assignment operator, applicable to any type.
7. !! this is not a valid operator!

8. >>>no.

Solution 4.0)

The correct answer is: 99.
In fact, i is initially 99. Then in the boolean condition of the first if, a post-increment operator

95

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

is used, which having lower priority than the >= operator is executed after it. This implies that i
still holds 99 when tested if it is >=100, and only after this check is incremented to 100. So, the
if condition is false, and the related code block is not executed. Then the code block of the
else clause is executed. Here the result of a ternary operator is printed. In fact, the value of i
is decreased from 100 to 99, and therefore the ternary operator returns the first value, that is
i++. Also in this case, it is a post-increment operator (with low priority), and therefore the value
of i (99) is first printed and then the variable is incremented (but the program terminates im-
mediately after).

Solution 4.p)

The correct answer is: 32 and at the next line 2, or the output is the following:

32
P

In fact, initially i is 22, and j is as the remainder of 22 (and not 23 because the post-increment
is applied after the modulo operator %) divided by 3, or 1. After that, is assigned to i the return
value of the ternary operator which checks if j!=0 (that is true). Then the value of j is returned
which is 1. The execution flow, in the switch construct enters in the case 1 where 8 << 2 is
printed, which is equivalent to 8 multiplied by 2 raised to 2, or 32. The case 2 is also executed,
since there is no break that at the end of the case 1. Then 8 >> 2 is printed which is equivalent
to 8 divided by 2 raised to 2, or 2.

Solution 4.q)
The code could be the following:
import java.util.Scanner;
public class Exercise4Q {

public static void main(String args[]) {
Scanner scanner = new Scanner (System.in);
System.out.println(
"Type the number of days passed from the end of your last holidays");
int days = scanner.nextInt();
System.out.println("You typed " + days + " days!");
int ore = days*24;
int minutes = ore*60;
System.out.println("So " + minutes +
" minutes are just passed from your last holidays!");

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

Solution 4.r)

The solution could be the following:

public class Exercise4R {

private static int matrix[][] = {
{1, 7, 3, 9, 5, 3},
{61 2/ 3}[
{71 5/ 1[4I O}I
{1, o, 2, 9, 6, 3, 7, 8, 4}
3

public static void main(String args[]) {
int numberToFind = Integer.parseInt(args[0]);

FIRST_LABEL:
for (int i = 0; i < matrix.length; i++) {
int[] row = matrix[i];
for (int j = ©0; j < row.length; j++) {
if (row[j] == numberToFind) {
System.out.println(numberToFind + " found at row = "
+ ++1i + ", column = " + ++j);
break FIRST_LABEL;

}

System.out.println("Search completed");

We first had to convert args[0] using the static method of the Integer class parseInt() (see
Exercise 3.t) storing it in a variable numberToFind. Then we used a double nested loop to navi-
gate inside the cells of the matrix, using the indices i (for the rows) and j (for the columns).
Note the use of the label we called FIRST_LABEL, which marks the external loop. When the first
occurrence of the numberToFind is found, the instruction:

break FIRST_LABEL;

terminatesthe externalloop,and the program continues printing the message Search completed,
and then ends.

97

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

Solution 4.s)

The code could be the following

public class Exercise4S {

private static int matrix[][] = {
{11 71 31 91 51 3}/
{6, 2, 3},
{7I 5’ 1’ 4’ O}I
{1I OI 2’ 9’ 6’ 3’ 7/ 8’ 4}
+s

public static void main(String args[]) {

int numberToFind = checkArgument(args);

if (numberToFind == -1) {
System.out.println("Specificy an integer number between © and 9");
return;

}

FIRST_LABEL:

for (int i = 0; i < matrix.length; i++) {
int[] row = matrix[i];
for (int j = ©; j < row.length; j++) {

if (row[j] == numberToFind) {
System.out.println(numberToFind + " found at row = "
+ ++1i + ", column = " + ++3j);

break FIRST_LABEL;

3

System.out.println("Search completed");

}

private static int checkArgument(String[] args) {
if (args.length == 1) {
if (args[0].length() == 1) {
for (int 1 = 0; i < 10; i++) {
if (args[0].equals("" + i)) {
return Integer.parseInt(args[0]);
}

}
}

return -1;

98

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

Note that we have delegated to the checkArgument () method the correctness of the input spec-
ified by the user. This method returns the specified value, or, if it is not correct, the value -1. As
you can see from the code of the main() method, if the value returned by the checkArgument ()
method is -1, a help message is printed for the user, and with the return statement, the
method ends. Note that the main() method returns void, so to exit the method we use the
return statement without specifying what to return.

Let’s now analyze the method checkArgument(). With the first if construct, we first checked
that the length of the array args is 1, or that a single argument has been specified, using the
length variable of the array (see section 3.6.5). With the second if construct, we checked that
the length of the string args[0] is exactly 1. We used the call to the length() method of the
String class (not to be confused with the variable 1ength of the array). The following for loop
executes a loop on values ranging from 0 to 9, and checks that args[0] coincides with one of
the values. When it finds a match, the current value is returned after having converted it to an
integer by calling the static method of the Integer class parseInt() (see Exercise 3.t). If, on the
other hand, there is no correspondence in the for loop, for example because a letter or symbol
has been specified (so not an integer between @ and 9), then the loop will end and the value -1
will be returned.

Solution 4.t)

The SimpleCalc requested class could be similar to the following:

public class SimpleCalc {

public double sum(double di1, double d2) {
return di + d2;

}

public double subtract(double di, double d2) {
return di - d2;

}

public double multiply(double di1, double d2) {
return di1 * d2;

}

public double divide(double di, double d2) {
return di / d2;

}

public double returnRest(double di1, double d2) {
return di1 % d2;

}

99

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

public double maximum(double di, double d2) {
return di > d2 ? d1 : d2;

}

public double minimum(double di, double d2) {
return di1 > d2 ? d2 : di;

}

}
While the test class could be:

public class Exercise4dT {

public static void main(String args[]) {
SimpleCalc simpleCalc = new SimpleCalc();

System.out.println("42.7 + 47.8 = " +
simpleCalc.sum(42.7, 47.8));
System.out.println("42.7 - 47.8 = " +

simpleCalc.subtract(42.7, 47.8));
System.out.println("42.7 x 47.8 = " +
simpleCalc.multiply(42.7, 47.8));
System.out.println("42.7 : 47.8 = " +

simpleCalc.divide(42.7, 47.8));

System.out.println("the rest of the division between 42.7 and 47.8 ¢ " +
simpleCalc.returnRest(42.7, 47.8));

System.out.println("the maximum between 42.7 and 47.8 ¢ " +
simpleCalc.maximum(42.7, 47.8));

System.out.println("the minimum between 42.7 and 47.8 ¢ " +
simpleCalc.minimum(42.7, 47.8));

Solution 4.u)

The requested code could be the following:
import java.util.*;
public class Exercise4U {

public static void main(String args[]) {
Scanner scanner = new Scanner (System.in);
System.out.println("Type the first operand then press enter.");
double firstOperand = Double.parseDouble(scanner.nextLine());
System.out.println(
"Now choose the operation to perform then press enter:");
printOperationsTable();

100

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

String
System.
double
double
System.

}

operation = scanner.nextLine();

out.println("Now choose the second operand then press enter.");
secondOperand = Double.parseDouble(scanner.nextLine());
result=performOperation(firstOperand, secondOperand, operation);
out.println("Result = " + result);

private static double performOperation(double firstOperand,

double secondOperand, String operation) {

SimpleCalc simpleCalc = new SimpleCalc();

switch

(operation) {

case "+":

return simpleCalc.sum(firstOperand, secondOperand);

case n_mn.,

return simpleCalc.subtract(firstOperand, secondOperand);

case "x"

return simpleCalc.multiply(firstOperand, secondOperand);

case "d":

return simpleCalc.divide(firstOperand, secondOperand);

case "r"

return simpleCalc.returnRest(firstOperand, secondOperand);

case "u"

return simpleCalc.maximum(firstOperand, secondOperand);

case "m"

return simpleCalc.minimum(firstOperand, secondOperand);

default:

}

System.out.println("The operation specified " + operation +
" is invalid");

System.exit(1);

return Double.NaN;

private static void printOperationsTable() {

System.
System.
System.
System.
System.
System.
System.

}

out.println("'+" : sum");

out.println("'-"' : subtract");

out.println("'x"' : multiply");

out.println("'d' : divide");

out.println("'r' : return the rest of the division");
out.println("'u' : maximum");

out.println("'m' : minimum");

The exercise had already outlined how to implement the interaction between the user and the

program. In the next chapter we will see, among other things, how to find design solutions to
our programs, and how important it is to do some activities before starting to code. For the rest,

the code is quite clear, and we will make just some observations on the most obscure points.

101

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

Note that to perform the calculations we used the widest numeric data type: the double type.
Note also the use of the static method parseDouble() of the Double class, which converts a
string to double (see official documentation), as well as the parseInt() method of the Integer
class converts a string to an int (see Exercise 3. t).

We have not managed (it was not required) the possible incorrect use of the program by the
user, because it is too demanding for the notions we have studied so far. With the exception
handling that we will study in Chapter 9, we will find simple solutions. Unfortunately, in some
operations it loses its precision. You can check it for example by performing an operation of
remainder from the division between 2.3 and 2, which results in an inaccurate value as you can
see from this output example:

Type the first operand then press enter.
203
Now choose the operation to perform then press enter:
T osum
: subtract
: multiply
: divide
return the rest of the division
I maximum
: minimum

Now choose the second operand then press enter.
P
Result = 0.2999999999999998

This is due to how the double type in memory is represented, and we had also mentioned it in
section 38.3.2.1 (we should use the BigDecimal type, see official documentation), and it is a prob-
lem common to all modern programming languages that use the same method of represen-
tation in memory (IEEE-754 Standard). The System.exit() method terminates the program
instantly. It should also be noted that the program proposes to the user to choose specific letters
(see performOperation() method) that correspond to operations to be performed.

Solution 4.v)

The StrangeCalc requested class could be similar to the following:

public class StrangeCalc {

public double sum(double... doubles) {
double result = 0;
for (double aDouble : doubles) {
result += aDouble;
}

return result;

102

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

}

public double multiply(double... doubles) {
double result = doubles[0];
for (int i = 1; i < doubles.length; i++) {
result *= doubles[i];
}

return result;

public double maximum(double... doubles) {
double max = doubles[0];
for (int i = 1; i < doubles.length; i++) {
double abDouble = doubles[i];
if (abouble > max) {
max = aDouble;
}

}

return max;

public double minimum(double... doubles) {
double min = doubles[0];
for (int i = 1; i < doubles.length; i++) {
double aDouble = doubles[i];
if (abouble < min) {
min = aDouble;
}

}

return min;

We used varargs as parameters to make the calling of these methods easier. The sum() method
is very simple and a simple enhanced for loop is used to execute the sum. In the other three
cases, we had to first recover the first element, and then carry out the operations with the rest
of the elements of the array passed as input.

While the test class could be the following:

public class Exercise4V {

public static void main(String args[]) {

StrangeCalc strangeCalc = new StrangeCalc();

System.out.println("42.7 + 47.8 = " + strangeCalc.sum(42.7, 47.8));

System.out.println("42.7 x 47.8 x 2= " +
strangeCalc.multiply(42.7, 47.8, 2));

System.out.println("The maximum between 42.7, 47.8, 50, 2, 8, 89 is " +
strangeCalc.maximum(42.7, 47.8, 50, 2, 8, 89));

System.out.println("The minimum between 42.7, 47.8, 50, 2, 8, 89 is " +
strangeCalc.minimum(42.7, 47.8, 50, 2, 8, 89));

103

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

Solution 4.w)

The requested code could be the following:

import java.util.*;
public class Exercise4Z {

public static void main(String args[]) {
Scanner scanner = new Scanner (System.in);
System.out.println("Type an operand, then press enter " +
"(add other operands repeating this operation). \nWhen you are " +
"finished choose the operation to be performed, then press enter.");
printOperationsTable();
String temp;

String operandsString = "";

while (isNotOperation(temp = scanner.nextLine())) {
operandsString += temp + "-";

}

if (isNotOperation(temp)) {
System.out.println("Operation code error!");

}

String[] operandsArray = operandsString.split("-");

double[] operands = new double[operandsArray.length];

for (int i = 0; i < operandsArray.length; i++) {
operands[i] = Double.parseDouble(operandsArray[i]);

}
double result = performOperation(operands, temp);
System.out.println("Result = " + result);
3
private static boolean isNotOperation(String line) {
if (line.equals("+") || line.equals("x") || line.equals("u") ||
line.equals("m")) {
return false;
3
return true;
3

private static double performOperation(double[] operands, String operation) {
StrangeCalc strangeCalc = new StrangeCalc();
switch (operation) {

case "+":

return strangeCalc.sum(operands);
case "x"

return strangeCalc.multiply(operands);
case "u":

return strangeCalc.maximum(operands);
case "m"

104

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

return strangeCalc.minimum(operands);
default:
System.out.println("Operation specified " + operation +
" invalid!");
System.exit(1);
return Double.NaN;

}

}

private static void printOperationsTable() {
System.out.println("'+' : sum");
System.out.println("'x' : multiply");
System.out.println("'u' : maximum");
System.out.println("'m' : minimum");

}

We have decided to have the user specify all the operands, and then execute the operation when
a possible operator is specified. Designing a solution to the problem was not trivial at all.

Also in this case, we have not managed (it was not required) the possible incorrect use of the
program by the user, because it is too demanding for the notions that we have studied so far.
With the exception handling that we will study in Chapter 9, we will find simple solutions.
The critical point of the code concerns the management of the input, which must be analyzed
and transformed into data types that are used to perform our operations (double). Unfortu-
nately, we are missing a very important topic that we have not yet studied: the collections
(which we will examine in more detail in chapter 18, but we will also introduce them in chapters
8 and 12). Without this topic, to store the various operands specified by the user, we had use a
string (operandsString) that contained the various operands separated by the dash symbol.
Then with the split() method (see the String class documentation), we obtained an array
of operands in the form of a string (operandsArray). Then we instantiated an array of double
named operands of the same size as operandsArray, and filled it with double-type operands
after converting them using the static parseDouble() method of the Double class.

A rather artificial solution, but it worked.

Here is an example of application execution:

Type an operand, then press enter (add other operands repeating this operation).
When you are finished choose the operation to be performed, then press enter.

'+' 1 sum

'x' @ multiply

'u' @ maximum

'm' @ minimum

105

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

e
Solution 4.x)

The required code could be the following

import java.util.*;
public class HeadsOrTailsGame {
public static void main(String args[]) {

System.out.println("Heads or Tails?");
Scanner scanner = new Scanner(System.in);
String input = scanner.nextLine();

if ("heads".equals(input)) {
System.out.println("Ok, tossing the coin...");
HeadsOrTails headsOrTails = new HeadsOrTails();
String result = headsOrTails.getHeadsOrTails();
System.out.print("It's " + result + "...");
System.out.println("Heads".equalsIgnoreCase(result)? "you win!"

"you loose!");

} else if ("tails".equals(input)) {
System.out.println("Ok, tossing the coin...");
HeadsOrTails headsOrTails = new HeadsOrTails();
String result = headsOrTails.getHeadsOrTails();
System.out.print("It's " + result + "...");
System.out.println("Tails".equalsIgnoreCase(result)? "you win!"

"you loose!");

} else {
System.out.println("I'm sorry, you can only write heads or tails,"
+ " try again...");
System.out.println("Program terminated... bye!");
}

The algorithm implemented seems to work, unfortunately the same code is repeated several
times. For now, it’s okay because we’ve achieved our goal, but in the next chapters we’ll try to
improve the quality of our code.

106

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

Solution 4.y)

The required code could be the following

import java.util.*;

public class HeadsOrTailsGame {
public static void main(String args[]) {

System.out.println("Let's play heads or tails,

+ " want to
Scanner scanner

do?");
= new Scanner (System.in);

String numberOfAttemptsString = scanner.nextLine();
int numberOfAttempts = Integer.parseInt(numberOfAttemptsString);

int counter = 1;

var numberOfWinningAttempts = 0;

var numberOfLosingAttempts = 0;

String message = "";

System.out.println("You have chosen to do "+ numberOfAttempts

+" attempts.

..let's begin!");

while (counter <= numberOfAttempts) {
System.out.println("Attempt number " + counter);
System.out.println("Heads or tails?");
String choice = scanner.nextLine();

if ("heads".

equalsIgnoreCase(choice)) {

System.out.println("Ok, tossing a coin...");
HeadsOrTails headsOrTails = new HeadsOrTails();
String result = headsOrTails.getHeadsOrTails();
counter++;

System.out.print("It's "+ result + "...");

if ("heads".equalsIgnoreCase(result)) {

} else {

}

message = "you win!";
numberO0fWinningAttempts++;
message = "you lose!";

numberOfLosingAttempts++;

} else if ("tails".equalsIgnoreCase(choice)) {
System.out.println("Ok, tossing a coin...");
HeadsOrTails headsOrTails = new HeadsOrTails();
String result = headsOrTails.getHeadsOrTails();
counter++;

System.out.print("It's "+ result + "...");
if ("tails".equalsIgnoreCase(result)) {

} else {

message = "you win!";
numberO0fWinningAttempts++;

message = "you lose!";
numberOfLosingAttempts++;

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

how many attempts you"

107

Chapter 4 Exercise Solutions

} else {
message = "I'm sorry, you can only write heads or tails, try"
+ " again...";
}
System.out.println(message);
}
message = "You win " + numberOfWinningAttempts + " times, and lost "

+ numberOfLosingAttempts + " times, so...";

if (numberOfWinningAttempts > numberOfLosingAttempts) {
message += "you win the game! Congratulations!";

} else if (numberOfWinningAttempts < numberOfLosingAttempts) {
message += "you lose the game! Ah ah!";

} else {
message += "you draw the game! Try again!";

}

System.out.println(message);

}

The code is quite understandable, and the reader should be able to interpret it. Note that we
have used the equalsIgnoreCase() method of the String class to make comparisons without
taking uppercase and lowercase letters into account. Furthermore, we can note the manage-
ment of the counter variable, which is increased only when the launch is actually executed,
but not when the launch is not executed if the user input is not compatible with the logic of the
program.

Solution 4.z)

Let’s insert the required method (in bold) into the PhoneBook class:

public class PhoneBook {
public Contact [] contacts;
public PhoneBook () {
contacts = new Contact[]{
new Contact("Claudio De Sio Cesari", "13, Java Street",
"131313131313"),
new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),
new Contact("Gennaro Capuozzo", "1, Four Days of Naples Square",
"1141444321")};

}

public Contact[] searchContactsByName(String name) {
Contact []foundContacts = new Contact[contacts.length];
for (int 1 = 0, j = 0; i < foundContacts.length; i++) {
if (contacts[i].name.toUpperCase().contains(name.toUppercCase())) {
foundContacts[j] = contacts[i];
Jt+;

108

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 4 Exercise Solutions

}
}

return foundContacts;

}

The algorithm is not trivial, and also uses a for loop that uses two indexes (i and j), which
are used for the two arrays involved. Note that the returned array (foundContacts) will be the
same size as the contacts array, even if its elements may not be initialized. Also note that be-
fore using the contains() method of the String class to check if a contact name contains the
name method parameter, we used the toUpperCase() method to make a non-case-sensitive
comparison.

The SearchContacts class requested, could be:

import java.util.Scanner;

public class SearchContacts {
public static void main(String args[]) {
System.out.println("Search Contacts");
System.out.println();
var phoneBook = new PhoneBook();
System.out.println("Enter name or part of the name to be searched");
Scanner scanner = new Scanner (System.in);
String input = scanner.nextLine();
Contact[] foundContacts = phoneBook.searchContactsByName(input);
System.out.println("Contacts found with name containing \""
+ input + "\"");
for (Contact contact : foundContacts) {
if (contact != null) {
contact.printDetails();

}

Note that the elements of the returned array are printed, only if different from null.

109

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter S
Exercises

Real Development with Java

Here you will find many exercises a little different from the usual programming exercises.
Learning to program with objects is a daunting task, but once you understand how to approach,
you can get unimaginable results.

Exercise 5.a) JShell, True or False:

1. JShell is a program located in the bin directory of the JDK, like the java and javac tools, and
we can call it directly from the command line, because we have correctly set the PATH
variable to the bin folder to which it belongs.

2. JShell is an IDE.
3. A package cannot be declared in a JShell session.

4. The termination symbol “;” of a statement, can be omitted only if we write a Java
statement on a single line.

5. Declaring the same variable twice is possible, because JShell follows different rules than
the compiler. The last variable declared will overwrite the previous one.

6. If we declare a variable of type String without initializing it, it will be initialized
automatically to null.

7. Itis not possible to declare an interface in a JShell session.

111

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercises

8. The abstract modifier is always ignored within a JShell session.
9. It is not possible to declare a main() method in a JShell session.

10. You can declare annotations and enumerations in a JShell session.

Exercise 5.b) JShell Commands, True or False:

To end a JShell session, type the command goodbye.
. All JShell commands must have the symbol \ as prefix.

. The commands help and ? are equivalent.

A W N B

. The history command shows all the snippets and all the commands executed by the
user in the current session. Next to the snippets there is a snippet id that allows you to
recall the corresponding snippet.

5. The list command shows all the commands entered by the user in the current session.
6. The /types -all command will list all the variables declared in the current session.

7. The reload command will cause all instructions executed in the current session to be
executed again.

8. The drop command can delete a certain snippet by specifying its snippet id.

9. If we specify the /set start JAVASE command, we will import all the Java Standard
Edition packages into this and all other future JShell sessions.

10. With the command /! we recall the last edited snippet, be it valid or invalid.

Consider the following lines edited within a JShell session:

jshell> public int a;
a ==> 0

jshell> private String a
a ==> null

jshell> /reset
| Resetting state.

jshell> /list

What will be the output of the final 1ist command?

112

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercises

Exercise 5.d)

Considering all the instructions of the previous exercise, what will be the output of the follow-
ing command?

jshell> /history

Exercise 5.e)

If we wanted to open in a JShell session the HelloWorld.java file (created in the first chapter)
which is in the current directory, what command should we execute?

/save HelloWorld. java
/retain HelloWorld. java
/reload HelloWorld. java
/open HelloWorld. java
/start HelloWorld. java
/env HelloWorld. java

/!

N oo s wpN R

Exercise 5.1)

Once the HelloWorld.java file is opened in a JShell session, how can we have the Hello World!
string printed?

Exercise 5.g)

Which command we need to execute if we want to copy the HelloWorld.java file opened in the
Exercise 5.e to the C: /myFolder folder?

/save HelloWorld. java

/retain HelloWorld. java

/save HelloWorld2. java

/save C:/myFolder/HelloWorld. java

Mo W NP

/save -start start C:/myFolder/HelloWorld. java

113

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercises

6. /env C:/myFolder/HelloWorld. java
7. /! C:/myFolder/HelloWorld. java

Exercise 5.h) JShell Auxiliary Tools, True or False:

1. In a JShell session it is possible to declare a variable without specifying a reference.

2. In a JShell session it is possible to declare a reference without specifying the reference
type.

3. In a JShell session it is possible to write a value, then with the TAB key to automatically
infer the type of the variable to JShell, and then write the name of the reference.

4. While declaring a reference to a type that is not imported, it is possible to have JShell
suggest a list of possible imports to use for the type, by simultaneously pressing the SHIFT
and TAB keys, release them and then press the v key.

5. The /edit command will open the Notepad++ program

6. In a JShell session the simultaneous pressing of the CTRL - SPACEBAR keys, causes the
auto-completion of the code you started writing, or in the case of more options available,
the choice between them.

7. In aJShell session, pressing the CTRL - E keys at the same time, causes the cursor to move
to the end of the line.

8. In a JShell session, pressing the ALT - D keys at the same time, causes the word to be
deleted to the right of the cursor.

9. The /set feedback silent command, causes JShell to avoid printing the analysis
messages on the written code.

10. Writing System and pressing the TAB key twice, JShell will show us the documentation
of the System class.

The use of an IDE implies (choose all the answers that are believed to be correct):

1. Initial slowdown in learning development, because it requires the study of the same
IDE.

114

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercises

. The possibility of using a debugger.
. The ability to integrate with other development tools, databases or application servers.

. The possibility of using an advanced editor that allows us to automate the creation of
programming constructs and use code refactoring techniques.

. The inability to use packages, which must be managed from the command line.

Exercise 5.j)

Which of the following statements are correct?

1. From the version 10 of Java we can directly launch a source file containing a public class.

. If we declare multiple classes within the same file, only one must be public in order to
compile the file.

. If we declare multiple classes within the same source file, only one must be public in
order to launch the source file.

. If we declare multiple classes within the same source file, only one must contain the
main() method.

. If we declare multiple classes within the same source file, the first must contain the main ()
method.

Exercise 5.k)

Which of the following statements are correct?

1. When we launch a source file, no .class file is generated.

2. Before a source file is executed, it is compiled by the JVM in memory.

3. You can launch a shebang file from the Windows command prompt.

4. It is possible to pass parameters to a shebang file

Exercise 5.1)

The architecture takes care of (choose all the answers you think are correct):

1. To define UML activity diagrams that model the functionalities of the system.

115

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercises

2. Improve software performance.
3. To optimize the use of resources by the software.

4. To optimize the partitioning of the software in such a way as to simplify the installation
procedure.

Exercise 5.m)

A deployment diagram (choose all the statements that you think are correct):

It is a static diagram.
. Show application execution flows.
. Shows how hardware nodes host software components.

. Highlight the dependencies between software components.

i A W N B

. The main element of the diagram is a node, which is represented by a rectangle with two
small rectangles emerging from the upper left corner.

Exercise 5.n)

We stated that the basic knowledge of topics such as XML and database, is essential for working
in an IT company. This is because almost all of the applications use these two technologies in
some way. If you work at a web application, what are the basic knowledge you need to have?

Exercise 5.0)

Briefly define the concepts of client, server, standalone application, mobile, web, web client,
web server and enterprise application.

Exercise 5.p)

Define the tasks of the following corporate roles:

1. Project manager
2. Business analyst
3. IT manager

4. Release manager

116

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercises

5. DBA

6. Graphic designer

Exercise 5.q)

Defining what is an object-oriented methodology.

Exercise 5.r)

Which of the following statements are true about UML use case diagrams?

1. The class symbol cannot be used in the UML use case diagram.
2. Ause case is represented with a rectangle in UML.

3. The use case diagram is a static diagram, in fact it does not contain information regarding
the timeline.

4. The actors of the use case diagram represent the users of the system, and therefore natu-
ral persons.

5. A use case can be connected to multiple actors.

Which of the following statements are true?

1. A use case scenario does not contain conditions.
2. Scenarios can be described with an activity diagram as well as plain text.
3. All possible scenarios should be described for each use case.

4. The description of the scenarios allows us to discover any flows, before even writing the
code.

5. A deployment diagram shows the interaction between the user and the system.

6. Candidate classes are the fundamental classes that will surely be implemented in our
program.

Exercise 5.t)

Which of the following statements are true about UML sequence diagrams?

117

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercises

=

An activity diagram allows us to simulate a scenario, but using objects.
. The activity line of an object is represented by a dotted line.
. Messages represent methods.

. In the activity diagram, it is possible to represent an actor.

oo & W N

. The names of the objects in a sequence diagram are represented with the syntax
objectName:ClassName, but one between the name of the object and the name of the
class can be omitted.

Exercise 5.u)

Problem statement: create an authentication program that asks the user for user- @@
name and password, and guarantees access to it (just printing a welcome message

with the name of the user) if the credentials entered are correct. The system must support au-
thentication for at least three username and password pairs.

Perform the use case analysis and identify the various use cases, following the advices of the
sections 5.5.1. and 5.5.1.1.

(There are various software tools that support UML diagrams
(https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools). Each
of them has its philosophy and its complexity. You should choose one
sooner or later (perhaps after having made some comparisons), al-
though for now it is fine to use a sheet of paper, a pencil and an eraser.
Choosing a tool, understanding how it works, etc. takes some time.

Identify the scenarios of the use cases of the previous exercise by following the
advices of the section 5.5.1.2.

@@
@@

Let’s continue the previous exercise following the process described in section
5.5.2. Being a simple desktop application, it seems superfluous to create a deploy-
ment diagram. But if we think about how we can one day reuse a part of this application (we
are talking about an application that allows us to authenticate ourselves in a system, and that

118

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercises

we could also integrate in the case study introduced in Chapter 5 to authenticate in the Logos
application), then it could be very useful to have another point of view, that specifies the depen-
dencies between the various software components. So, let’s try to create a component diagram
(or a deployment diagram) by creating components that have significative names, and then we
will begin to think to classes. It must be just a trivial diagram (high level deployment diagram)
that enhances the possibility that a certain part of the software can be reusable.

Exercise 5.x)

So, we can identify the candidate classes, and consequently the key abstraction

Let’s continue the previous exercise following the process described in section 5.5.3. @

Exercise 5.y) @.
Let’s continue the previous exercise verifying the feasibility of the identified @

scenarios, creating sequence diagrams based on the interactions among the e/

identified classes, as described in the section 5.5.4.

Exercise 5.z)

Based on the steps taken in the 5.1, 5.5, 5.t, 5.u, and 5.v exercises, implement a @
working solution.

119

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter S
Exercise Solutions

Real Development with Java

Solution 5.a) JShell, True or False:

True.
. False.
. True.
True.

True.

o v h w NP

. True, uninitialized variables are initialized to their own null values. A string, being an
object, has its own null value.

7. False.
8. False.

9. False, it is possible to declare a main() method, but it will not have the same role of ini-
tial method as in an ordinary Java program.

10. True.

121

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

Solution 5.b)

=

A W N

False, we need to edit the exit command.

. False, all JShell commands must be prefixed with /.

True.

. False, it is true that the history command shows all the snippets and all the commands

executed by the user in the current session, but it is not true that next to the snippets
there is a snippet id.

. False, the 1ist command shows all the snippets entered by the user in this session, with

the respective snippet id next to them.

6. False, the /types -all command it will list all the types (classes, interfaces, enumer-
ations, annotations) declared in the current session. Rather, the / variables -all
command will list all the variables declared in the current session.

7. True.

8. True.

9. False, it is true that we will import all the Java Standard Edition packages in this session,
but not in future sessions (we should also have explicitly specified the -retain option).

10. True.

Solution 5.c)

The output of the 1ist command will be empty. In fact, the reset command will have reset all
the entered snippets.

Solution 5.d)

The output of the history command will be the following:

public int a;
private String a

/reset
/list
/history

122

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

Solution 5.e)

The correct command is:

4. /open HelloWorld. java

Solution 5.1)

We can only invoke the main() method in the following way:

jshell> HellowWorld hw = new HelloWorld();
hw ==> HelloWorld@52a86356

jshell> hw.main(null);
Hello World!

Note that since the args array is not used within the main() method, then we could pass it
null.

Even if we haven’t studied it seriously yet, the static modifier allows us to avoid instantiating
the object hw, and to execute the command directly using the class name:

jshell> HellowWorld.main(null)
e 1

Solution 5.g)

e e |

The correct command is:

4. /save C:/myFolder/HelloWorld. java

Solution 5.h)

1. True, that is an implicit variable, and JShell will automatically infer the type.

2. True, in this case we talk about forwarding reference, and JShell will create the reference,
but it won’t make it available until we declare its type as well. At that point the reference
will be replaced and initialized to null.

3. False, instead, press the SHIFT and TAB keys simultaneously, release them and then press
the v key (which stands for “variable”). JShell will infer the type of the variable, declare it
and position the cursor immediately after it to allow us to define the reference.

123

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

4. False, instead, press the SHIFT and TAB keys simultaneously, release them and then press
the i key (which stands for “input”).

5. False, the JShell Edit Pad program will be opened, unless first we have set as default edi-
tor Notepad++ using the command:

/set editor C:\Program Files (x86)\Notepad++\notepad++.exe

6. False, pressing the TAB key causes the auto-completion of the code you started writing,
or in the case of more options available, the choice between them.

7. True.
8. True.
9. True.
10. True.

Solution 5.i)

Only the fifth answer is false. An IDE, on the other hand, exempts the programmer from com-
plex package management.

Solution 5.j)

Only the second and fifth answers are true. In particular, the first one is false because it is pos-
sible to directly launch a source file from version 11, not from version 10.

Solution 5.k)

Only the third answer is false.

Solution 5.1)

Only the first answer is false. An architect in fact dedicates himself essentially to the non-func-
tional requirements of the application.

Solution 5.m)

The following statements are incorrect:

1. number 2: because no execution flow is shown.

124

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

2. number 5: it is true that the node is the main element of the diagram, but is represented as
a three-dimensional cube. The description instead refers to the component element.

Solution 5.n)

If you work in the web area, you have basic knowledge about the HTTP protocol, HTML,
Javascript and CSS languages, libraries like Bootstrap, and frameworks like Spring, or Angular
JS and so on.

Solution 5.0)

By definition, a client is a program that requires services to another program called a server.
By definition, a server is a program that is always running, which provides services. A client and
a server usually communicate over the network, with a well-defined protocol.

Standalone applications (also called desktop applications) are run on desktops and laptops, and usu-
ally have a graphical interface.

Web applications are applications that have an architecture divided into a client part and a server
part.

A web client requests web pages, and coincides with the programs that we commonly call
browsers (Mozilla Firefox, Google Chrome and so on).

A web server is instead a server application that provides services available on the net.
Enterprise applications are an evolution of web applications, and usually provide more com-
plex services such as downloading resources, web services (i.e. communication applications
between heterogeneous systems using the HTTP protocol), services reporting, etc., and
therefore as an enterprise client can also have programs specially created to interact with the
enterprise server layer. The latter is in turn made up of various layers that use different technolo-
gies to fulfil various purposes.

A mobile application (often simply called an app) is an application that runs on mobile clients,
such as smartphones and tablets, and can even have a server counterpart.

Solution 5.p)

See section 5.4.4.

Solution 5.q)

An object-oriented methodology, in its most general definition, could be understood as a couple
consisting of a process and a modelling language.

In turn, a process could be defined as a series of indications regarding the steps to be taken to
successfully complete a project.

125

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

A modelling language is instead the tool that the methodologies use to describe (possibly in a
graphic manner) all the static and dynamic characteristics of a project. The modelling language
considered de facto standard is the UML.

Solution 5.r)

The only false answers are the number 2 and the number 4. In fact, as regards the statement
number 2, the only rectangle that is part of the syntax of the use case diagram, is the system
boundary, which usually surrounds the use cases and delimits the system. As for statement
number 4, in reality the concept of actor must be interpreted as “role”. A system user could also
be another system.

Solution 5.s)

Only the last two statements are false. In particular, the definition reported in statement number
5 is about the use case diagram, not the deployment diagram. Instead, the definition reported
in statement number 6 is that of key abstractions, not candidate classes.

Solution 5.t)

Only statement 2 is incorrect, as it reports the definition of an object’s lifeline, and not an
activity line.

Solution 5.u)

There is only one use case that we have called “Login” (see Figure 5.r.1). In fact, the interactions
that the user will have with the system are limited to activities related to authentication, such
as entering the username and password. Even with different types of flows that can be authen-
ticated, the final task is solely to authenticate

Authentication

Lagin

User

Figure 5.u.1 - Use case diagram.

126

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

In our case we have found a single use case, but this does not mean
that it will always be this way, and therefore that we must avoid the
use case analysis! It is also essential for the most trivial programs

Solution 5.v)

The analysis of the scenarios is very subjective. The moment we write it, we are deciding “what”
the application must do, something far from obvious.

Let’s start from the prerequisite that we have not yet studied the graphical interfaces (to which
the last two chapters are dedicated) and therefore we have to think about creating a program
that works only from the command line.

Another prerequisite is that the system has statically preloaded some valid username and pass-
word pairs.

Main Scenario

The system asks the user to enter the username.
. The user enters the username.
. The system verifies that the username is valid and asks to enter the password.

. The user enters the password.

i A W N B

. The system checks that the password is valid and responds with a message confirming
authentication, using the real name of the user who authenticated.

ﬁ&s already said, this is only one of the possible solutions. We could
also think of specifying together username and password, validating
authentication with a captcha code, warning the user if the CAPS LOCK
key is inserted, masking the password characters with asterisks,
asking the user if he wants to memorize the username for the next
login and so on. We have chosen a simple interaction.

Scenario 2

1. The system asks the user to enter the username.

2. The user enters the username.

127

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

3.

The system does not recognize the entered username, prints a message and returns to
step L.

Scenario 3

i A W N R

6.

The system asks the user to enter the username.

. The user enters the username.
. The system verifies that the username is valid, and asks to enter the password.
. The user enters the password.

. The system does not recognize the password entered, prints a message and returns to

step L.

By defining these three trivial scenarios it is much clearer what we have to do.

Solution 5.w)

With the diagram of Figure 5.t.1, we highlight how we will create a software component that
contains the classes that perform the authentication, separated from the class that contains the
main() method. The only tool we currently know to separate classes is packages, so we will use
different packages.

Computer

AuthenticationLauncher Authentication

A

Contains a class with the main() methcﬁ

Figure 5.w.1 - Architecture of the application represented by a high level deployment diagram.

128

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

By consulting Appendix E, you can also learn how to create the JAR
file containing the classes of the authentication component. In this
way it will be easier to reuse it later as it is a single file. The Exercise
E.a, relative to that appendix, requires the creation of the JAR file
with the classes of this exercise.

Solution 5.x)

Following the process described in section 5.5.3, in order to find the list of key abstraction, we
must first draw up the list of candidate classes. Below is our list with related comments.

1. Authentication: it could be a class to which give the responsibility to manage the main
functionality of the application.

2. Login: it looks more like the name of the main application method. It could be a method
within Authentication or an object declared in Authentication.

. User: it could be the entity that contains the information for authentication.
. System: too generic, does not seem to be the right name for a class.

. Username: could be a property of the User class.

. Password: it could be a property of the User class.

. Name: could be a property of the User class.

0w N O 0 s~ W

. Verification: it could be an Authentication method, or an object declared in
Authentication.

9. Insertion: could define a method, but it does not seem a key abstraction.

10. Message: for now, it seems only a string, certainly not a key abstraction. This does not
exclude that it could become a class later.

11. Substitution: it could define a method, but it does not seem a key abstraction.

So, the list of key abstractions, for now, is limited to the only two classes in the list in bold:
Authentication and User. To these we add a LauncherAuthentication class which contains
only the main() method and which has the sole responsibility of starting the application by
instantiating the correct objects and recalling the methods appropriately.

129

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

(Remember that the choice of these classes, like the previous steps,
depend on experience, intentions, time available, predisposition,
concreteness and the mindset of the person performing the analysis.
There are thousands of solutions that can lead to development suc-
cess, each of which has its pros and cons. The advice is to orientate
(especially in the early days) on the simplest possible solution.

Solution 5.y)

Following the process described in section 5.5.4, we now need to give the superficial definition
of key abstraction, with interaction diagrams (see appendix G), i.e. collaboration or sequence
diagrams.

These two diagrams are equivalent, so that many UML tools allow you to transform a col-
laboration diagram into a sequence diagram and vice versa pressing a button. In particular, a
sequence diagram shows the interactions between the objects in a given period of time, em-
phasizing the sequence of messages that the entities exchange. A collaboration diagram, on the
other hand, as the sequence diagram shows the interactions between objects in a given period
of time, but emphasizes the structural organization of the interacting entities.

Since in this case it seems more interesting to emphasize the sequence of messages exchanged
between objects, we will use a sequence diagram to describe the scenarios described in the so-
lution of Exercise 5.s, using the objects described in Exercise 5.u. Since these latter objects are
only key abstractions, at this time we can also decide whether we need to create new classes,
add, modify or move methods, rename existing classes and so on. The diagram, with its “vision
from the top”, favors the identification of any incorrect situations, which can be improved or
failed.

In Figure 5.y.1 we have only found a flow consistent with that described in the main scenario,
using only the key abstraction identified in the previous exercise. The situation seen in this way
seems to work.

The application user runs the application using the LauncherAuthentication class. This calls
a method called login() on the Authentication class. From this point on, this method will
perform operations. First it calls the requestUsername() method that requests the username
from the user by printing a message, and waits for user input.

The application user runs the application using the LauncherAuthentication class. This calls
a method called login() on the Authentication class. From this point on, this method will
perform operations. First it calls the requestUsername() method that requests the username
from the user by printing a message, and waits for user input.

130

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

:AuthenticationLauncher

User
|

launch program

- - - = = - = - - - =]

insert username

Authentication

|
|
|
|
|
.

requestUsername()

|P

verifyUsername()

»
I

requestPassword()

Ib

verifyPassword()

login{)
e |
{ _'Insertusername’ _ _ _ _ _
e - >
| _ Onsertpassword” _ _ _ _ |
oo e === =
"Welcome user_name"
L

Figure 5.y.1 - Sequence diagram representing the main scenario.

(This method is internal, i.e. defined in the same class. This can be un-
derstood from the fact that the arrow that defines it, starts and ends
in the same class. In UML the call of a method is indicated by of an
“arrow” (which as a UML element is called a message) starting from
a certain object. The “arrow” points to the object where the method
called resides. So, an arrow that returns on the same object indicates
the call to an internal method.

Then once the user enters the username, the Authentication class will call an internal method
called verifyUsername(). This method will retrieve the user object from the user collection
that has been defined to represent the list of users (which we will implement through arrays).

This part was not represented in the diagram, to avoid make it too
complex to read. We could have added a known element to specify
our intentions, it would have been more correct, but we avoided since
we have had to explain the diagram with these few lines.

131

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

:AuthenticationLauncher :Authentication
' l
1
|
User I |
1 I
i — |
launch program > |
login()
. requestUsernamel()
>
"Insert username" I
- — — — — — — — — — — 4 4 - o T e -
insert usernarme verifyUsername()
------------- 1 TUS_EI’_HDT]CD_LIFI_EI"_ = I..
D b GHS—EFFLI;EF—HEIFHET "
R d - . -
—
b — .
Figure 5.y.2 - Sequence diagram representing the second scenario.
:AuthenticationLauncher :Authentication
! I
1
1
User | |
1 1
o — |
launch program > |
login
gind)] requestUsername()
>
"Insert username”
< ____________ _ e o o o o o e o e e -] |
| insertusername _ _ _ _ _ | d_ o _______ ~| |erfyUsername() >
requestPassword()
"Insert password" |
{ ____________ o o = - E ______
Insert password _ _ _ _ _ | d o L ___ = verifiyPassword() .
"Authentication failed"
= — = — = = = = = - m 2t - = s e e e e e =T = o |
"Insert Username"
- L
T I

Figure 5.y.3 - Sequence diagram representing the third scenario.

So, even if the User object does not appear on the diagram, it is somehow involved. This is be-
cause in our mind, a user should define the username, password and name variables, and then

132

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

to check if there is a certain username, but also to see if a password is associated with a certain
username, a User object must be used.

The rest of the code is very simple to interpret. The internal method requestPassword() is
called, which asks the user for the password by printing a message, and waits for user input.
Then once the user enters the password, the Authentication class will call an internal method
called verifyPassword() (and even in this case the verification will be done using a User ob-
ject). Finally, the message “Welcome” is printed, specifying the name of the user who is authen-
ticated (which is taken from the User object used to validate the authentication).

We can see that for how we designed the diagram in Figure 5.y.2, and in the related scenario, the
username will be requested until a valid username is entered. The same goes for the password
as it is possible to observe in Figure 5.y.3, which shows a sequence diagram related to the third
scenario identified.

Solution 5.z)

The code that came out from our analysis is not exactly what we expected:

package com.claudiodesio.authentication;
import java.util.*;
public class Authentication {

private static final User[] users = {
new User("Daniele", "dansap", "music"),
new User("Giovanni'", "giobat", "science"),
new User("Ligeia", "ligder", "arte")

b

public static void main(String args[]) {
Scanner scanner = new Scanner (System.in);
while (true) {
System.out.println("Insert username.");
String username = scanner.nextLine();
User user = verififyUsername(username);
if (user == null) {
System.out.println("User not found!");
continue;
}
System.out.println("Insert password");
String password = scanner.nextLine();

if (password != null && password.equals(user.password)) {
System.out.println("welcome " + user.name);
break;

} else {

133

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

System.out.println("Authentication failed");

}

private static User verifyUsername(String username) {
if (username != null) {
for (User user : users) {
if (username.equals(user.username)) {
return user;

}
b
}

return null;

}

When we wrote the code, we found some difficulties. The first was to implement the algorithm
described in the scenarios: we had to introduce an infinite loop and the break and continue
commands, not really the solution we expected.
Wehavealsotakenanotherdecisionincontrasttoouranalysis:deletetheLauncherAuthentication
class which should have contained only the main() method. This was because it seemed a forced
decision and lacked any use.

Another doubt arose when we had to verify the correctness of the username and password, as
we had not decided in the design phase if the verification had to take into account capital or
small letters.

WecouldnotevencreateaverifyPassword() methodcomplementarytotheverifyUsername(),
since if we had created a separate method we could not have used the break clause to exit the
infinite loop. In short, compared to the analysis we did, there were problems that we solved
directly with the code. But where did these problems come from? Why didn’t our process work
the way we guessed?

The answer is that essentially, we lack fundamental concepts that we have yet to study. There-
fore, this exercise will continue in the exercises of the next chapter to make it clearer and more
efficient. In particular, we have missed two basic steps: assigning responsibilities to the classes
we create, and creating a class diagram that helps us better distribute responsibilities between
classes. Each object must have a single responsibility, or several responsibilities closely related
to each other. Responsibilities will be implemented either as methods or as variables, and de-
fine roles that can be assigned to objects.

In any case the program we wrote works correctly. Although our analysis was not perfect, he
gave us some important indications. For example, the analysis of the scenarios was funda-
mental to understand what we had to do. And the interaction diagrams have also directed us

134

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 5 Exercise Solutions

towards the implementation solution (then partially disregarded).

After the experience with these exercises, if you were not able to solve
the exercises 4.m, 4.q, 4.r, 4.s, 4.t, 4.u, 4.ve 4.z of the previous chapter,
you could try to redesign them from scratch and try to find a solution
by yourself, maybe different from the one proposed.

135

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6
Exercises

Encapsulation and Scope

It’s time to slowly discover the right object-oriented mentality.

< After each exercise, we recommend at least to consult the solution. ,

Exercise 6.a) Object Orientation Theory, True or False:

1. The Object Orientation has been created only a few years ago.

2. Java is a non-pure object-oriented language, SmallTalk is a pure object-oriented lan-

3.

guage.
All object-oriented languages support object-oriented paradigms in the same way. It can
be said that a language is object-oriented if it supports encapsulation, inheritance and
polymorphism; in fact, other paradigms such as abstraction and reuse also belong to
functional philosophy.

. Applying abstraction means focusing only on the important characteristics of the entity

to be abstracted.

. The reality that surrounds us is a source of inspiration for the object-oriented

philosophy.

137

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

. Encapsulation helps us interact with objects; abstraction helps us interact with classes.

N O

. Reuse is favored by the implementation of other object-oriented paradigms.

. Inheritance allows the programmer to manage multiple classes collectively.

o

. Encapsulation divides objects into two separate parts: the public interface and the inter-
nal implementation.

10. To use the object, it is enough to know the internal implementation, it is not necessary
to know the public interface.

Exercise 6.b) Encapsulate and complete the following classes:

public class Driver {
private String name;

public Driver(String name) {
// set the name
}

}

public class Car {
private String stable;
private Driver driver;

public Car(String stable, Driver driver) {
// set the stable and the driver

}

public String getDetails() {
// return a descriptive string of the object
}
}

Keep in mind that the Car and Driver classes must then be used by the following classes:

public class RaceTest {
public static void main(String args[]) {
Race monteCarlo = new Race("Montecarlo GP");
monteCarlo.runRace();
String result = monteCarlo.getResult();
System.out.println(result);

}

public class Race {
private String name;

138

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

private String result;
private Car grid [];

public Race(String name) {
setName (name) ;
setResult("Race not finished");
createStartingGrid();

}

public void createStartingGrid() {
Driver one = new Driver("Joey");
Driver two = new Driver('"Dee Dee");
Driver three = new Driver('"Johnny");
Driver four = new Driver ("Tommy");
Car carNumberOne = new Car("Ferrari", one);
Car carNumberTwo = new Car("Renault", two);
Car carNumberThree = new Car("BMW", three);
Car carNumberFour = new Car("Mercedes", four);
grid = new Car[4];
grid[@] = carNumberoOne;

grid[1] = carNumberTwo;
grid[2] = carNumberThree;
grid[3] = carNumberFour;

}

public void runRace() {
int winnerNumber = (int)(Math.random()*4);
Car winner = grid[winnerNumber];
String result = winner.getDetails();
setResult(result);

}

public void setResult(String winner) {

this.result = "Winner of " + this.getName() + ":

}

public String getResult() {
return result;

}

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}

" + winner;

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

139

Chapter 6 Exercises

Exercise analysis

The RaceTest class contains the main() method and therefore defines the application execu-
tion flow. It is very readable: we can instantiate a race object and call it “Montecarlo GP”, run
the race, request the result and print it.

The Race class, on the other hand, contains few simple methods and three instance variables:
name (the name of the race), result (a string containing the name of the winner of the race if it
was run) and grid (an array of Car objects that participate to the race).

The constructor takes as input a string with the name of the race that is appropriately set.
Furthermore, the value of the result string is set to “Run not completed”. Finally the method
createStartingGrid() is called.

The createStartingGrid() method instantiates four Driver objects by assigning them names.
It then instantiates four Car objects by assigning them the names of the stables and their driv-
ers. Finally instantiate and initialize the grid array with the newly created cars. A race, after be-
ing instantiated, is ready to run.

The runRace() method contains code that needs to be analyzed more carefully. In the first
line, in fact, the method random() of the class Math is called (it belongs to the java.lang pack-
age that is imported automatically). The Math class abstracts the concept of mathematics and
will be described later in this book. It contains methods that abstract mathematical functions,
such as the square root or the logarithm. Among these methods we use the random() method
which returns a randomly generated double type number, between @ and 0.9999999... (i.e. the
double number immediately smaller than 1). In the exercise we multiplied this number by 4,
obtaining a random double number between 0 and 3.999999999... This is then converted to in-
teger, so all decimal digits are truncated. We therefore obtained that the variable winnerNumber
stores at runtime a randomly generated number, between @ and 3, or the possible indexes of
the grid array.

The runRace() method then generates a random number between @ and 3. It uses it to iden-
tify the Car object of the grid array that wins the race, and then set the result using the
getDetails() method of the Car object (which the reader will write).

All other methods of the class are accessor and mutator methods.

Exercise 6.c) Access Modifiers, static, and Packages, True or False:

1. Aclass declared as private cannot be used outside the package in which it is declared.
2. The following class declaration is incorrect:

public static class Class {...}

140

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

3. The following class declaration is incorrect:

protected class Classe {...}

4. The following method declaration is incorrect:

public void static metodo () {...}

5. A static method can only use static variables and, to be used, it is not necessary to
instantiate an object from the class in which it is defined.

. If a method is declared static, it cannot be called outside of its package.
A static class is not accessible outside the package in which it is declared.

. Aprotected method is inherited in every subclass whatever its package.

© ® N O

. A static variable is shared by all instances of the class to which it belongs.

10. If we don’t prefix modifiers to a method, the method is only accessible within the same
package.

Exercise 6.d) Object Orientation in Java (Practice), True or False:

1

2. Encapsulation implementation involves the use of the set and get keywords.

. A static method must be also public.

3. To use the encapsulated variables of a superclass in a subclass you must declare them at
least protected.

4. Declared private methods are not inherited in subclasses.
5. An instance initializer is invoked before constructors.

6. A private variable is directly available (technically as if it were public) using the dot op-
erator, to all instances of the class in which it is declared.

7. The keyword this allows you to reference the members of an object that will be created
only at runtime within the object itself.

8. The keyword this is always optional.

9. The keyword this allows you to call a constructor, from a method of the same class with
this() syntax. However, this must be the first instruction of the method.

10. The singleton pattern allows you to create a class that can be instantiated only once.

141

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

Abstract the concept of Coin with a class (complete with comments). We assume that all the
coins will have the EURO as the currency, and will have the encapsulated value variable. Does
it make sense to create a coin without specifying its value? Create a constraint so that coins must
be instantiated with a value.

It is convenient to print a sentence in every important method to
be able to verify the successful execution of our code. For example,
when a currency is instantiated. This advice also applies to the next
exercises.

Exercise 6.1)

Considering the Coin class created in the previous exercise, is it correct to create the value
variable encapsulated with the methods setValue() and getValue()? Change the class in such
a way as to best abstract the class.

Exercise 6.8)

Create a CoinsTest class with a main() method that instantiates a 20 cents coin and a 1 cent
coin and executes the application. Is there anything wrong with what is printed? If so, change
the code so that the prints are without grammatical errors.

Exercise 6.h)

In the CoinsTest class you can also instantiate a 1 Euro coin. Probably there will be another
bug when printing, fix it. Also add a getDescription() method in the Coin class, that returns a
descriptive string of the current coin.

Exercise 6.i)

Create a class (complete with comments) Purse that abstracts the concept of purse. @ﬁ
This must be able to contain a maximum of 10 coins (the Coin class should already

have been created in the previous exercise). For now, only create a constructor that allows you
to set the coins to be contained.

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

Also in this case, it is advisable to print the description of the actions
being invoked.

Exercise 6.j)

In the CoinsTest class, you can also instantiate a Purse object with 8 coins and another one
with 11 coins, check that everything works correctly. Update the class comments if necessary.

Exercise 6.k)

Create an add() method within the class that allows you to add a coin to the purse. Provide the
appropriate consistency checks.

Exercise 6.1)

Create a state() method that prints the current contents of the purse.

Exercise 6.m)

Create a withdraw() method in the class that allows you to get (and then remove) a coin from
the purse. Provide the appropriate consistency checks.

Exercise 6.n)

Modify the CoinsTest class so as to test the created classes as completely as possible.

Exercise 6.0)

Encapsulate the User class of the 5.z exercise, and modify the Authentication class accord-
ingly to keep everything working.

Exercise 6.p)

Draw a class diagram containing the two User and Authentication classes modified in the pre-
vious exercise that show their variables and their methods. See Appendix G containing a ref-
erence schema for UML syntax. In particular for static members (which must be underlined),
and the aggregation notation that exists between the Authentication container class and the
User contained class. Also use multiplicity notation. Also include the two classes in package
notation.

14

W

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

Exercise 6.q)

We have already noted at the end of Exercise 5.z, that the implemented code solu- @@
tion did not satisfy us. In fact, during our analysis we had identified an execution

flow based on different classes and methods, as shown in the sequence diagrams of the solu-
tions of the 5.v exercise, which we report for convenience.

:AuthenticationLauncher :Authentication

; T
1
User 1
1 1

]
]
1
1
1
.

launch program >
login
gind) =" requestUsername()
>
"Insert username"
B -
i verifyUsername
_ insert username _ _ _ _ _ | 1 _____ = fyl 0__,
re?uestPasswordff .
"Insert password"
- - - === == == =4 4 - ¥ password_ _ _ _ _]
insert password i
Insert password _ _ _ _ - e =~ %,
"Welcome user_name"
j - - - - - - - - - - =3} - == === R
L
T 1
! 1
| 1 1

Figure 6.q.1 - (Equals to Figure 5.v.1) Sequence diagram that represents the main scenario.

AuthenticationLauncher tAuthentication

1 1
| |
| |
' I

|

User
|
launch program
o login{)
requestUsername()
3
"Insert username"
el Tl B l
| insert username _ _ _ _ _ | A verifyUsernamel() .
"User not found" |
<= - - == === === 1 - G = r; === -
nsert username
= = = = = s s s s s =T =

Figure 6.q.2 - (Equals to Figure 5.v.2) Sequence diagram that represents the second scenario.

144

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

:AuthenticationLauncher Authentication

! T
1
User !
1 1

1
1
1
1
launch program 1
—

= requestUsername()
5

- - - - — - - - - - - g gl

insert username verifylUsername
_____________ | S) K7 0

requestPassword .
"Insert password" I
I 4o _nser Jpassword” _ _
insert password verifiyPassword
LT Rt | —
uthentication faile
S s I el e Rt

T 1

Figure 6.q.3 - (Equals to Figure 5.v.3) Sequence diagram that represents the third scenario.

Create a class diagram that correctly represents the classes needed to make the described
scenarios work with the sequence diagrams, supporting themselves with the syntax reference
of the Appendix G. Furthermore, transform the Authentication class into a singleton, as
described in section 6.9.6.

It is also possible to define new methods or variables if appropriate. If you can’t define the
details of the class (for example return types, names or types of parameters and so on, simply
don’t define them).

Obviously, the User class must remain encapsulated.

Exercise 6.r)

Once we implement the solution of the previous exercise, we should have an @
Authentication class with different methods and responsibilities. It has a single

public method that manages the flow (login()) and several private methods, some verify the
correctness of the data entered by the user (using the instance variable users) and others print
messages to the user.

An object that is called Authentication is rightly responsible for:

1. Manage the application execution flow.

145

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

2. Check the correctness of the data entered by the user.
3. Contain the list of users.

4. Print messages.

Responsibilities identify the abstraction of the class, and this class is certainly too charged with
responsibilities. Let’s then evolve our class diagram: we try to abstract the Authentication
class, in the most correct way and find other abstractions (classes) that can implement more
specific responsibilities. Let’s start by finding a class that contains the data we want to work with.
What do we call it? What variables and methods should it contain? Since we have to think in
an object-oriented way, let’s try to make it as reusable as possible, but also consistent with the
context in which we are defining it.

Exercise 6.s)

Continuing the previous exercise, modify the class diagram by identifying a class that has the
responsibility to print the messages on the screen.

Exercise 6.1)

Continuing the previous exercise, is the Authentication class now abstract correctly? Confirm
or modify the diagram again.

Exercise 6.u)

Based on the conclusion of the previous exercise, implement the code solution closest to the
planned solution. Compared to the solution we had reached in exercise 5.z, we should have
the same functionality, but a simpler code with which to interact, better abstract, and more
reusable.

Exercise 6.v)
Given the following class:
public class BluRay {
int maxGBSize = 25

byte[] content;

BluRay() {
}

void setContent(byte[] bytes) {

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

this.content = content;

}

byte[] getContent() {

return content

b
b

add the most appropriate modifiers for each member.

Exercise 6.w)

Which of the following static import declarations are valid:

1. import
import
import
import

import

® v AW N

import

static
static
static
static
static

static

java.
java.
java.
java.
java.

java.

lang.

lang
lang
lang
lang
lang

*5

.Math;

.Math.*;
.Math.PI;
.Math.random();

.Math.random;

Exercise 6.x)

What is the output of the following program?

public class InitTest {

{

System.out.println("Initializer");

}

static {
System.out.println("Static Initializer");

}

public InitTest () {
System.out.println("Constructor");

}

public void method() {
System.out.println("Method");

}

147

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

public static void staticMethod() {
System.out.println("Static Method");
new InitTest().method();

}

public static void main(String args[]) {
InitTest.staticMethod();

}

Exercise 6.y)

Create an encapsulated Book class, so that it abstracts the concept of a book that can be sold in
a bookstore. Among the fields defined by the Book class, there must be the genre field (under-
stood as a literary genre). Let’s make it possible for a book to be associated with only a literary
genre included between a set of predefined literary genres, for example the set consisting of the
genres: novel, thriller, essay, manual. Create a class that tests that Book objects work correctly.

Exercise 6.z)

Taking into account the previous exercise, create also the Bookcase class (under- @@
stood as a bookcase inside a bookstore). Each bookcase must be dedicated to a

certain literary genre included in the list of genres chosen in the previous exercise, and there-
fore must contain only books of the same genre. In the Bookcase class there must be a method
called addBook (Book book), which allows you to add a book with the correct genre to the book-
case. Also create the Bookstore class. A bookstore must contain only one bookcase for each
genre, and therefore it is necessary to prevent that two bookcases with the same genre can be
added. In addition, the Bookstore class must implement the Singleton pattern. Finally create
a BookstoreTest class, which creates an object of type Bookstore adding to it objects of type
Bookcase to which have been added objects of type Book. Verify that two bookcases with the
same genre cannot be added to the bookstore.

Exercise 6.aa) Static import, True or False:

Static imports allow you not to reference imported static members. After statically importing a
variable, it is not possible to use an object reference to refer to it within the code.
The following import is incorrect because java.lang is always implicitly imported:

import static java.lang.System.out;

It is not possible to import nested and/or anonymous classes statically. In some cases, static

148

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercises

imports may worsen the readability of our files.

Considering the following enumeration:

package mypackage;

public enum MyEnum {
A,B,C

}

the following code is valid:

import static mypackage.MyEnum. *;
public class MyClass {
public MyClass(){
out.println(A);
3

}

If we use static imports, we could also import two static members with the same name. Their

use within the code would lead to errors in compilation, if we do not use references.

Shadowing is a phenomenon that could occur if static imports are used.

Essentially the usefulness of static imports lies in the possibility of writing less code that is

probably superfluous.

It makes no sense to statically import a variable if it is then used only once within the code.

It is not recommended to use static imports to import enumeration elements.

149

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6
Exercise Solutions

Encapsulation and Scope

Solution 6.a) Object Orientation Theory, True or False:
1.
2.
3
4.
S.
6.
7.
8.
9.

10. False, you need to know the public interface and not the internal implementation.

False, has existed since the 1960s.

True.

. False, each language provides support for the various paradigms in different ways.
True.

True.

True.

True.

True.

True.

151

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Solution 6.b)

The code could be similar to the following:

public class Driver {
private String name;

public Driver(String name) {
setName (name) ;

}

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

3

public class Car {
private String stable;
private Driver driver;

public Car(String stable, Driver driver) {
setStable(stable);
setDriver(driver);

}

public void setStable(String stable) {
this.stable = stable;

}

public String getStable() {
return stable;

}

public void setDriver(Driver driver) {
this.driver = driver;

}

public Driver getDriver() {
return driver;

}

public String getDetails() {
return getDriver().getName() + " on " + getStable();

152

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Solution 6.c) Modifiers and package, True or False:

© ® N O GO A w NP

False, private cannot be used with a class declaration.

. True, static cannot be used with a class declaration.
. True, protected it is not applicable to classes.

. True, static must be positioned before the void keyword.

True.

. False, static it is not an access modifier.

False, static it is not applicable to classes.
True.
True.

10. True.

Solution 6.d) Object Orientation in Java (Practice), True or False:

1.
2
3
4.
S.
6.
7.
8

9.

False.

. False, these are not keywords but just a convention.

. False, they can be private and be used via the accessor and mutator methods.

True.
True.
True.
True.

. False, if there is ambiguity between names of instance and local variables, the keyword

this is fundamental.

False, only another constructor of the same class can use that syntax.

10. True.

153

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Solution 6.e)

The code could be similar to the following:

/**
* This class abstract the concept of Coin.

*

* @author Claudio De Sio Cesari

*/
public class Coin {
/**
* The currency is a constant set to EURO.
*/
public final static String CURRENCY = "EURO";
/**
* Represents the coin value in cents.
*/
private int value;
/**

* Constructor that takes as input the coin value.
*
* @param value ithe coin value.
*/
public Coin(int value) {
this.value = value;
System.out.println("Created a coin from " + value + " cents ");

}

/**
* Set the value instance variable.
*
* @param value contains the value at which the value
* of the instance variable value has to be set.
*/
public void setValue(int value) {
this.value = value;

3

/**
* Retrieves the value instance variable.
*

* @return

* the value instance variable
*/

public int getValue() {
return value;

}

154

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

A constructor is sufficient to specify the required constraint. Furthermore, the currency being
fixed for all the coins, has been declared as a static constant.

Solution 6.f)

In the current situation, where the specifications required only to create a class that has to al-
ways be instantiated with a value, the question could be ambiguous. However, having no other
explicit constraints, it is reasonable to think of having the constraints that exist in the real
world. A currency that has a specified value (let’s say 5 cents) can never change its value. So, the
setValue() method seems superfluous at least. So, it would be correct to remove it. It is also
advisable to declare the variable final to reinforce the concept of immutability. Below the
modified code:

/**
* This class abstract the concept of Coin.

*

* @author Claudio De Sio Cesari
*/
public class Coin {

/**
* The currency is a constant set to EURO.
*/
public final static String CURRENCY ="EURO";

/**

* Represents the coin value in cents.
*/

private final int value;

/**
* Constructor that takes as input the coin value.
*
* @param value ithe coin value.
*/
public Coin(int value) {
this.value = value;
System.out.println("Created a "+ value +" cents coin");

}

/**
* Retrieves the value instance variable.
*

* @return

* the value instance variable
*/

155

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

public int getValue() {
return value;

b
3

The code is more compact, but perhaps, at least for the first times, it is better to use the vari-
ables to better memorize the definitions.

Solution 6.g)

The code of the CoinsTest class could be the following:

public class CoinsTest {
public static void main(String args[]) {
Coin twentyCentsCoin = new Coin(20);
Coin oneCentCoin = new Coin(1);

}

By running this application the output will be:

Created a 20 cents of EURO coin
Created a 1 cents of EURO coin

But it would be more correct that in the second line the word “cents” was “cent”.
To solve this problem, we could modify the Coin class in the following way (we report only the
constructor responsible for printing and a utility method):

public Coin(int value) {
this.value = value;
System.out.println("Created a "+ formatMeasurementUnit(value) +
CURRENCY + " coin ");

}

private static String formatMeasurementUnit(int value) {
return value + (value == 1 ? " cent of " : " cents of ");
}

We have delegated to a new private utility method the formatting of a piece of the sentence to
be printed, using a simple ternary operator (see section 4.3.5), and we have fixed our bug. Now
re-running the CoinsTest class we will get the following output:

Created a 20 cents of EURO coin

Created a 1 cent of EURO coin

156

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Solution 6.h)

The CoinsTest class code should only be enriched with such an instruction:

Coin oneEuroCoin = new Coin(100);

The execution of this application will produce the following output:

Created a coin of 20 cents of EURO

Created a coin of 1 cent of EURO
Created a coin of 100 cents of EURO

But it would be more correct that in the third line “100 cents of EURO” was “1 EURO”.
To solve this problem, we could modify the Coin class in the following way (we report only how

to change the utility method):
private static String formatDescriptiveString(int value) {

String formattedString =" cents of ";
if (value == 1) {
formattedString =" cent of ";
} else if (value > 99) {
formattedString =" ";

value /= 100;
}

return value + formattedString;

}

We have modified the private utility method introduced in the previous exercise. It was not
possible to use the ternary operator, so we used an if construct, and we fixed our bug. Now re-
running the CoinsTest class we will get the following output:

Created a coin of 20 cents of EURO

Created a coin of 1 cent of EURO

The getDescription() method could therefore be coded in this way:

/**
* Retrieves the current coin description.
*
* @return
* the current coin description.
*/

public String getDescription() {
String description ="coin of "+ formatDescriptiveString(value)
+ CURRENCY;
return description;

157

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

And therefore, also the constructor could reuse this method in the following way:

public Coin(int value) {
this.value = value;
System.out.println("Created a "+ getDescription());

Solution 6.i)

The listing of the Purse class could be the following: @

/**

* Abstracts the concept of purse that can contain a limited number of coins.
*

* @author Claudio De Sio Cesari

*/

public class Purse {

/**

* An array that can contain a limited number of coins.
*/

private final Coin[] coins = new Coin[10];

/**
* Create a Purse object containing coins whose values are
* specified by the values varargs

*

* @param values

* a varargs of coin values
*/
public Purse(int... values){

int numberOfCoins = values.length;
for (int i = 0; i < numberOfCoins; i++) {
if (i >= 10) {
System.out.println(
"Only the first 10 coins were inserted!");
break;

}

coins[i] = new Coin(values[i]);

}

Note that we have used an array of 10 Coin objects (declared final), which will act as a container
for our coins. Also, we used a varargs values, to set the contents of the Purse. This will be handy
when we actually create coin purses.

If more than ten values are passed to the constructor, this will only set the first ten and print a
warning message.

158

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Solution 6.j)

The modified CoinsTest class code should look something like this:

/**

* Test classe for the Coin and Purse classes.

*

* @author Claudio De Sio Cesari

*/

public class CoinsTest {
public static void main(String args[]) {

}

Coin twentyCentsCoin = new Coin(20);

Coin oneCentCoin = new Coin(1);

Coin oneEuroCoin = new Coin(100);

// Creation of a Purse with 8 coins

Purse purse = new Purse(2, 5, 100, 10, 50, 10, 100,
200);

// Creation of a Purse with 11 coins

Purse purseToFail = new Purse(2, 5, 100, 10,
50, 10, 100, 200, 10, 5, 2);

The output should be the following:

Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

20 cents of EURO
1 cent of EURO

1 EURO

2 cents of EURO
5 cents of EURO
1 EURO

10 cents of EURO
50 cents of EURO
10 cents of EURO
1 EURO

2 EURO

2 cents of EURO
5 cents of EURO
1 EURO

10 cents of EURO
50 cents of EURO
10 cents of EURO
1 EURO

2 EURO

10 cents of EURO
5 cents of EURO
0in ere inse

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

159

Chapter 6 Exercise Solutions

Solution 6.k)

The proposed code also creates as a solution a private utility method that returns the first index
of the free array to contain the new currency:

/**
* Adds a coin to the purse. If this is full the coin will not
* be added and a significant error will be printed.
* @param coin
* the coin to add.
*/
public void add(Coin coin) {
System.out.println("Let's try adding one " + coin.getDescription());
int freeIndex = firstFreeIndex();
if (freeIndex == -1) {
System.out.println("Purse full! The coin " +
coin.getDescription() + " has not been added!");
} else {
coins[freeIndex] = coin;
System.out.println(coin.getDescription() + " has been added");

}

/**
* Retrieves the first free index in the coin array or -1 if the
* coin purse is full.
*
* @return
* the first free index in the coin array or -1 if the
* coin purse is full.
*/
private int firstFreeIndex() {
int index = -1;
for (int i = 0; i < 10; i++) {
if (coins[i] == null) {
index = 1i;
break;
}
}

return index;

Solution 6.1)

The code for the state() method could be the following:

/**
* Print the contents of the purse.
*/

160

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

public void state() {

System.out.println("The purse contains:");
for (Coin coin : coins) {
if (coin == null) {
break;

}

System.out.println("One " + coin.getDescription());

Solution 6.m)

The listing for the method withdraw() could be the following (also in this case we have created
a private utility method):

/

L R T S T

~N

*

Performs a withdrawal of the specified coin from the current coin purse.
In case the specified currency is not present, a significant error
will be printed and null will be returned.

@param coin

the coin to take.

@return

the coin found, or null if not found.

public Coin withdraw(Coin coin) {

}

System.out.println("Let's try to get a " +
coin.getDescription());

Coin foundCoin = null;

int foundCoinIndex = foundCoinIndex(coin);

if (foundCoinIndex == -1) {
System.out.println("Coin not found!");
} else {

foundCoin = coin;
coins[foundCoinIndex] = null;
System.out.println("One " + coin.getDescription() + " withdrawn");

}

return foundCoin;

private int foundCoinIndex(Coin coin) {

int foundCoinIndex = -1;
for (int i = 0; i < 10; i++) {
if (coins[i] == null) {
continue;
3
int coinInPurseValue = coins[i].getValue();
int valore = coin.getValue();

161

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

if (valore == coinInPurseValue) {
foundCoinIndex = 1i;
break;

}

3

return foundCoinIndex;

Solution 6.n)

As a solution we propose a code that tries to test also the error situations:

/**

* Test classe for the Coin and Purse classes.

*

* @author Claudio De Sio Cesari

*/

public class CoinsTest {

162

public static void main(String args[]) {

Coin twentyCentsCoin = new Coin(20);
Coin oneCentCoin = new Coin(1);
Coin oneEuroCoin = new Coin(100);
// Creation of a Purse with 11 coins
Purse purseToFail = new Purse(2, 5, 100, 10,
50, 10, 100, 200, 10, 5, 2);
// Creation of a Purse with 8 coins
Purse purse = new Purse(2, 5, 100, 10, 50, 10, 100,
200);
purse.state();
// we add a 20 cents coin
purse.add(twentyCentsCoin);
// we add a 1 cents coin
purse.add(oneCentCoin);
// We add the eleventh coin (we should get an error and the
// coin will not be added)
purse.add(oneEuroCoin);
// We evaluate the status of the purse
purse.state();
// we withdraw 20 cents
purse.withdraw(twentyCentsCoin);
//Let's add the tenth coin again
purse.add(oneEuroCoin);
// We evaluate the status of the purse
purse.state();
// We withdraw a non-existent currency (we should get an error)
purse.withdraw(new Coin(7));

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

The output should be the following:

coin of 20 cents of EURO
coin of 1 cent of EURO

coin of 1 EURO

coin of 2 cents of EURO
coin of 5 cents of EURO
coin of 1 EURO

coin of 10 cents of EURO
coin of 50 cents of EURO
coin of 10 cents of EURO
coin of 1 EURO

coin of 2 EURO

Created coin of 10 cents of EURO
Created coin of 5 cents of EURO
Only the first 10 coins were included!
Created coin of 2 cents of EURO
Created coin of 5 cents of EURO
Created coin of 1 EURO

Created coin of 10 cents of EURO
Created coin of 50 cents of EURO
Created coin of 10 cents of EURO
Created coin of 1 EURO

Created coin of 2 EURO

The purse contains:

One coin of 2 cents of EURO

One coin of 5 cents of EURO

One coin of 1 EURO

One coin of 10 cents of EURO

One coin of 50 cents of EURO

One coin of 10 cents of EURO

One coin of 1 EURO

One coin of 2 EURO

Let's try adding one coin of 20 cents of EURO
coin of 20 cents of EURO has been added
Let's try adding one coin of 1 cent of EURO
coin of 1 cent of EURO has been added
Let's try adding one coin of 1 EURO
Purse full! The coin coin of 1 EURO has not been added!
The purse contains:

One coin of 2 cents of EURO

One coin of 5 cents of EURO

One coin of 1 EURO

One coin of 10 cents of EURO

One coin of 50 cents of EURO

One coin of 10 cents of EURO

One coin of 1 EURO

One coin of 2 EURO

One coin of 20 cents of EURO

One coin of 1 cent of EURO

Let's try to get a coin of 20 cents of EURO
One coin of 20 cents of EURO withdraw
Let's try adding one coin of 1 EURO
coin of 1 EURO has been added

The purse contains:

Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created

DODLODOODODOODDLODDLDDD

DO DYDY

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

One
One
One
One
One

One
One
One
One
One

Created a coin of 7 cents of EURO
Let's try to get a coin of 7 cents of EURO
i |

coin
coin
coin
coin
coin
coin
coin
coin
coin
coin

of
of
of
of
of
of
of
of
of
of

2 cents of EURO
5 cents of EURO
1 EURO

10 cents of EURO
50 cents of EURO
10 cents of EURO
1 EURO

2 EURO

1 EURO

1 cent of EURO

Solution 6.0)

The encapsulated User code is as follows:

package com.claudiodesio.authentication;

public class User {

164

private String name;
private String username;
private String password;

public User(String name, String username, String password) {
this.name = name;
this.username =username;
this.password =password;

}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;

}

public String getPassword() {
return password;

}

public void setPassword(String password) {
this.password = password;

}

public String getUsername() {
return username;

}

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

public void setUsername(String username) {
this.username = username;
}
}

while Authentication changes little: it is only necessary to replace direct access to User public
variables, with the corresponding calls to accessor methods:

package com.claudiodesio.authentication;
import java.util.Scanner;

public class Authentication {

private static final User[] users = {
new User ("Daniele", '"dansap", "music"),
new User("Giovanni'", "giobat", "science"),
new User('"Ligeia", "ligder", "art")

b

public static void main(String args[]) {
Scanner scanner = new Scanner (System.in);
while (true) {
System.out.println("Type wusername.");
String username = scanner.nextLine();
User user = verifyUsername(username);
if (user == null) {
System.out.println("User not found!");
continue;
}
System.out.println("Type password");
String password = scanner.nextLine();

if (password != null && password.equals(user.getPassword())) {
System.out.println("Hello " + user.getName());
break;
} else {
System.out.println("Authentication failed");
}
}
private static User verifyUsername(String username) {
if (username != null) {
for (User user : users) {
if (username.equals(user.getUsername())) {
return user;
3
}
return null;
}

165

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Solution 6.p)

Figure 6.p.1 shows the required class diagram. Notice how the members of the Authentication
class are marked static with an underline. Furthermore, the aggregation (which indicates the
containment relation), is addressed by the object contained to the containing object, and is dis-
tinguished syntactically from a simple association (relation of use) by drawing a white diamond
on the side of the contained object. The asterisk * symbol next to the object contained instead,
describes the multiplicity of the contained object. Finally, note that on the side of the contain-
ing object there are no multiplicity symbols, this means that it is as if the multiplicity of default
were present, i.e. 1. In fact, an Authentication object contains multiple User objects.

com.claudiodesio.authentication

Authentication

-users: User[]

+verifyUsername(username:String): User
+main(args[]:String): void

User

-username: String
-password: String
-name: String

+User(name:String,username:String, password:String)
+setName(name:String): void

+getName(): String

+setUsername (username:String): void
+getUsername(): String
+setPassword(password:String): void
+getPassword(): String

Figure 6.p.1 - Class diagram of the com.claudiodesio.autentication package.

166

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

com.claudiodesio.authentication

<<Singleton>>
Authentication

-instance: Authentication = null
-users: User|]

+getInstance(): Authentication
-Authentication()

+login(): User
-verifyUsername(username:String): boolean
-verifyPassword(password:String): boolean
-requestUsername(): void
-requestPassword(): void
-welcome(name:String): void

*

User

-username: String
-password: String
-name: String

+User(name:String,username:String, password:String)
+setName(name:String): void

+getName(): String

+setUsername(username:String): void

+getUsername(): String
+setPassword(password:String): void
+getPassword(): String

Figure 6.q.1 - Class diagram of the com.claudiodesio package. Authentication modified as required.

167

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Solution 6.q)

Figure 6.q.1 shows the required class diagram. Note that to transform the class @@
into a singleton, we have defined a private constructor, a static variable of type of
Authentication, and a getInstance() method that has the responsibility to always return the
same instance of Authentication, or instance variable, which is appropriately instantiated
only once.

Since the class is now a singleton and will be instantiated, we have made sure that its methods
and its variables are no longer static. We have written all the methods that have been de-
scribed in the sequence diagrams and we have added the return types and the arguments in
our opinion more correct. Actually, we will find out if these are really correct when we deal with
the implementation, this is only our idea for now, and also a superficial idea (think of the code
solution we implemented in the exercise 5.z, where the result was really different from what we
expected).

In particular we have intended the requestUsername() and requestPassword() methods as
printing methods. In fact, they do not take input parameters or even declare return types. The
verifyUsername() and verificationPassword() methods should instead return a boolean
(true if the check is successful and false if it fails). We have also added the methods welcome(),
authenticationFailed(), and usernameNotFound() intended as printing methods, even if
they have not been reported in the sequence diagrams (the names are self-explanatory). All
these methods are private methods, while the only public method is the login() method,
which manages the flow of calls to private methods.

In our mind the Authentication class must work like this (for now!).

Solution 6.r)

As you can see in Figure 6.r.1, we have created a new class called UserProfiles, @ﬁ
which acts as a database and contains information about users (the user array). We

have decided that an instance of this class will replace the users array that previously resided
within the Authentication class, in order not to lose the Authentication class information
about users. Now the classes are better abstracted, as each has a specific role. We realized that
the singleton design pattern makes more sense than it is implemented in the UserProfiles
class, compared to in Authentication. In fact, it is the data that must be unique for all classes,
not the authentication process. So, we acted accordingly.

168

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

com. claudiodesio.authentic a‘tionl

Authentication
-userProfiles: UserProfiles

+login(): User
-verifyllsername(username:String): boolean -users: User[]
-verifyPassword(password:String)}: boolean H -instance: UserProfiles = null

<<Singleton==
UserProfiles

-requestUsername(): void H .
-requestPassword(): void -UserProfiles()
-usernameNotFound(): wvoid +getUsers(): Users[]
-authenticationFailed(}: void +setUsers(users:Users(]): void

-welcome(name:String): void

User

-username: String

-password: String

-name: string

+User(nome:String,username: String,password:String)
+setName(name:String}: void

+getName(}: String

+setUsername (username:String) : void
+getUsername(): String

+setPassword (password:String): void
+getPassword{): String

Figure 6.r.1 - Class diagram of the com.claudiodesio package. Authentication with UserProfiles.

cam.claudiodesio. authenr.:_car.ionl
Print
+requestllsernams (username:String): woid
———————————— >>|irequestPassword (password: String) : void
! +weloome (name;String): void
I usernameNotFound () : void
Authentication taurenticazionefailed() : void
—userProfiles: UserProfiles
+login () : User
—verifylUsername (username: String) : boolean o~
—verifyPassword(password: String) : boolean
*
User
—username: 3Jtring
. <<Fingleton>>
-password: String N
—name: String UserProfiles
+User (nome: String,username : String,password:String) —ugers: User[]
+setName (name: String) : void —instance: UserProfiles = null
+getMame () : String getInstance(): UserProfiles
+setUsername (username:String) : wvoid —UserProfiles ()
+getUsername () : String +getlUsers() : User(]
+setPassword(password:String) : woid +zetlser (users:User([]) : void
+getPassword() : String

Figure 6.s.1 - Class diagram of the com.claudiodesio package. Authentication with Print.

169

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Solution 6.s)

We have created a simple utility class called Print, containing all methods that send messages
to the user of the application. We made them all static, because it seems superfluous to instanti-
ate a class that contains only printing methods without defining instance variables.

The latter is a choice like any other, not necessarily the best one. De-
claring static methods implies ignoring the advantages of extensibil-
ity that we will see in the next chapters, but our choice is not to be
condemned.

Solution 6.t)

Is the class correctly abstracted? It depends on your point of view! The Authentication class
is responsible for defining the login flow and verifying the correctness of the data. How it is, it
seems fine. However, one could also think of delegating the verification of the correctness of
the data to another class of utility that we could call Verifier. This class could contain the two
methods of verification declared static, or it could contain a constructor to which we pass
the instance of User that we want to verify. They are all valid choices, each of which has conse-
quences. Not creating the Verifier class would imply having a bigger Authentication class,
but creating it would imply an extra class (among other things strictly dependent on the User
class). For now, we opt to leave things as they are. We will decide later when we have a clearer
picture.

Solution 6.u)

As we have said, the User class remains unchanged:

package com.claudiodesio.authentication;

public class User {
private String name;
private String username;
private String password;

public User(String name, String username, String password) {
this.name = name;
this.username =username;
this.password =password;

170

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getPassword() {
return password;

}

public void setPassword(String password) {
this.password = password;

}

public String getUsername() {
return username;

}

public void setUsername(String username) {
this.username = username;

b
}

The UserProfiles class has been faithfully implemented with respect to how it was designed:

package com.claudiodesio.authentication;
public class UserProfiles {
private static UserProfiles instance;
private User[] users;

private UserProfiles() {
users = createUsers();

}

public static UserProfiles getInstance() {
if (instance == null) {
instance = new UserProfiles();

}

return instance;

}

private User[] createUsers() {
User[] users = {
new User("Daniele", "dansap", "music"),

171

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

new User("Giovanni'", "giobat", "science"),
new User('"Ligeia'", "ligder", "art'")

}

return users;

}

public void setUsers(User[] users) {
this.setUsers(users);

}

public User[] getUsers() {
return users;

b
}

Even the Print class is faithful to how it was designed, except for the introduction of an extra
private method: printMessage (), which centralizes the printing instruction. This can be useful
in the future if we want to change the way we print a message, because we will have to do it only
in that method and not in all the others:

package com.claudiodesio.authentication;
public class Print {
public static void requestUsername() {

printMessage("Type username.");
}

public static void requestPassword() {
printMessage("Type password.");
}

public static void sayHello(String nome) {
printMessage('"Hello " + nome);
}

public static void usernameNotFound() {
printMessage('"User not found!");
}

public static void authenticationFailed() {
printMessage("Authentication failed");
}

private static void printMessage(String message) {
System.out.println(message);
}

172

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

The Authentication class instead, has been changed:
package com.claudiodesio.authentication;
import java.util.Scanner;
public class Authentication {

public void login() {
boolean authorized = false;
Scanner scanner = new Scanner (System.in);
do {
Print.requestUsername();
String username = scanner.nextLine();
User user = findUser (username);
if (user != null) {
Print.requestPassword();
String password = scanner.nextLine();
if (verifyPassword(user, password)) {
Print.sayHello(user.getName());
authorized = true;
} else {
Print.authenticationFailed();

}
} else {
Print.usernameNotFound();

} while ('authorized);

}

private User findUser (String username) {
User[] users = UserProfiles.getInstance().getUsers();
if (username != null) {
for (User user : users) {
if (username.equals(user.getUsername())) {
return user;

}
}
}
return null;
}

// private boolean verifyUsername(String username) {
// User[] users = UserProfiles.getInstance().getUsers();
// boolean found = false;
// User user = findUser (username);
// if (user !'= null && username.equals(user.getUsername())) {
// found = true;
// }
// return found;
// }

173

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

private boolean verifyPassword(User user, String password) {
boolean found = false;
if (password != null) {
if (password.equals(user.getPassword())) {
found = true;

b
}

return found;

}

public static void main(String args[]) {
Authentication authentication = new Authentication();
authentication.login();

}

In particular, the verifyUsername() method, which returns a boolean as we had planned, has
been commented out and replaced with the findUser() method, which directly returns the
User object corresponding to the username specified as a argument. If no user is found, the
method returns null. This substitution allows us not to duplicate code (either to find a user
with findUser()). In fact, to verify the username with verifyUsername(), we would have done
the same loop, and the code of the two methods would have been almost identical.

The main() method was introduced only as a method to test the login functionality. It could
be placed in any class, such as AuthenticationLauncher, which we initially identified in our
analysis among the solutions of the exercises of the fifth chapter.

The login() method now contains the so-called “business logic”, which is the code that satis-
fies the requirements thanks to an appropriate algorithm. With respect to the solution of the
5.z exercise, note the elimination of the break and continue constructs, replaced by the more
convenient do-while loop, supported by the authorized boolean variable, which is set to true
only when the verification procedures of the username and password are both verified. The
algorithm is clearer and more linear, also thanks to the support of the Print class and the
Scanner object, which are used several times to print output messages, and collect input from
the application user. However, in our opinion, improvements to the algorithm and abstrac-
tion of the class can still be made. In fact, we had to improvise our solution, because the one
designed with the class diagram did not prove to be worthy of being implemented. What has
been missed?

The scenarios were not redesigned with interaction diagrams, after the new classes and the new
methods have been identified. In these interaction diagrams, we could also specify details like
parameter types, object names and return types. In fact, the first sequence diagrams we created
in the 5.v exercise were based only on key abstraction, and were used to verify what to do (they
were analysis diagrams). The diagrams that we could have created after the changes made to the

174

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

class diagram instead, should have been considered design diagrams that explained how to do it.
For now, a step forward thanks to the class diagram we did it, later we will try to make others.

Solution 6.v)

This should be the solution:

public class BluRay {
public final static int maxGBSize = 25;
private byte[] content;

public BluRay() {
}

public void setContent(byte[] bytes) {
this.content = content;
}

public byte[] getContent() {
return content;

Solution 6.w)

-
()

The correct statements are 3, 4 and 6.

Solution 6.x)

The program output is:

Static Initializer
Static Method
Initializer
Constructor

Solution 6.y)

The required Book class could be the following:

public class Book {
private String isbn;
private String title;
private String author;
private int price;

175

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

private String genre;
public static final String [] genres = {"Romance", "Essay", "Thriller",
"Handbook"};

public Book(String isbn, String title, String author, int price,
String genre) {
setIsbn(isbn);
setTitle(title);
setAuthor (author);
setPrice(price);
setGenre(genre);

}

public String getIsbn() {
return isbn;

}

public void setIsbn(String title) {
this.isbn = isbn;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

public String getAuthor() {
return author;

}

public void setAuthor(String author) {
this.author = author;

b
public int getPrice() {

return price;

}

public void setPrice(int price) {
this.price = price;

}

public String getGenre() {
return genre;

}

public void setGenre(String genre) {

176

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

for (String validGenre : genres) {
if (validGenre.equals(genre)) {
this.genre = genre;
return;
}
}
System.out.println("Genre " + genre +
" not valid! Please, use one of the following genres:");

for (String validGenre : genres) {
System.out.println(validGenre);

}
}

Note that we have created an array of strings called genres as a static constant to define the de-
fault valid genres. We used the valid genres to test the validity of the call from the setGenere()
method. Note that the use of the return command used within the method, causes its imme-
diate termination. The return command is not followed by any value or variable because the
method has void return type.

G\Tote that the check defined within the setGenere() method allows to
avoid the setting of the genre field in case the method parameter is
not valid, but the Book type object is however created with the genre
variable set to null. In Chapter 9 we will see how to handle this type
of situation by launching an exception, thus avoiding instantiating a
Book object with a null genre field.

With the following class we tested the Book class:

public class BookTest {
public static void main(String[] args) {
Book jfaVoll = new Book("979-12-200-4915-3", "Java for Aliens Vol. 1",
"Claudio De Sio Cesari'", 25, "Handbook");
Book jfaVol2 = new Book("979-12-200-4916-0", "Java for Aliens Vol. 2",
"Claudio De Sio Cesari'", 25, "Biography");
System.out.println("JFA Vol 1 Genre = " + jfaVoll.getGenre());
System.out.println("JFA Vol 2 Genre = " + jfaVol2.getGenre());
}

The output of the previous class follows:

Genre Biography not valid! Please, use one of the following genres:

177

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Essay

Thriller

A

Handbook
JFA Vol 1 Genre

Handbook

Solution 6.z)

Before defining the Bookcase class, we found it necessary to redefine the Book class in the fol-
lowing way:

public class Book {

178

private String isbn;
private String title;
private String author;
private int price;
private String genre;

public Book(String isbn, String title, String author, int price,
String genre) {
setIsbn(isbn);
setTitle(title);
setAuthor (author);
setPrice(price);
setGenre(genre);

3

public String getIsbn() {
return isbn;
}

public void setIsbn(String title) {
this.isbn = isbn;
}

public String getTitle() {
return title;
}

public void setTitle(String title) {
this.title = title;
}

public String getAuthor() {
return author;
}

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

public void setAuthor(String author) {
this.author = author;

}

public int getPrice() {
return price;

}

public void setPrice(int price) {
this.price = price;

}

public String getGenre() {
return genre;

}

public void setGenre(String genre) {
if (GenreUtils.isValidGenre(genre)) {
this.genre = genre;
} else {
GenreUtils.printError(genre);

}
}

We can see that we have simplified the implementation, eliminating the genres array, given
that since we will have to use the concept of genre also for the Bookcase class, we preferred to
create a utility class that we have called GenreUtils, whose static methods we also used for sim-
plify the implementation of the setGenere() method checks. The following is the GenreUtils
class:

public class GenreUtils {
public static final String ROMANCE = "Romance";
public static final String ESSAY = "Essay";
public static final String THRILLER = "Thriller";
public static final String HANDBOOK = "Handbook";
public static final String SCIFI = "Scifi";
public static final String[] genres = { ROMANCE, ESSAY, THRILLER, HANDBOOK,
SCIFI };

public static boolean isValidGenre(String genre) {
boolean validGenre = false;
for (String fixedGenre : genres) {
if (fixedGenre.equals(genre)) {
validGenre = true;
}
}

return validGenre;

179

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

public static void printError(String genre) {
System.out.println("Genre " + genre +
" not valid! use one of the followinggenres:'");
for (String fixedGenre : genres) {
System.out.println(fixedGenre);

}
}

In the GenreUtils class we have reported the genres in the form of static and public constants,
which if used instead of strings, make it possible to prevent typing errors from becoming bugs.
We took the opportunity to add a new genre: SCIFI. In addition, for convenience we have also
used them to fill the genre array, so as to use loops to iterate the elements of the array. Finally,
we have declared two static and public methods. The isValidGenre() method returns true
only if the genre is valid. The printError() method prints an error message. Both of these
methods were used in the setGenere() method of the Book class.

So, we have defined the Bookcase class it in the following way:

public class Bookcase {
private Book[] books;
private String genre;

public Bookcase(String genre) {
books = new Book[100];
setGenre(genre);

}

public void addBook(Book book) {
if (genre == null) {
System.out.println("The genre of this bookcase is still not set"
+" and books cannot be added!");
GenreUtils.printError(null);
return;
}
for (int i = 0; i < books.length; i++) {
if (books[i] == null) {
books[i] = book;

return;
}
}
System.out.println("The bookcase is full!");
}
public void setBooks(Book[] books) {
}

180

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

public Book[] getBooks() {
return books;

}

public void setGenre(String genre) {
if (GenreUtils.isValidGenre(genre)) {
this.genre = genre;
} else {
GenreUtils.printError(genre);

}

public String getGenre() {
return genre;
}

}

Note that the setGenre() method is practically the same method defined for the Book class,
as it can take advantage of GenreUtils methods. The method addBook() instead, first of all
checks if the current bookstore object has the genre variable initialized. If not, it prints an error
message and does not perform the rest of the method. Otherwise look for the first free position
in the genre array, if it doesn't find it, then print an error message to warn that there is no posi-
tion available on the bookcase for other books.
Finally, the singleton class Bookstore could be the following
public class Bookstore {
private static Bookstore instance;

private String name;
private Bookcase[] bookcases;

public Bookstore() {
bookcases = new Bookcase[GenreUtils.genres.length];

}
public static Bookstore getInstance() {
if (instance == null) {
instance = new Bookstore();
}
return instance;
}

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}

public void addBookcase(Bookcase bookcase) {

181

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

if (bookcases[bookcases.length-1] !'= null) {
System.out.println("This bookstore already has all the bookcases!");
return;

}

for (int i = 0; i < bookcases.length; i++) {
if (bookcases[i] == null) {
bookcases[i] = bookcase;
break;
} else if (bookcases[i].getGenre().equals(bookcase.getGenre())) {
System.out.println("The "+ bookcase.getGenre()
+" bookcase already exists!");
break;

}

public Bookcase[] getBookcases() {
return bookcases;

}

We can see that within this class we have always used the length variable of the arrays involved,
so the code will not change in the case the number of genres will change.

The addBookcase () method instead, implements an algorithm that first checks if all the book-
cases have already been set. Then within a loop that iterates the bookcases, it looks for the
first free position in the array. For each bookcase already within the array, the method checks
whether it has a genre coinciding with that of the bookcase that was passed as a parameter (if
so, prints an error message and ends the method with a return command) .

We can test everything with the following class:

public class BookstoreTest {
public static void main(String[] args) {

Book jfavoll = new Book("979-12-200-4915-3", "Java for Aliens Vol. 1",
"Claudio De Sio Cesari'", 25, GenreUtils.HANDBOOK);

Book jfavol2 = new Book("979-12-200-4916-0", "Java for Aliens Vol. 2",
"Claudio De Sio Cesari'", 25, GenreUtils.HANDBOOK);

Book f451 = new Book('"978-88-046-6529-8", "Fahrenheit 451",
"Ray Bradbury", 10, GenreUtils.SCIFI);

Book shining = new Book("978-88-452-9530-0", "Shining", "Stephen King",
12, GenreUtils.THRILLER);

Book tkr = new Book("978-88-683-6730-5", " The Kite Runner ",
"Khaled Hosseini", 11, GenreUtils.ROMANCE);

Book ttoe = new Book("978-88-170-7976-1", "The Theory of Everything",
"Stephen Hawking", 10, GenreUtils.ESSAY);

Bookcase handbookBookcase = new Bookcase(GenreUtils.HANDBOOK) ;

Bookcase scifiBookcase = new Bookcase(GenreUtils.SCIFI);

Bookcase scifiBookcase2 = new Bookcase(GenreUtils.SCIFI);

182

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Bookcase thrillerBookcase = new Bookcase(GenreUtils.THRILLER);
Bookcase romanceBookcase = new Bookcase(GenreUtils.ROMANCE);
Bookcase essaysBookcase = new Bookcase(GenreUtils.ESSAY);
Bookcase essaysBookcase2 = new Bookcase(GenreUtils.ESSAY);
handbookBookcase.addBook(jfavoll);
handbookBookcase.addBook(jfavol2);
scifiBookcase.addBook(f451);
thrillerBookcase.addBook(shining);
romanceBookcase.addBook (tkr);
essaysBookcase.addBook(ttoe);
Bookstore bookstore = Bookstore.getInstance();
bookstore.setName('"Bookstore for aliens");
bookstore.addBookcase (handbookBookcase);
bookstore.addBookcase(scifiBookcase);
bookstore.addBookcase(scifiBookcase?2);
bookstore.addBookcase(thrillerBookcase);
bookstore.addBookcase(romanceBookcase);
bookstore.addBookcase(essaysBookcase);
bookstore.addBookcase(essaysBookcase?2);
Bookcase[] bookcases = bookstore.getBookcases();
System.out.println("Bookstore list of bookcases:");
for (Bookcase bookcase : bookcases) {

System.out.println("Bookcase " + bookcase.getGenre() + ":");

Book[] books = bookcase.getBooks();

for (Book book : books) {

if (book !'= null) {
System.out.println("\t" + book.getTitle() + " by " +
book.getAuthor() + " (Genre " + book.getGenre() + ")");

}

whose output will be:

The Scifi bookcase already exists!
This bookstore already has all the bookcases!
Bookstore list of bookcases:
Bookcase Handbook:
Java for Aliens Vol. 1 by Claudio De Sio Cesari (Genre Handbook)
Java for Aliens Vol. 2 by Claudio De Sio Cesari (Genre Handbook)
Bookcase Scifi:

Fahrenheit 451 by Ray Bradbury (Genre Scifi)
Bookcase Thriller:

Shining by Stephen King (Genre Thriller)
Bookcase Romance:

The Kite Runner by Khaled Hosseini (Genre Romance)
Bookcase Essay:

183

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 6 Exercise Solutions

Solution 6.aa) Static import, True o False:

True.

. False.

. False.

True.

. False, out is not statically imported.
True.

True.

True.

True.

10. False.

© ® N O u p w NP

184

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7
Exercises

Inheritance and Interfaces

For this chapter we will avoid having the reader write too much code. Instead, it is very impor-
tant to focus rather on definitions. If you do not know all the concepts of the theory well, you
will end up writing incoherent code from the point of view of the philosophy of objects

After each exercise look at the solution, because each one could be

preparatory to the next.

Exercise 7.a) Object Orientation in Java (Theory), True or False:

1. The implementation of inheritance always involves writing a few less lines.
2. The following class declaration is incorrect:
public final class Class extends OtherClass {...}
3. Inheritance is only useful if specialization is used. In fact, specializing we inherit in the

subclass (or subclasses) members of the superclass that we must not rewrite. Instead with
the generalization we create an extra class, and then we write more code.

4. The super keyword allows you to call superclass methods and constructors. The keyword
this allows you to call methods and constructors of the same class.

185

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

5. Multiple inheritance does not exist in Java because it does not exist in reality.
6. A functional interface is an interface that declares a single default method.

7. Asubclass is “bigger” than a superclass (in the sense that it usually adds new features and
functionality compared to the superclass).

8. Suppose we develop an application to manage a soccer tournament. There is inheritance
derived from specialization between the Team and Player classes.

9. Suppose we develop an application to manage a soccer tournament. There can be inheri-
tance derived from generalization between the Team and Player classes.

10. In general, if we had two classes, Father and Son, there would be no inheritance between
these two classes

Exercise 7.b)

Given the following class:

public class Person {
private String name;

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}
}
Add comments on the following Employee class to highlight where object-oriented paradigms
are used: encapsulation, inheritance and reuse

public class Employee extends Person {
private int id;

public void setData(String name, int id) {
setName(name) ;
setId(id);
3
public void setId(int id) {
this.id = id;

}

186

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

public int getId() {
return id;

}

public String getData() {
return getName() +", id: "+ getId();

}

Exercise 7.c) Abstract Classes and Interfaces, True or False:

1.

N o ou A

8.
9.

The following class declaration is incorrect:

public abstract final class Class {...}

. The following class declaration is incorrect:

public abstract class Class;

. The following interface declaration is incorrect:

public final interface Class {...}

. An abstract class necessarily contains abstract methods.
. An interface can be extended by another interface.

. A class can extend a single class but implement multiple interfaces.

The advantage of abstract classes and interfaces is that they force subclasses to imple-
ment inherited abstract methods. Therefore, they represent an excellent tool for
object-oriented design.

An interface can declare more than one constructor.

An interface cannot declare variables but static and public constants.

10. An abstract class can implement an interface

Exercise 7.d)

Describe all inheritance relationships between the following classes:

1.

2.

Teacher

Student

187

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

3. Person

4. Desk

5. Course

6. Classroom

7. Lesson

Exercise 7.e)

If we wanted to create the hierarchy defined in the previous exercise, between Student, Person
and Teacher, which could be an abstract class?

Exercise 7.f)

Create the interface (with comments) Musical declaring a method named play (). How would
you declare this method: static, default or abstract?

Exercise 7.g8)

Create two subinterfaces (with comments) of Musical: MusicalInstrument and Ringtone.
How would you declare the method play() in the two subinterfaces: static, default or
abstract?

Exercise 7.h)

Suppose we create a Smartphone class that implements both interfaces from the previous ex-
ercise. What’s wrong?

Exercise 7.i) Interfaces after Java 8, True or False:

1. Static methods cannot be inherited.

2. The following interface statement is incorrect:

public static interface Interface;

3. The following interface statement is incorrect:

public interface Interface {}

4. The abstract methods of an interface are not inherited by another interface.

188

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

5. The abstract methods of an interface cannot be implemented by another interface.
6. Static methods of an interface cannot be implemented by another interface.

7. An Ainterface defines a default method m(). Interface B extends interface A and redefines
the m() method with a default implementation. An abstract class C implements interface
A but redefining the method m(). A concrete (non-abstract) class D extends the class C
and implements interface B, without redefining the method m(). Class D inherits the m()
method defined in class C.

8. AnE interface defines an abstract method m(). The F interface extends the E interface and
redefines the m() method with a default implementation. An abstract class G implements
the interface E but does not redefine the method m(). A concrete (non-abstract) class H
extends the abstract class G and implements the interface F, without redefining the meth-
od m(). Class H cannot be compiled correctly.

9. An interface can extend multiple interfaces.

10. An interface can extend an abstract class and an interface.

Exercise 7.j)

Resuming the solution of the Exercise 6.z, let’s suppose we want to make our bookstore sell also
music albums. So, let’s abstract the Album class, bearing in mind that even for music albums
there is an identification number called ISMN (although there are other ways to identify an
album as using the European EAN standard), as well as for books there is the ISBN identifica-
tion number. Then check if there is an inheritance relationship between the Book class and the
Album class. If it exists, implement a solution.

For now, do not implement the checks that the setGenre() method of
the Book class executes so that the genre specified as a parameter be-
longed to a predefined set of literary genres (see Exercise 6.z), since
this will be fixed in the next exercise.

Exercise 7.k)

Starting from the solutions of the previous exercise and of the Exercise 6.z, re- @
name the GenreUtils class as LiteraryGenreUtils and create the equivalent
MusicalGenreUtils for the Genre class. Check if there is an inheritance relationship between

189

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

the two classes, and if it exists, implement it. Also, the Album class must have a genre value
belonging to a predefined set of musical genres (see setGenere() method of the Book class).
Finally create an ItemsTest class, equivalent to the BookTest class of the Exercise 6.y, which
tests the objects instantiated by the Book and Album classes.

Exercise 7.1)

Keeping in mind all the code insertions that the compiler implicitly executes, rewrite the
following class, adding all the instructions that the compiler would add:

public class CompilerItsYourTurn extends Object {
private int var;

public void setVar(int v) {
var = v;

}

public int getvar() {
return var;

3
3

Considering the following classes:

public class Person {
private String name;

public void setName(String name) {
this.name = name;

}

public String getName() {
return this.name;
}

}

public class Employee extends Person {
private int id;

public void setId(int id) {
this.id = id; //encapsulation

}

190

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

public int getId() {
return this.id; //encapsulation

public String getData() {
return getName() +", id: "+ getId();

}

What will be the output of the compilation process (choose only one option)?

1. No output (correct compilation).
2. Error in the getData() of Employee method.
3. Error in the getName () of Person method.

4. Error in the getId() of Employee method.

If we add the following method to the Employee class described in the Exercise 7.m:
public void setData(String name, int id) {
setName (name) ;
setId(id);
}

What will be the output of the compilation process (choose only one option)?

1. No output (correct compilation).
2. Error in the getData() of Employee method.
3. Error in the setName() of Person method.

4. Error in the setId() of Employee method

Which of these statements is true (they could all be true)?

1. Inheritance allows you to link multiple classes together.
2. Inheritance allows you to link more interfaces to one another.
3. Inheritance allows you to link multiple classes and interfaces.

4. Inheritance makes it possible to link several classes and interfaces

191

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

Exercise 7.p)

Given the following code:

1. class Animal {3}
2. interface Feline {}

3. class Lion {}

If we wanted to link the previous types with inheritance, which of the following snippets is valid
from the compiler’s point of view (they could all be valid)?

class Animal extends Feline {}
interface Feline extends Animal {}
class Lion extends Feline {}

class Lion extends Animal implements Feline {}

M op w NP

class Animal extends Lion implements Feline {}

Exercise 7.q)

Given that an interface can declare in addition to abstract methods, also public and private static
methods, public and private implemented (default) methods, and given that with interfaces we
can implement multiple inheritance, why should we prefer an abstract class to an interface?

Given the following types:

as interface Flying {}

@8 class Plane implements Flying {}
which of the following snippets are correct?
1. Plane a = new Plane();
2. Flying v = new Flying();

3. planel.equals(plane2); (where planel and plane2 are objects of type Plane)
4. Flying.plane = new Plane();

192

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

Exercise 7.s)

Which modifiers are implicitly added to all the methods declared in an interface (it is possible
to choose more than one answer)?

public
. protected

. private

. default

1.
2
3
4. static
S
6. abstract
7

. final

Exercise 7.t) .@.
Given the following hierarchy: @

interface A {
void method();

}

interface B extends A {}
abstract class C implements B {}
public final class D extends C {

public void method(){}
b

Which of the following statements are false (it is possible to choose more than one statement):

1. Class C cannot be declared abstract because it implements an interface, so this code does
not compile.

. Interface B cannot extend another interface.
. Class C implementing B also inherits the abstract method method of A.
. Class D does not compile because it cannot be declared final.

. Class D does not compile because it is declared public.

O u A~ W N

. Class D does not compile because its method is declared public.

193

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

Exercise 7.u)

Which of the following statements are true (it is possible to choose more than one statement):

1. Static methods declared in an interface are not inherited in subinterfaces.

2. It is not possible to declare an abstract and final class because the two modifiers are
not compatible with each other.

3. An abstract class must necessarily declare abstract methods.
4. Interfaces can also declare constructors.

5. Abstract classes can declare static methods.

Exercise 7.v)

Suppose we want to define an Athlete type. Suppose each athlete defines the @.@
methods run() and doTraining(). Suppose we also want to define more specific

subclasses like SoccerPlayer, Runner and TennisPlayer. How would you define Athlete, as an
interface or abstract class? Would you add other types?

Exercise 7.w)

Which of the following statements regarding the protected modifier are correct:

1. A protected class can only be instantiated within the same package in which it is defined,
and in all of its subclasses even if defined in different packages.

2. If a class has a declared protected constructor, it can only be instantiated by the classes
belonging to the same package.

3. A protected method is inherited from a subclass regardless of the package in which it is
defined.

4. A protected variable can be used by all the classes that belong to the same package as the
class that defines this variable.

5. A protected variable is inherited from a subclass regardless of the package in which it is
defined.

6. A protected constructor is inherited from a subclass regardless of the package in which
it is defined.

194

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

7.

Asubclass defined in a package different from the one to which its superclass belongs, can
instantiate the latter and then use its protected members.

Exercise 7.x)

Starting from the solution of the Exercise 4.z:

1.
2.
3.
4.

Exercise 7.y)

Encapsulate the Contact and PhoneBook classes.
Implement the Singleton pattern for the PhoneBook class.
Update the SearchContacts class to make it work the same as before.

Create a Special class that extends Contact. Suppose that a special contact must also
have a ringtone, and create the corresponding instance variable of type String.

. InthePhoneBookclass,alsocreateanarrayofSpecial objects(callitspecialContacts),simi-

lartothecontactsarraythatalreadyexists.AlsocreateasearchSpecialContactsByName()
method, equivalent to the searchContactsByName() method already present in the
class.

. Create a SearchSpecialContacts class equivalent to the SearchContacts class of the

Exercise 4.z, to test the correct functioning of the written code.

We do not recommend that you perform the following
exercise using Notepad and the command line. With an

IDE (or at least with EJE) you will save many minutes to
complete the exercise.

Starting from the Exercise 7.y, perform the following refactoring techniques to use the reuse,
inheritance and abstraction paradigms:

1.

2.

Make sure that the created classes do not contain duplicate code (reuse all code that can
be reused).

Create a Data interface to be implemented for all classes representing data in the appli-
cation, and the Identifiable interface that declares an abstract method getID() which
returns an int.

195

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

3.

7.

Abstract the concept of entity by implementing the Entity abstract class, which imple-
ments the Data and Identifiable interfaces. An Entity object must have an automati-
cally generated incremental identification number. This feature will help us to make our
abstractions evolve in future exercises.

. Use inheritance to relate this new class (and possibly the other interfaces) with the already

existing classes of the project where applicable.

. Create the package phonebook.data, phonebook.ui and phonebook.business, where we

mean with phonebook. data, a package that must contain classes that represent the data
of the application. The package phonebook.business instead, must contain the classes
that contain the business logic of the application. Finally, the phonebook . ui package must
contain the classes that represent the interface with which the user can interact.

. Move the classes and the interfaces of the project in the packages that seem most appro-

priate accordingly. If you think it necessary, you can create other classes and packages and
modify existing ones (you can also create superclasses, subclasses and utility classes).

Test that the SearchSpecialsContacts and SearchContacts classes still work correctly.

Let’s continue the case study defined in section 5.5. We had taken a series of steps, which repre-
sented a possible process to follow in order to create a code of quality. In particular, we defined
the following steps:

o A W NN R

Use case analysis.

. Definition of scenarios for each use case.
. Define a high level deployment diagram representing the architecture.
. Identify the key abstractions.

. Verify the validity of key abstractions using iteration diagrams to validate scenario flows,

using objects instantiated by key abstractions.

We have seen in the final exercises related to chapter 6, that other steps to be performed are:

6.

7.

196

Define the key abstraction on a class diagram.

Re-evaluate the class diagram by adding the essential details, and above all by thinking
about responsibilities.

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercises

Doing the entire Logos program is too demanding (it would take weeks if not months of work),
but we can focus on particular use cases, and carry on our process only on these use cases. The
reader could then also iterate the steps made on each use case to complete the program piece
by piece. Even if in the initial analysis of Logos the authentication process has not been identi-
fied, actually there must be! In fact, two actors were defined by the analysis of the use cases: the
administrator (who had the task of configuring the system) and the clerk (who had operational
tasks). It seems obvious that in order to be recognized by the system, a login mechanism is in-
dispensable. So, we can say that we have discovered a new use case, which we define as “authen-
tication”. We then evolve the diagram of the use cases of Figure 5.4 in the diagram of Figure
7.z.1, where we introduce the new case of use found.

For now, let’s focus on the authentication use case in the context of Logos. We have the advan-
tage of having already worked on a program that manages authentication with a certain flow,
let’s see if we can evolve it.

So, keeping in mind that we have already created the User class, we want to define the Clerk
and Administrator classes. Should they be created? And why?

LOGOS
insert product
modify product

delete product /
Administrator
search product
authentication

| —
\ ask for product

confirm sent product

NI/

/JN\

Clerk

modify product availability <= - -

<<include==

Figure 7.z.1 - Updated Logos Use case diagram.

197

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7
Exercise Solutions

Inheritance and Interfaces

Solution 7.a) Object Orientation in Java (Theory), True or False:

1. False, the generalization process involves writing an extra class, and this does not always
mean writing less code.

2. False.

3. False, even if the generalization process not always allow us to save code, it still has
the advantage of making us manage the classes in a more natural way, favoring the
abstraction of data. It also favor the implementation of polymorphism.

4. True.

5. False, multiple inheritance exists in the real world, and in Java exists just a soft version of
it, because only the functional part of our entities can be inherited.

6. False, is an interface that declares a single abstract method.
7. True.

8. False, a team “is not a” player, nor a player “is a” team. If anything, a team “has” a player
but this is not the relationship of inheritance. It is in fact the association relationship.

9. True, in fact both classes could extend a Participant class.

10. False, a Father is always a Son, or both could extend the Person class.

199

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

Solution 7.b)

public class Employee extends Person { //inheritance

private int id;

public void setData(String name, int id) {
setName(name); //reuse and inheritance
setId(id); //reuse

}

public void setId(int id) {
this.id = id; //encapsulation

}

public int getId() {
return id; //encapsulation

}

public String getData() {
//reuse, encapsulation and inheritance
return getName() +", id: "+ getId();

Solution 7.c) Abstract Classes and Interfaces, True or False:

1.

© ® N @ ;A W N

True, the abstract and final modifiers cannot be used together because an abstract
class should be extended, while a final class cannot be extended. For this reason, the com-
piler will not allow the creation of a class declared abstract and final.

. True, the code block that defines the class is missing.
. True, a final interface does not make sense.

. False.

. False, an interface cannot declare constructors because it cannot be instantiated.

True.

10. True.

200

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

Solution 7.d)

Person could be a superclass of Teacher and Student, for all the rest there is no inheritance.

Inheritance is always tested with the “is a” relationship. So, it is very
simple to verify that this relationship cannot be confirmed for all

other class pairs.

Solution 7.e)

Undoubtedly the Person class could be an abstract class, but even Teacher and Student could
be declared abstract if we wanted to extend them with classes such as EngineeringStudent or
MathematicsProfessor.

Solution 7.f)

Assuming that all object-oriented choices are subjective, the abstract implementation is prob-
ably the most correct choice for such an abstract concept:

/**

* Abstracts the concept of a musical object.
*

* @author Claudio De Sio Cesari

*/

public interface Musical {
/**
* Performs the music of the current musical object.
*/

void play();

|

Solution 7.g)
The code of the MusicalInstrument interface could be the following:

/**

* Abstracts the concept of a musical instrument.
*

* @author Claudio De Sio Cesari
*/
public interface MusicalInstrument extends Musical {

}

201

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

The Ringtone interface code could be the following:

/**
* Astrae the concept of musical ringtone.

*

* @author Claudio De Sio Cesari
*/
public interface Ringtone extends Musical {

}
The play() method for us is still abstract.

Solution 7.h)

While it might be plausible to consider a smartphone that uses a specific app a musical instru-
ment, it is simply incorrect that it can be considered a ringtone, in fact the “is a” test fails:
Question: “Is a smartphone a musical instrument?”

Answer: Yes (as long as a specific app to play music is installed)

Question: “Is a smartphone a ringtone?”

Answer: No (if anything, it contains ringtones)

Solution 7.i) Interfaces after Java 8, True or False:

1. True.

2. True, the static modifier cannot be applied to classes and interfaces.
3. True, class is a keyword, and cannot be used as identifier.

4. False.

5. False.

6. True, in particular it is possible to rewrite a method with the same signature in a sub-
interface (but the same concept applies to classes), but technically it is not an override,
because static methods are simply not inherited. In fact, any use of the @verride an-
notation in the subinterface to mark the static method will cause an error in compilation
(see Superinterface.java and Sublnterface.java).

7. True, the rule “class always win” that we have seen in section 7.4.5.5, is true even if the
class is abstract (see list A.java, B.java, C.java, D.java, TestABCD.java).

8. False, it could be misleading that the abstract class G also inheriting the abstract method
from interface E makes the rule “class always win” studied in section 7.4.5.5 applies. In-

202

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

stead, in this case, rule “the most specific implementation wins” applies. In fact, class G
inherits an E interface method, which is less specific than the one redefined in interface F
(see list E.java, F.java, G.java, H.java, TestEFGH.java).

9. True, although some doubts may arise, an interface can extend multiple interfaces (see.
Myinterface.java).

10. False, an interface cannot extend a class in any case.

Solution 7.j)

The abstraction of the Album class that we have created, is very similar to the abstraction of the

Book class:

public class Album

private
private
private
private
private

String
String
String
String
String

extends Item {
ismn;

title;

artist;

genre;

price;

public Album(String ismn, String title, String artist, String genre, String price) {
setIsmn(ismn);
setTitle(title);
setArtist(artist);
setGenre(genre);
setPrice(price);

3

public String getIsmn() {
return ismn;

3

public void setIsmn(String ismn) {
this.ismn

3

ismn;

public String getTitle() {
return title;

3

public void setTitle(String title) {
this.title

3

= title;

public String getArtist() {
return artist;

3

203

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

public void setArtist(String artist) {
this.artist = artist;

}

public String getGenre() {
return genre;

}

public void setGenre(String genre) {
this.genre = genre;

}

public String getPrice() {
return price;

}

public void setPrice(String price) {
this.price = price;
}
}

Note that there are three fields that are clearly in common with the Book class. For the variables
price and title there is no doubt, while for the genre variable someone could have one since
the musical genres do not correspond to the literary ones. Actually, having managed the pos-
sible values of the literal genres within the GenreUtils utility class, the genre variable does not
depend directly on the values it can assume. Moreover, note that the variables isbn and ismn,
represent substantially the same concept: a number that uniquely identifies an object. But also
the variables author in Book and artist in Album, are semantically very similar in the context
of the sale of books and music albums. Although there are differences in the meaning of the
two words, a buyer of a book usually identifies it also through its author. For example, the book
“Shining” is by Stephen King. In the same way a buyer of a musical album could identify an
album also specifying the relative artist, for example we could say that the album “The Wall”
is by Pink Floyd. This is true because we are in the context of selling albums and books, which
for us are simply “items”. So, we decided to create the abstract superclass I'tem of the Book and
Album classes in the following way:
public abstract class Item {

private String id;

private String title;

private String name;

private int price;
private String genre;

204

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

public Item(String id, String title, String name,
super();
setId(id);
setTitle(title);
setName (name) ;
setPrice(price);
setGenre(genre);

}

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;
}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getPrice() {
return price;

}

public void setPrice(int price) {
this.price = price;

}

public String getGenre() {
return genre;

}

public void setGenre(String genre) {
this.genre = genre;

}

int price, String genre) {

205

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

The Book and Album classes can therefore be simplified in the following manner:

public class Book extends Item {
public Book(String isbn, String title, String author, int price,
String genre) {
super(isbn, title, author, price, genre);

}

public class Album extends Item {
public Album(String ismn, String title, String artist, int price,
String genre) {
super(ismn, title, artist, price, genre);

}

Note that we have “normalized” the isbn fields of the Book class and ismn of the Album class,
as an id field in the Item superclass. The same goes for the author field of the Book class and
artist field of the Album class, “normalized” in a name field in the superclass Item.

Solution 7.k)

With a non-simple solution, we used generalization for the utility classes. In particular we have
extended with the classes MusicalGenreUtils and LiteraryGenreUtils a new generic class
for which we have reused the name GenreUtils. In the latter, we implemented the static meth-
ods isValidGenre() and printError() by adding the array of genres on which to base the
required check as second parameter. This is necessary, because we do not know a priori if in
this generic class we will use musical or literary genres, but at the same time we do not want to
duplicate code in the subclasses:

public class GenreUtils {

public static boolean isValidGenre(String genre, String[] validGenres) {
boolean validGenre = false;
for (String fixedGenre : validGenres) {
if (fixedGenre.equals(genre)) {
validGenre = true;

}

return validGenre;

public static void printError(String genre, String[] validGenres) {
System.out.println("Genre " + genre +
" not valid! Please, use one of the following genres:");
for (String fixedGenre : validGenres) {
System.out.println(fixedGenre);

206

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

So, we defined the LiteraryGenreUtils class in the following way:

public class LiteraryGenreUtils extends GenreUtils {

public
public
public
public
public
public

static
static
static
static
static
static

final
final
final
final
final

String ROMANCE = "Romance";
String ESSAY = "Essay";
String THRILLER = "Thriller";
String HANDBOOK = "Handbook";
String SCIFI = "Scifi";

final String[] genres = { ROMANCE, ESSAY, THRILLER, HANDBOOK,

SCIFI };

public static boolean isValidGenre(String genre) {
return isvValidGenre(genre, genres);

}

public static void printError(String genre) {
printError(genre, genres);

}
}

And the MusicalGenreUtils class like this:

public class MusicalGenreUtils extends GenreUtils {

public
public
public
public
public
public

public

}

static
static
static
static
static
static

static

final
final
final
final
final
final

String ROCK = "Rock";

String JAZZ = "Jazz";

String BLUES = "Blues";

String POP = "Pop";

String RAP = "Rap";

String[] genres = { ROCK, JAZZ, BLUES, POP, RAP };

boolean isValidGenre(String genre) {
return isValidGenre(genre, genres);

public static void printError(String genre) {
printError(genre, genres);

3
b

In these two classes we have ensured that the isValidGenre() and printError() methods in-
voke the methods defined in the superclass. We also defined information on genres.
In the Book class, we then redefined the setGenre() method as can be seen below (in bold):

public class Book extends Item {

public Book(String isbn, String title, String author, int price,
String genre) {

super (isbn,

title, author, price, genre);

207

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

public void setGenre(String genre) {
if (LiteraryGenreUtils.isValidGenre(genre)) {
super.setGenre(genre);
} else {
LiteraryGenreUtils.printError(genre);
}

}

Note that we were forced to invoke the setGenre() method of the Item superclass using the
super reference, since we needed to call a method that had the same name as the method we
were redefining.

The same goes for the Album class:

public class Album extends Item {
public Album(String ismn, String title, String artist, int price,
String genre) {
super(ismn, title, artist, price, genre);

}

public void setGenre(String genre) {
if (MusicalGenreUtils.isValidGenre(genre)) {
super.setGenre(genre);
} else {
MusicalGenreUtils.printError(genre);
}

}
Finally, we implemented the ItemsTest class in the following way:

public class ItemsTest {
public static void main(String[] args) {

Book jfaVvoll = new Book("979-12-200-4915-3", "Java for Aliens Vol. 1",
"Claudio De Sio Cesari'", 25, LiteraryGenreUtils.HANDBOOK);

Book jfavol2 = new Book("979-12-200-4916-0", "Java for Aliens Vol. 2",
"Claudio De Sio Cesari'", 25, "NonExisting");

System.out.println("Genre JFA Vol 1 = " + jfaVoll.getGenre()

System.out.println("Genre JFA Vol 2 = " + jfaVol2.getGenre()

Album lad = new Album("979-0-236-44-3", '"Live after Death",
"Iron Maiden", 25, MusicalGenreUtils.ROCK);

Album mop = new Album("978-0-789-01-2", '"Master of Puppets",
"Metallica", 25, "NonExisting");

System.out.println("Genre Live after Death = " + lad.getGenre());

System.out.println("Genre Master of Puppets = " + mop.getGenre());

)¢
)¢

}
And this is the final output:

208

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

Genre NonExisting not valid! Please, use one of the following genres:
Romance

Essay

Thriller

Handbook

Scifi

Genre JFA Vol 1 Handbook

Genre JFA Vol 2 null

Genre NonExisting not valid! Please, use one of the following genres:
Rock

Jazz

Blues

Pop

Rap

Genre Live after

- - |
Solution 7.1)

The compiler will actually transform the class into something very similar to the following (the
implicit compiler entries are in bold):

Death = Rock

import java.lang.*;
public class CompilerItsYourTurn extends Object {
private int var;

public CompilerItsYourTurn() {
}

public void setVar(int v) {
this.var = v;

}

public int getvar() {
return this.var;

}

We also consider that, by extending Object, this class also inherits all
of its methods.

Solution 7.m)

The correct answer is the first one. No error to report.

209

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

Solution 7.n)

The correct answer is the first one. No error to report.

Solution 7.0)

The concept of aggregation, used several times in previous exercises, is a relationship that in-
dicates containment, which, if anything, can be considered an alternative to extension. So, the
only correct answer is the third one.

Solution 7.p)

The fourth and fifth options are both correct for the compiler. The fifth, however, has less sense
from a logic point of view (is an animal a lion? Not necessarily!).

Solution 7.q)

Even if an interface can potentially define methods of different types, it cannot declare instance
variables, but only public static constants.

Solution 7.r)

The correct statements are the numbers 1 and 3.

‘ The equals() method is inherited from the Object class.)

Solution 7.s)

Only the first answer is correct. Being the first correct, obviously the second and the third
cannot be correct. Static and default methods can be declared, but their modifiers are never
added automatically. The doubt can come for the answer 6, because before the advent of Java
8 this answer would have been right. But now we can declare in the interfaces also default and
static methods. Finally, the final modifier is implicitly added to the attributes of the interfaces
(which are also implicitly declared static and public).

210

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

Solution 7.t)

The answers are all false except the third.

Yol [Vinfels WAV);

The correct answers are 1, 2 and 5.

Solution 7.v)

We could follow the following reasoning. A tennis player trains and runs differently from a
soccer palyer or a runner. In short, both the TennisPlayer class, the Runner class and the
SoccerPlayer class will redefine the doTraining() and run() methods. In the Athlete class
instead, these two methods should be defined as abstract, because, a priori, it would be difficult
to define how an athlete trains or runs, it depends on the type of athlete! At this point one might
think of defining Athlete as an interface since it uses only two abstract methods, and this is
feasible. But with the evolution of this program, it is highly probable that we will define ath-
letes’ fields as name and surname. An interface, however, cannot declare variables, and therefore
one might prefer to declare an athlete as an abstract class. Or we could create a solution where
TennisPlayer, SoccerPlayer and Runner implement the Athlete interface (which defines the
two abstract methods doTraining() and run()) and extend the abstract class Person (which
defines the attributes name, surname, etc.). In short, it will be the context of the program in
which we will settle that will lead us to implement the most correct solution.

Solution 7.w)

The correct statements are 2, 8, 4, 5. The number 1 is incorrect because the protected modifier
cannot be used with classes (there are no protected classes!). The 6 is false because the con-
structor are not inherited (even if they are public). The number 7 is incorrect for the reasons
explained in section 7.2.5.1.

Solution 7.x)

The encapsulated Contact class could be the following (in bold the changes):

public class Contact {
protected static final String UNKNOWN = "unknown";
private String name;
private String phoneNumber;
private String address;

public Contact(String name, String phoneNumber) {

211

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

this.setName(name);
this.setPhoneNumber (phoneNumber) ;
this.setAddress (UNKNOWN) ;

}

public Contact(String name, String phoneNumber, String address) {
this.setName(name);
this.setPhoneNumber (phoneNumber) ;
this.setAddress(address);

}

public void setAddress(String address) {
this.address = address;
}

public String getAddress() {
return address;
}

public void setPhoneNumber (String phoneNumber) {
this.phoneNumber = phoneNumber;
}

public String getPhoneNumber() {
return phoneNumber;
}

public void setName(String name) {
this.name = name;
}

public String getName() {
return name;
}

public void printDetails() {
System.out.println(name);
System.out.println(address);
System.out.println(phoneNumber);
System.out.println();

}

Note that we have introduced a private static constant UNKNOWN to represent an unknown ad-
dress when using the first declared constructor (in the solutions of the Exercise 4.z, the address
value was not really set, and therefore it was null).

The Singleton and encapsulated class PhoneBook could be implemented as follows (updates in
bold):

212

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

public class PhoneBook {
private static PhoneBook instance;
public Contact[] contacts;

private PhoneBook () {
contacts = new Contact[] {
new Contact("Claudio De Sio Cesari", "13, Java Street",
"131313131313"),
new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),
new Contact("Gennaro Capuozzo", "1, Four Days of Naples Square",
"112111324331")

3
}
public static PhoneBook getInstance() {
if (instance == null) {
instance = new PhoneBook();
}
return instance;
}

public Contact[] searchContactsByName(String name) {
Contact []JcontactsFound = new Contact[contacts.length];
for (int i = 0, j = ©; 1 < contactsFound.length; i++) {
if (contacts[i].getName().toUpperCase().
contains(name.toUpperCase())) {
contactsFound[j] = contacts[i];
Jt++;
}
}

return contactsFound;

}

public Contact[] getContacts() {
return contacts;
}

}

Note that we have avoided creating the setter method for the contacts variable.
We then replaced within the class SearchContacts, only the line:

var phoneBook = new PhoneBook();

with the following:

var phoneBook = PhoneBook.getInstance();

And everything continued to work as it worked before.
The Special class could be implemented like this:

213

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

public class Special extends Contact {

private String ringtone;

public Special(String name, String phoneNumber, String address,
String ringtone) {

super (name,

phoneNumber, address);

setRingtone(ringtone);

}

public String getRingtone() {
return ringtone;

}

public void setRingtone(String ringtone) {
this.ringtone = ringtone;

}

public void printDetails() {

System.
System.
System.
System.
System.

}

out.
.println(getAddress());
out.
.println(getRingtone());
out.

out

out

println(getName());
println(getPhoneNumber());

println();

Note that to instantiate an object of type Special, we can only use a constructor that takes as an
input four parameters: name, phoneNumber, address and ringtone (since in our abstraction, it

is the ringtone that should distinguish a special contact from a normal contact). This construc-

tor calls the constructor of the Contact superclass via the super keyword. Also note that the
printDetails() method has been redefined by adding the printout of the ringtone variable

as well.

We then updated the PhoneBook class as required (updates in bold):

public class PhoneBook {
private static PhoneBook instance;
public Contact[] contacts;
public Special[] specialContacts;

private PhoneBook () {

contacts new Contact[] {
new Contact("Claudio De Sio Cesari", "13, Java Street",
"131313131313"),
new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),

new Contact("Gennaro Capuozzo", "1, Four Days of Naples Square",
"112111324331")

};

214

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

specialContacts = new Special[] {
new Special("Mario Ruoppolo", "Neruda Street, 3", "333333",
"The Postman"),
new Special("vincenzo Malinconico", "Courts Street, 8", "888888",
"Tuca Tuca"),
new Special("Logan Howlett", "Canada Square, 6", "66666", "Hurt")
};
}

public static PhoneBook getInstance() {
if (instance == null) {
instance = new PhoneBook();

3

return instance;

}

public Contact[] searchContactsByName(String name) {
Contact []JcontactsFound = new Contact[contacts.length];
for (int i = 0, j = ©; 1 < contactsFound.length; i++) {
if (contacts[i].getName().toUpperCase().
contains(name.toUpperCase())) {
contactsFound[j] = contacts[i];
J++;
}
}

return contactsFound;

}

public Special[] searchSpecialContactsByName(String name) {
Special []specialContactsFound = new Special[specialContacts.length];
for (int i = 0, j = 0; i < specialContactsFound.length; i++) {
if (specialContacts[i].getName().toUppercCase().
contains(name.toUpperCase())) {
specialContactsFound[j] = specialContacts[i];
J++;
}
}
return specialContactsFound;

}

public Contact[] getContacts() {
return contacts;

}

public Special[] getSpecialContacts() {
return specialContacts;
}

215

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

And finally we created the following class SearchSpecialContacts:

import java.util.Scanner;

public class SearchSpecialContacts {
public static void main(String args[]) {
System.out.println("Search Special Contacts");
System.out.println();
var phoneBook = PhoneBook.getInstance();
System.out.println("Enter name or part of the name to be searched");
Scanner scanner = new Scanner (System.in);
String input = scanner.nextLine();
Special[] specialContactsFound =
phoneBook.searchSpecialContactsByName (input);
System.out.println("Special Contacts found with name containing \"" +
lnpUt + Il\llll);
for (Special special : specialContactsFound) {
if (special '= null) {
special.printDetails();
}

Solution 7.y)

In the phonebook.data package, we decided to put the three new requested abstractions Data:

package phonebook.data;

public interface Data {

}
Identifiable:

package phonebook.data;
public interface Identifiable {

int getId();
}

and Entity:

package phonebook.data;
import phonebook.util.Counter;

public abstract class Entity implements Data, Identifiable {
private int id;

216

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

public Entity () {
setId(Counter.getSerialNumber());

}

private void setId(int id) {
this.id = id;
}

public int getId() {
return id;
}

}

Notice how this last class uses a utility class Counter (belonging to a phonebook.util, an ad hoc
created package) that contains a static method that updates a serial number every time an entity
is instantiated (i.e. a subclass, since Entity is an abstract class). The Counter class follows:

package phonebook.util;

public class Counter {
private static int objectCounter;

public static int getSerialNumber() {
return objectCounter += 1;

As already mentioned, the serial number will be useful in future
exercises.

We decided to include the Contact and PhoneBook classes in the phonebook.data package.
With regard to the latter, we deemed it necessary to modify it as follows:

package phonebook.data;

public class PhoneBook implements Data {
private static PhoneBook instance;
public Contact[] contacts;
public Special[] specialContacts;

private PhoneBook () {
contacts = new Contact[] {
new Contact("Claudio De Sio Cesari", "13, Java Street",
"131313131313"),
new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),
new Contact("Gennaro Capuozzo", "1, Four Days of Naples Square",
"1111121331")

0

217

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

specialContacts = new Special[] {
new Special("Mario Ruoppolo", '"Neruda Street, 3", '333333",
"The Postman'"),
new Special("Vincenzo Malinconico", "Courts Street, 8", '888888",
"Tuca Tuca"),

new Special("Logan Howlett", "Canada Square, 6", "66666", "Hurt")
37
}
public static PhoneBook getInstance() {
if (instance == null) {
instance = new PhoneBook();
return instance;
}

public Contact[] getContacts() {
return contacts;

public Special[] getSpecialContacts() {
3 return specialContacts;

}

Because searchContactsByName() and searchSpecialContactsByName() are business
methods and not methods that the PhoneBook class should declare, we have removed them.

In fact, in our phone book abstraction, we refer to the concept of a phone book containing
contacts, not a phone book that can perform searches. As for the old and now no longer used
paper phone book, we mean an object similar to a notebook in which the contacts are written.
A phone book therefore represents a data container and not an object that performs business
actions, in fact we have made it implement the Data interface. To search for a certain contact in
a paper phone book, a user must browse the pages of the phone book. So, we have decided for
now to move the searchContactsByName() and searchSpecialContactsByName() methods
in a new class called User, which will perform searches in the address book:

package phonebook.business;
import phonebook.data.*;

public class User {
public Contact[] searchContactsByName(String name) {
Contact[]contacts = PhoneBook.getInstance().getContacts();
Contact []JcontactsFound = new Contact[contacts.length];
for (int i = 0, j = ©; 1 < contactsFound.length; i++) {
if (contacts[i].getName().toUpperCase().
contains(name.toUpperCase())) {
contactsFound[j] = contacts[i];
J++;

218

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

return contactsFound;

}

public Special[] searchSpecialContactsByName(String name) {
Special[]specialContacts = PhoneBook.getInstance().getSpecialContacts();
Special []specialContactsFound = new Special[specialContacts.length];
for (int i = 0, j = ©; 1 < specialContactsFound.length; i++) {
if (specialContacts[i].getName().toUpperCase().
contains(name.toUpperCase())) {
specialContactsFound[j] = specialContacts[i];
J++;
}
}

return specialContactsFound;

}

Note that this class belongs to the phonebook. business package.

Summarizing, we abstract a phonebook as data, we make them implement the Data interface
and move it in the phonebook . data package, while the User class represents a business object
and belongs to the phonebook . business package.

Finally, we have modified the SearchContacts and SearchSpecialContacts classes in the
following way (updates in bold):

package phonebook.ui;

import phonebook.data.*;
import phonebook.business.User;
import java.util.Scanner;

public class SearchContacts {
public static void main(String args[]) {
System.out.println("Search Contacts");
System.out.println();
var user = new User();
System.out.println("Enter name or part of the name to be searched");
Scanner scanner = new Scanner (System.in);
String input = scanner.nextLine();
Contact[] foundContacts = user.searchContactsByName(input);
System.out.println("Contacts found with name containing \"" +
lnput + ll\llll);
for (Contact contact : foundContacts) {
if (contact != null) {
contact.printDetails();

}

219

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 7 Exercise Solutions

package phonebook.ui;

import phonebook.data.*;
import phonebook.business.User;
import java.util.Scanner;

public class SearchSpecialContacts {
public static void main(String args[]) {
System.out.println("Search Special Contacts");
System.out.println();
var user = new User();
System.out.println("Enter name or part of the name to be searched");
Scanner scanner = new Scanner (System.in);
String input = scanner.nextLine();
Special[] specialContactsFound =
user .searchSpecialContactsByName(input);
System.out.println("Special Contacts found with name containing \""
+ input SN);
for (Special special : specialContactsFound) {
if (special !'= null) {
3 special.printDetails();

}

Solution 7.z)

A simple and almost automatic solution, would consist in extending the User class directly, with
the two sub-classes Administrator and Clerk:

package com.claudiodesio.authentication;

public class Administrator extends User {
public Administrator (String name, String username, String password) {
super (name, username, password);

3
and:

package com.claudiodesio.authentication;

public class Clerk extends User {
public Clerk(String name, String username, String password) {
super (name, username, password);
}

}

Except that we still don’t have enough information to insert specific fields and methods for
these two classes (in fact they are empty). So for now we decide not to implement them.

220

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter8
Exercises

Polimorphism

In this chapter we will simulate the construction of an IDE, in a very simplified way. Also in
this case, it will be an incremental exercise so you have to complete each exercise (and read the
solution) in order to move on to the next one.

We will create classes and interfaces step by step. In particular we will create the abstractions
of IDE, Editor, SourceFile, File, FileType and so on. The exercise is guided, so the reader is
relieved of the responsibility to decide which classes should compose our application. For this
reason, there are exercises on programming rather than analysis and design.

With the next exercises we will only have to apply the definitions we have learned so far, almost
no algorithm is required. The ultimate goal is to focus on the Object Orientation and not on the
algorithms. In addition, other types of exercises are also presented, such as those that support
preparation for Oracle certifications.

Exercise 8.a) Polymorphism for Methods, True or False:

1. Method overloading implies writing another method with the same name and a different
return type.

2. Method overloading implies writing another method with a different name and the same
list of parameters.

3. The signature of a method consists of the identifier - parameter list pair.

221

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercises

4. To take advantage of method overriding, inheritance must be in place.
5. To take advantage of method overloading, inheritance must be in place.
6. Suppose that the class B, which extends the class A, inherits the following method:

public int m(int a, String b) { ... }

If in the B class, we write the following method:

public int m(int ¢, String b) { ... }
we are doing method overloading and not overriding.

7. If in the B class, we write the following method:

public int m(String a, String b) { ... }
we are doing method overloading and not overriding.

8. If in the B class, we write the following method:

public void m(int a, String b) { ... }
we will get a compilation error.

9. If in the B class, we write the following method:

protected int m(int a, String b) { ... }
we will get a compilation error.

10. If in the B class, we write the following method:

public int m(String a, int c) { ... }

we are doing a method overriding.

Exercise 8.b) Polymorphism for Data, True or False:

1. Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

Vehicle v [] = {new Car(), new Plane(), new Plane()};

2. Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

Object o [] = {new Car(), new Plane(), '"ciao"};

222

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercises

. Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

Plane a [] = {new Vehicle(), new Plane(), new Car()};
. Considering the classes introduced in this chapter, and if the method of the Traveler
class was the following:

public void travel(Object o) {
o.accelerate();
}

we could pass as parameter to it an object of type Vehicle without having compilation
errors. For example:
claudio.travel(new Vehicle());

. Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

ThreeDimensionalPoint ogg = new Point();
. Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

ThreeDimensionalPoint ogg = (ThreeDimensionalPoint)new Point();
. Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

Point ogg = new ThreeDimensionalPoint();
. Considering the classes introduced in this chapter, and if the Piper class extends the
Plane class, the following snippet will not produce compilation errors:

Vehicle a = new Piper();
. Considering the classes introduced in this chapter, the following code fragment will not
produce compilation errors:

String string = fiat500.toString();

10. Considering the classes introduced in this chapter, the following code fragment will not

produce compilation errors:

public void payEmployee(Employee emp) {
if (emp instanceof Employee) {
emp.setSalary(1000);
} else if (emp instanceof Programmer) {

}

223

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercises

Exercise 8.c)

To start creating a simple IDE, create a FileType interface that defines static constants that
represent the types of source files that our IDE should manage. Certainly, one of these
constants must be called JAVA. Choose all the others as you like. Also choose the type of

o
(@]
=)
4
I
=
@
IS
[72]
<
o
c
=
@]

Exercise 8.d)

Create a File class that abstracts the concept of a generic file and defines a name and a type.

Exercise 8.e)

Create a SourceFile class that abstracts the concept of source file (extending the File class)
which also defines a string type content.

Exercise 8.f)

Add an addText () method, that adds a text string to the end of the contents of the source file.

Exercise 8.g)

Add an overloaded addText() method, that adds a text string to a specified point in the
contents of the source file (see the String class documentation).

Exercise 8.h)

Create a SourceFileTest class that tests the correct operation of the SourceFile class.

Exercise 8.i)

Create an Editor interface that abstracts the concept of text editor. You need to define methods
to open, close, save and edit a file.

Exercise 8.j)

Create an IDE interface that abstracts the concept of IDE. Please note that an IDE is also an
editor. You need to define methods to compile and execute a file.

Exercise 8.k)

Create a simple JavaIDE implementation of the IDE interface. Add an implementation for the
edit() method (and as you wish, you can re-implement all the methods that you find useful).

N

24

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercises

Exercise 8.1)

Starting from the solutions of the Exercise 7k, in which we created classes to simulate a
bookshop, perform the following steps:

1. Create the bookshop.data, bookshop.business, bookshop.util and
bookshop.interface packages, and move the existing classes within the packages that
are deemed most appropriate.

2. For the Book and Album classes, create the toString() method, which returns a one
line description of the item. The toString() method should print this informa-
tion: article_type: (isbn) - "title" by author, genre, price. For example:
Book: (2345) "The Pillars of the Earth" by Ken Follet, Romance, 18§,

3. Modify the ItemTest class, so that it also test the toString() methods added.

Exercise 8.m)

Starting from the solution of the previous exercise, create a ShoppingCart class, which
represents a shopping cart. This abstraction must declare the methods: add() to add an item to
the shopping cart, calculatePrice() which returns the total price of the items in the shopping
cart, toString() which prints the description of the items in the shopping cart. The shopping
cart can contain a maximum of four items (books or albums). Make sure that the add() method
prints an error when trying to add the eleventh article, and that the element is consequently
not added.

Create the ShoppingCartTest class, to test the correct functioning of the ShoppingCart class,
invoking all the defined methods, and try adding five items to verify the correct functioning of
the check implemented in the add() method.

Exercise 8.n)

Create a IDETest test class that performs file operations using IDE.

The exercise could continue extending these classes further, feel
free to do other programming iterations after completing this one.
You will have to perform three steps: provide yourself specifications,
understand how to implement them and implement them.

225

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercises

Exercise 8.0) Varargs, True or False:

1.

2.

The varargs allow you to use the methods as if they were overloads.
The following declaration can be compiled without errors:

public void myMethod(String... s, Date d) {

}

. The following declaration can be compiled without errors:

public void myMethod(String... s, Date d...) {

}

. Considering the following method:

public void myMethod(Object... 0) {
}

the following invocation is correct:

oggetto.myMethod();

. The following declaration can be compiled without errors:

public void myMethod(Object o, Object os...) {

}

. Considering the following method:

public void myMethod(int i, int... is) {
}

the following invocation is correct:

object.myMethod(new Integer(1));

7. The rules of overriding change with the introduction of varargs.

226

. The printf() method of the java.io.PrintStream class is based on the format()

method of the java.util.Formatter class.

. The format() method of the java.util.Formatter class has no overload because it is

defined with a varargs.

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercises

10. In case you pass an array as varargs to the printf () method of java.io.PrintStream,
this will be treated not as a single object but as if each of its elements had been passed to
one by one.

Exercise 8.p) @.
Given the following hierarchy: @

interface A {
void method();
}

interface B implements A {
static void staticMethod() {}

3

final class C implements B {}

public abstract class D implements A {
@Ooverride
void method() {}

}

Choose all the true statements:
1. Interface C does not inherit the staticMethod() method.
2. Interface B cannot implement another interface.

3. The class C implementing B also inherits the abstract method () method of the A interface,
and since it is not declared abstract it cannot be compiled.

4. Class D cannot be compiled because it cannot be declared abstract. In fact, it does not
declare any abstract method.

5. Class D does not compile because the method it declares is not declared public.

6. Class D compiles only because the method is annotated with Override.

Exercise 8.q)

Which of the following statements is correct (choose all that apply):

1. An interface extends the class Object.

2. A method that takes as a parameter a reference of type Object, can take as input any
object of any type, even of an interface type.

227

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercises

3. A method that takes as a parameter a reference of type Object, can take as input any
object of any type, even an array.

4. A method that takes as a parameter a reference of type Object, can take as an input any
object of any type, even a heterogeneous collection.

5. All casts of objects are evaluated at compile time

Exercise 8.r)

Consider the following classes: @

public class PrintNumber {
public void print(double number){
System.out.print(number);

b
b

public class PrintInteger extends PrintNumber {
public void print(int number) {
System.out.print(number);

}
public static void main(String args[]) {

PrintNumber printNumber = new PrintInteger();
printNumber.print(1);

}
If we run the PrintInteger class, what will be the output?
1. 1.2
2.1
3.10

4. 11.2

Exercise 8.s) @-
Consider the following hierarchy: @

public interfac7e Satellite {
void orbit();
}

228

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercises

public class Moon implements Satellite{
@Override
public void orbit(){
System.out.println("Moon is orbiting");

}
}
public class ArtificialSatellite implements Satellite {
@Ooverride
public void orbit() {
System.out.println("Artificiale satellite is orbiting");
}
}

And the following class of tests:

public class SatellitesTest {
public static void main(String args[]) {
test(new Moon(), new ArtificialSatellite());
Satellite[] satellites = {
new Moon(), new ArtificialSatellite()
L
test(satellites);
test();
// test(new Object());

}

public static void test(Satellite... satellites) {
for (Satellite satellite : satellites) {
satellite.orbit();
}

3

Choose all the correct statements:

1. The application compiles and runs without errors.

2. The application does not compile because of the instruction test(satellites);.
3. The application does not compile for the instruction test();.

4. The application does not compile for the instruction test(new Object());.

5

. The application compiles but it, due to an exception, crashes at runtime.

Exercise 8.t)

Define the overload and the override concepts. And give an example of a subclass, which im-
plements both concepts.

229

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercises

Exercise 8.u)

Bearing in mind that Number is superclass of the Integer class, let us consider the @
following hierarchy:

public abstract class SumNumber {
public abstract Number sum(Number ni1, Number n2);

public class SumInteger extends SumNumber{
@Override
public Integer sum(Number ni1, Number n2) {
return (Integer)nl + (Integer)n2;

}

Choose all the correct statements:
1. The SumInteger class compiles without errors.

2. The SumInteger class does not compile because the override is not correct: the return
types do not coincide.

3. The SumInteger class does not compile because it is not possible to use the + operator
except with primitive type numbers.

4. The SumInteger class could cause an exception at runtime.

Exercise 8.v)

Make the sum() method of the SumInteger class defined in exercise 8.u robust, so @
that the runtime works without exceptions.

Exercise 8.w)

Briefly define what a polymorphic parameter is, what heterogeneous collections are, and what
avirtual call to a method is.

Exercise 8.x)

Starting from the solution of the Exercise 7.y, let’s evolve our application that simulates a phone
book:

1. Replace the printDetails() method with the override of the toString() method, in the
Contact and Special classes. This change is consistent, because these classes represent
application data, and therefore should not “print details”. Make sure that the toString()
method also returns the identifier (id variable).

230

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercises

2.

In the PhoneBook class, add the elements of the specialContacts array to the contacts
array, and delete the specialContacts variable. Modify the getContacts() and
getSpecialContacts() methods to make that the first return all contacts (both special
and ordinary contacts), while the latter returns only the special contacts.

. If necessary, modify the User class to make it work consistently with the new implemen-

tation of the PhoneBook class.

. Modify the SearchContacts, and SearchSpecialContacts classes, so that they work in

line with the changes made.

Exercise 8.y)

Starting from the solution of the previous exercise:

. Add in the PhoneBook class a method called getOrdinaryContacts() that returns all

ordinary contacts, that is, the contacts that are not of the Special type.

. Add a method called searchOrdinaryContactsByName() in the User class, which

searches by name only contacts that are not special.

. Create a class SearchOrdinaryContacts, homologous to the other search classes we have

already created.

Exercise 8.z)

1.

2.

Starting from the solution of the previous exercise:

Until now, we have assigned the responsibility for creating Contact objects explicitly to
the class containing the main() method. So, now is the time to create a ContactFactory
class that has this responsibility, declaring one or more static methods getContact().
These methods will take as input the necessary fields to instantiate the objects.

. In the User class, add a method called add () which adds a Contact object to the contacts

array. Pay attention that in the PhoneBook class, the contacts array can contain a finite
number of Contact objects. Add a number of free places in the array to be filled with new
objects.

. Test with the SearchContacts class the correct functioning of the add() method of the

PhoneBook class. Create the objects to pass to the method using the ContactFactory class.

231

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter8

Exercise Solutions

Polimorphism

Solution 8.a) Polymorphism for Methods, True or False:

1

False, overloading a method implies writing another method with the same name and a
different list of parameters.

. False, overloading a method implies writing another method with the same name and a

different list of parameters.

. True.

4. True.

5. False, overloading a method implies writing another method with the same name and a

different list of parameters.

. False, we are overriding. The only difference lies in the name of the identifier of a param-

eter, which is irrelevant in order to distinguish methods.

7. True, the parameter list of the two methods is different.

8. True, when overriding the return type cannot be different.

9. True, when overriding the rewritten method cannot be less accessible than the original

method.

10. False, we will get an overload. In fact, the two parameter lists differ in positions.

233

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

Solution 8.b) Polymorphism for Data, True or False:

True.

2. True.

3. False, the Vehicle class is abstract and is not instantiable. Furthermore, it is not possible

© ® N @

to insert in a heterogeneous collection of planes an object of type Vehicle, which is a
Plane superclass.

. False, the compilation would fail already since we tried to compile the travel()

method. In fact, it is not possible to call the accelerate() method with a reference of
type Object.

. False, there is need for a casting, because the compiler does not know a priori the type to

which the reference at runtime will point.
True.
True.

. True, in fact, Vehicle is a superclass of the Piper class.

True, the toString() method, belongs to all classes because it is inherited from the
superclass Object.

10. True, but all employees will be paid the same way.

Solution 8.c)

The code could be the following:

public interface FileType {

}

int JAVA = 1;

int C_SHARP = 2;
int C_PLUS_PLUS = 3;
int C = 4;

Note that it is not necessary to specify modifiers for constants, since they are implicitly de-
clared public, static and final. Moreover, we have chosen the int type as the type of the
constants, but any other type would have been fine, the important thing is that the constants
have different values.

234

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

This type of use of interfaces has been in disuse for years, precisely
since enumerations were introduced in Java version 5 (see Chapter

11). However, we will still use this programming style since we have
not yet addressed the topic of enumerations.

Solution 8.d)

The code of the File class could be the following:

public abstract class File {
private String name;
private int type;

public File(String name, int type) {
this.name = name;
this.type = type;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getType() {
return type;

}

public void setType(int type) {
this.type = type;
}
}

Note that we have declared the class as abstract, since it is generic and created for the purpose
of extension.

Solution 8.e)

The code of SourceFile class should be as the following:

235

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

public class SourceFile extends File {
private String content;

public SourceFile(String name, int type) {
super (name, type);

}

public SourceFile(String name, int type, String content) {
this(name, type);
this.content = content;

}

public String getContent() {
return content;

}

public void setContent(String content) {
this.content = content;

b
b

Note that we have reused the superclass constructor using the super keyword, and we have also
created a constructor that is equivalent to the superclass constructor.

Solution 8.1)

The code of the requested method could be:

public void addText(String text) {
if (content == null) {
content ="";
}

if (text '= null) {
content += text;
}

3

A null string “added” to another string is represented with the string “null”, that’s why we im-
plemented the first nullity check in the method.

Solution 8.8)

The code of the requested method could be:

public void addText(String text, int position) {
final int length = content.length();
if (content !'= null && text != null && position > O
&& position < length) {

236

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

content = content.substring(®, position) + text +
content.substring(position);

}

We have chosen, for simplicity, not to add text if the specified position is not correct. However,
an else clause that prints an error message could be a better solution. Actually, this method can
be improved a lot... try it!

(In Chapter 9 we will see how to handle exceptions in Java. }
Solution 8.h)

The SourceFileTest source code could be the following:

public class SourceFileTest {

public static void main(String args[]) {

SourceFile sourceFile = new SourceFile("Test.java",
FileType.JAVA, "public class MyClass {\n\r");

System.out.println(sourceFile.getContent());
// Test addText (String) correct
sourceFile.addText("}");
System.out.println(sourceFile.getContent());
// Test addText (String,int) correct
sourceFile.addText("//Test adding text\n\r'", 23);
System.out.println(sourceFile.getContent());
// Test addText (String,int) incorrect
sourceFile.addText("//Test adding text\n\r'", -1);
System.out.println(sourceFile.getContent());
// Test addText (String,int) incorrect
sourceFile.addText("//Test adding text\n\r'", 100);
System.out.println(sourceFile.getContent());

}
The output will be the following:
public class MyClass
public class MyClass

}

public class MyClass

//Test adding text
}

public class MyClass
//Test adding text

}

237

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

public class MyClass {

//Test adding text
L -__|

You could write many more test cases, and you should also make sure that each test case doesn’t
depend on the previous one, but for now it’s okay.

To perform test cases with greater convenience, the use of a tool like
JUnit is recommended. You can find a brief description of JUnit in
the sections 10.4.1 and 10.4..2.

Solution 8.i)

The code of the requested interface could be:

public interface Editor {
default void save(SourceFile file) {
System.out.println("File: " + file.getName() + " saved!");

}
default void open(SourceFile file) {

System.out.println("File: " + file.getName() + " open!");

}

default void close(SourceFile file) {
System.out.println("File: " + file.getName() + " closed!");

}
default void update(SourceFile file, String testo) {

System.out.println("File: " + file.getName() + " updated!");

}
}

We have created default methods that simulate the real execution just printing a simple
sentence.

Solution 8.j)

The code of the requested interface could be:

public interface IDE extends Editor {
default void compile(SourceFile file) {
System.out.println("File: " + file.getName() + " compiled!");

default void execute(SourceFile file) {
System.out.println("File: " + file.getName() + " executed!");

238

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

Also in this case, we have created default methods that simulate the real execution just printing
a simple sentence.

Solution 8.k)

The code of the requested class could be:

public class JavaIDE implements IDE {
@Ooverride
public void update(SourceFile file, String text) {
IDE.super.update(file, text);
file.addText (text);
System.out.println("Content updated:\n" + file.getContent());

3
}
Solution 8.1)

The code of the requested class could be:

public class IDETest {
public static void main(String args[]) {
IDE ide = new JavaIDE();
SourceFile sourceFile = new SourceFile("Test.java",
FileType.JAVA, "public class MyClass {\n\r");
ide.update(sourceFile, "1}");

}
The output will be:
File: Test.java updated!

Content updated:
public class MyClass {

}

Solution 8.m)

We moved the Item, Album and Book classes in the bookshop.data package, the GenreUtils,
LiteraryGenreUtils and MusicalGenreUtils classes within the bookshop.util package, the
ItemsTest class within the bookshop. test package, finally we leaved the bookshop.business
package empty, since for now we don’t yet have classes that encapsulate business logic.

To create the required toString() methods in the Book and Album classes, let’s also take advan-
tage of their abstract superclass Item, which we rewrite below (changes in bold):

239

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

package bookstore.data;

public abstract class Item {
private static final char CURRENCY = '$';
private String id;
private String title;
private String name;
private int price;
private String genre;

public Item(String id, String title, String name, int price, String genre) {
super();
setId(id);
setTitle(title);
setName (name) ;
setPrice(price);
setGenre(genre);

}

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;
}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getPrice() {
return price;

}

public void setPrice(int price) {
this.price = price;

}

240

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

public String getGenre() {
return genre;

}

public void setGenre(String genre) {
this.genre = genre;

}
@Ooverride
public String toString() {
return ": (" + getId() + ") " + getTitle() + " di " + getName() +
", " + getGenre() + ", " + getPrice() + " " + CURRENCY;
}

}

Note that we have also introduced a private and static CURRENCY constant to represent the price
currency.
We can then rewrite the toString() method in the Book subclass as follows (changes in bold):

package bookstore.data;
import bookstore.util.*;
public class Book extends Item {

public Book(String isbn, String title, String author, int price, String genre) {
super(isbn, title, author, price, genre);

}

public void setGenre(String genre) {
if (LiteraryGenreUtils.isValidGenre(genre)) {
super.setGenre(genre);
} else {
LiteraryGenreUtils.printError(genre);

}
3

@override
public String toString() {
return "Book" + super.toString();

}
}

And we can then rewrite the toString() method in the Album subclass in the following way
(changes in bold):

package bookstore.data;

import bookstore.util.*;

241

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

public class Album extends Item {
public Album(String ismn, String title, String artist, int price, String genre) {
super(ismn, title, artist, price, genre);
}

public void setGenre(String genre) {
if (MusicalGenreUtils.isValidGenre(genre)) {
super.setGenre(genre);
} else {
MusicalGenreUtils.printError(genre);
}

}

@override
public String toString() {

return "Album" + super.toString();
}

}
Finally let’s modify the ItemsTest class in the following way (changes in bold):

package bookstore.test;

import bookstore.data.*;
import bookstore.util.*;

public class ItemsTest {
public static void main(String[] args) {
Book jfaVoll = new Book('"979-12-200-4915-3",
"Java for Aliens Vol. 1","Claudio De Sio Cesari'", 25,
LiteraryGenreUtils.HANDBOOK) ;
Book jfaVol2 = new Book('"979-12-200-4916-0",
"Java for Aliens Vol. 2", "Claudio De Sio Cesari", 25,"NonExisting");
// System.out.println("Genre JFA Vol 1 " + jfaVoll.getGenre());
// System.out.println("Genre JFA Vol 2 " + jfaVol2.getGenre());
System.out.println(jfavoll);
System.out.println(jfavol2);
Album lad = new Album("979-0-236-44-3","Live after Death","Iron Maiden",
25, MusicalGenreUtils.ROCK);
Album mop = new Album("978-0-789-01-2", "Master of Puppets", "Metallica",
25, "NonExisting");
// System.out.println("Genre Live after Death = "+ lad.getGenre());
// System.out.println("Genre Master of Puppets = "+ mop.getGenre());
System.out.println(lad);
System.out.println(mop);

k;
Obviously the toString() method is automatically called by the println() method. The out-

242

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

put of the previous class will be the following:

Genre NonExisting not valid! Please, use one of the following genres:

Romance

Essay

Thriller

Handbook

Scifi

Book: (979-12-200-4915-3) Java for Aliens Vol. 1 di Claudio De Sio Cesari, Handbook, 25 $
Book: (979-12-200-4916-0) Java for Aliens Vol. 2 di Claudio De Sio Cesari, null, 25 $
Genre NonExisting not valid! Please, use one of the following genres:

Rock

Jazz

Blues

Pop

Rap

Album: (979-0-236-44-3) Live after Death di Iron Maiden, Rock, 25 $

Album: (978-0-789-01-2) Master of Puppets di Metallica, null, 25 $

Solution 8.n)

We could implement the ShoppingCart class in the following way:

package bookstore.data;

import java.util.ArraylList;
import java.util.List;

public class ShoppingCart {
private static final int ITEMS_MAX_NUMBER = 4;
private Item[] items;

public ShoppingCart() {
items = new Item[ITEMS_MAX_ NUMBER];

}

public void add(Item item) {
for (int i = ©0; i < items.length; i++) {
if (items[i]==null) {
items[i] = item;
return;
}
}
System.out.println("Cannot add Item: shopping cart full!");

}

public boolean isEmpty() {
return items[0] == null;

}

243

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

3

public int calculatePrice() {

}

int shoppingCartPrice = 0;
for (Item item : items) {
shoppingCartPrice += item.getPrice();

3

return shoppingCartPrice;

public String toString() {

String shoppingCartDescription =
"The shopping cart contains the following items:\n";
for (Item item : items) {
shoppingCartDescription += item + "\n";

3

return shoppingCartDescription;

While we could implement the ShoppingCartTest class (within the bookshop. test package)
in the following way:

package bookstore.test;
import bookstore.data.*;
import bookstore.util.*;

public class ShoppingCartTest {
public static void main(String[] args) {

244

Book jfaVvoll = new Book('"979-12-200-4915-3", "Java for Aliens Vol. 1",
"Claudio De Sio Cesari'", 25, LiteraryGenreUtils.HANDBOOK);

Book jfaVol2 = new Book('"979-12-200-4916-0","Java for Aliens Vol. 2",
"Claudio De Sio Cesari'", 25, LiteraryGenreUtils.HANDBOOK);

Album lad = new Album("979-0-236-44-3",'"Live after Death",'"Iron Maiden",
25, MusicalGenreUtils.ROCK);

Album mop = new Album("978-0-789-01-2","Master of Puppets","Metallica",
25, MusicalGenreUtils.ROCK);

Album tt = new Album("978-0-789-01-9","Tokyo Tapes'", "Scorpions", 22,
MusicalGenreUtils.ROCK);

ShoppingCart shoppingCart = new ShoppingCart();

System.out.println("ShoppingCart empty = " + shoppingCart.isEmpty());

System.out.println("Adding the book " + jfaVvoll);

shoppingCart.add(jfavoll);

System.out.println("Adding the book " + jfavol2);

shoppingCart.add(jfavol2);

System.out.println("Adding the album " + lad);

shoppingCart.add(lad);

System.out.println("Adding the album " + mop);

shoppingCart.add(mop);

System.out.println("Adding the album " + tt);

shoppingCart.add(tt);

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

System.out.println("ShoppingCart Empty = " + shoppingCart.isEmpty());
System.out.println(shoppingCart);

}
The output of the ShoppingCartTest class follows:

ShoppingCart empty = true

Adding the book Book: (979-12-200-4915-3) Java for Aliens Vol. 1 di Claudio De Sio Cesari,
Handbook, 25 $

Adding the book Book: (979-12-200-4916-0) Java for Aliens Vol. 2 di Claudio De Sio Cesari,
Handbook, 25 $

Adding the album Album: (979-0-236-44-3) Live after Death di Iron Maiden, Rock, 25 $

Adding the album Album: (978-0-789-01-2) Master of Puppets di Metallica, Rock, 25 $

Adding the album Album: (978-0-789-01-9) Tokyo Tapes di Scorpions, Rock, 22 $

Cannot add Item: shopping cart full!

ShoppingCart Empty = false

The shopping cart contains the following items:

Book: (979-12-200-4915-3) Java for Aliens Vol. 1 di Claudio De Sio Cesari, Handbook, 25 $

Book: (979-12-200-4916-0) Java for Aliens Vol. 2 di Claudio De Sio Cesari, Handbook, 25 $

Album: (979-0-236-44-3) Live after Death di Iron Maiden, Rock, 25 $

Album: (978-0-789-01-2) Master of Puppets di Metallica, Rock, 25 $

Solution 8.0) Varargs, True or False:

1. True.
2. False.
3. False.
4. True.
S. True.
6. True.
7. False.
8. True.
9. False.
10. True.

Solution 8.p)

The true answers are the 1, the 2, the 8 and the 5. The number 5 is true because the inherited
method is implicitly public, and redefining it without the public modifier, we are making it less

245

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

accessible than the inherited one. In fact, by compiling class D, we will get the following error:

error: metodo() in D cannot implement method() in A
void method () {}
N

attempting to assign weaker access privileges; was public
1 error

Solution 8.q)

The correct statements are 2, 3 and 4.

Solution 8.r)

The right answer is number 3. In fact, the print() method, which takes a double as input, of
the superclass PrintNumber is always called, and this explains the format of the output. The
reason why the method in the PrintInteger subclass is not called in virtual mode, is because it
is not an override, since the type of parameter is different between the two methods. Since this
is not an override, using a superclass reference, the only method that can be called, is precisely
that of the superclass.

Solution 8.s)

The only correct answer is number 4.

Solution 8.1)

Overload: since a method is uniquely determined by its signature, in a class (or an interface)
it is possible to create multiple methods with the same identifier but with a different list of
parameters. In cases like this, we can speak of method overloading.
Override: it allows to rewrite in a subclass a method inherited from a superclass (or
interface).
We can obtain an example of a subclass, which implements both concepts, by modifying the
classes of exercise 8.r:

public class PrintNumber {

public void print(double number){
System.out.print(number);

N

46

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

public class PrintInteger extends PrintNumber {
//overload
public void print(int number) {
System.out.print(number);

3

//override
public void print(double number) {
System.out.print(number);

}

Solution 8.u)

The correct statements are the numbers 1 and 4.

Statement 2 is not correct because the return type of the SumInteger class is covariant (see
section 8.2.3.1). Statement 3 is not correct because there is autoboxing-unboxing, which we
have already discussed in sections 3.3.2 and 4.3.4.1, and which we will further discuss in sections
12.1.2 and 13.6.

The number 4 is correct because if for example we execute this code:

SumInteger sumInteger = new SumInteger();
sumInteger.sum(1.0, 1.0);

we will get this exception at runtime:

Exception in thread "main" java.lang.ClassCastException:
java.base/java.lang.Double cannot be cast to

java.base/java.lang.Integer
at SumInteger.sum(SumInteger.java:4)
at SumInteger.main(SumInteger.java:9)

(Much of Chapter 9 is dedicated to exception handling. ’
Solution 8.v)

A possible solution could be the following:

public class SumInteger extends SumNumber {
@Override
public Integer sum(Number n1, Number n2) {
if (n1 == null || n2 == null) {
System.out.println("Impossible to sum a null operand, " +
"retrieving the default value");

247

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

return Integer.MIN_VALUE;
} else if (!(nl1 instanceof Integer && n2 instanceof Integer)){
System.out.println("Pass integer variables only, " +
"retrieving the default value");

} return Integer.MIN_VALUE;

return (Integer)nl + (Integer)n2;

}
By performing the following main() method in fact:

public static void main(String args[]) {
SumInteger sumInteger = new SumInteger();
sumInteger.sum(1.0, 1.0);
sumInteger.sum(null, 1.0);

3

we will get the following output and no exceptions:

Pass integer variables only, retrieving the default value
Impossible to sum a null operand, retrieving the default value

Note that the first check on the nullity of the parameters is necessary because it is not possible
to use the cast on a null variable, nor use the + operator.

Solution 8.w)

A polymorphic parameter is a parameter of a declared method of a certain type (maybe
abstract), but that will point to an instance of its own subclass at runtime.

Heterogeneous collections are collections of different objects, such as an array of Number,
which contains objects of its subclasses such as Integer.

Avirtual call to a method is obtained, when a method is invoked using a reference of a super-
class (that can be abstract) that is actually redefined in a subclass.

Solution 8.x)

Let’s rewrite the Contact and Special classes by eliminating the printDetails() method,
and replace it with the override of the toString() method. First, let’s also insert the following
toString() method within the Entity class

@Override

public String toString() {
return "Id=" + getId();

3
Let’s call this method in the toString() method of the Contact subclass in the following way:

248

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

@Override
public String toString() {
return super.toString() + "\nName=" + name +
"\nPhone number=" + phoneNumber + "\nAddress=" + address;

}
So, we can greatly simplify the toString() method of the Special class:

@Override
public String toString() {
return super.toString() + "\nRingtone=" + ringtone;

}
We could implement the PhoneBook class in the following way (changes in bold):

package phonebook.data;

public class PhoneBook implements Data {
private static PhoneBook instance;
public Contact[] contacts;

private PhoneBook () {
contacts = new Contact[]{new Contact('"Claudio De Sio Cesari",
"13, Java Street", "131313131313"),

new Contact("Stevie Wonder", "10, Music Avenue", "1010101010"),

new Contact("Gennaro Capuozzo", "1, Four Days of Naples Square",
"11314331413211"),

new Special("Mario Ruoppolo”, "Neruda Street, 3", "333333",
"The Postman"),

new Special("Vincenzo Malinconico", "Courts Street, 8", '"888888",
"Tuca Tuca"),

new Special("Logan Howlett", "Canada Square, 6", "66666", "Hurt")

}
}
public static PhoneBook getInstance() {
if (instance == null) {
instance = new PhoneBook();
}
return instance;
}

public Contact[] getContacts() {
return contacts;

}

public Special[] getSpecialContacts() {
Special[] specialContactsFound = new Special[contacts.length];
for (int 1 = 0, j = 0; i < contacts.length; ++i) {
System.out.println(contacts[i]);

249

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

if (contacts[i] == null) {
break;
}

if (contacts[i] instanceof Special) {

specialContactsFound[j] = (Special)contacts[i];
J++;

}
}

return specialContactsFound;

}
While the User class may undergo small changes (in bold):

package phonebook.business;
import phonebook.data.*;

public class User {
public Contact[] searchContactsByName(String name) {
Contact[]contacts = PhoneBook.getInstance().getContacts();
Contact []JcontactsFound = new Contact[contacts.length];
for (int i = 0, j = ©; 1 < contactsFound.length; i++) {
if (contacts[i] == null) {
break;

if (contacts[i].getName().toUpperCase().contains(name.toUpperCase())) {
contactsFound[j] = contacts[i];
J++;
}
}
return contactsFound;

}

public Special[] searchSpecialContactsByName(String name) {
Special[]specialContacts = PhoneBook.getInstance().getSpecialContacts();
Special[]specialContactsFound = new Special[specialContacts.length];
for (int i = ®, j = @; 1 < specialContacts.length; i++) {
if (specialContacts[i] == null) {
break;

if (specialContacts[i].getName().toUpperCase().contains(name.toUpperCase())) {
specialContactsFound[j] = specialContacts[i];
J++;
}
}

return specialContactsFound;

250

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

Also for the classes SearchContacts and SearchSpecialContacts the changes are minimal
(in bold), and concern the printing of objects using the toString() method, instead of the
printDetails() method. The SearchContacts class follows:

package phonebook.ui;

import phonebook.data.*;
import phonebook.business.User;
import java.util.Scanner;

public class SearchContacts {
public static void main(String args[]) {
System.out.println("Search Contacts");
System.out.println();
var user = new User();
System.out.println("Enter name or part of the name to be searched");
Scanner scanner = new Scanner(System.in);
String input = scanner.nextLine();
Contact[] foundContacts = user.searchContactsByName(input);
System.out.println("Contacts found with name containing \"" + input
4L H\HH);

for (Contact contact : foundContacts) {

if (contact !'= null) {

System.out.println(contact + "\n");
}

3
And finally, the SearchSpecialContacts class:

package phonebook.ui;

import phonebook.data.*;

import phonebook.business.User;
import java.util.Scanner;

public class SearchSpecialContacts {
public static void main(String args[]) {

System.out.println("Search Special Contacts");

System.out.println();

var user = new User();

System.out.println("Enter name or part of the name to be searched");

Scanner scanner = new Scanner (System.in);

String input = scanner.nextLine();

Special[] specialContactsFound =
user .searchSpecialContactsByName (input);

System.out.println("Special Contacts found with name containing \"" +
input + "\H”);

251

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

for (Special special : specialContactsFound) {
if (special != null) {
System.out.println(special + "\n");

}

Solution 8.y)

We could write the getOrdinaryContacts() method in the PhoneBook class as follows:

public Contact[] getOrdinaryContacts() {
Contact[] ordinaryContactsFound = new Contact[contacts.length];

for (int i = ©, j = ©; i < contacts.length; ++i) {
if (contacts[i] == null) {
break;

if (!(contacts[i] instanceof Special)) {
ordinaryContactsFound[j] = contacts[i];
J++;

3

return ordinaryContactsFound;
}
While the method looks searchOrdinaryContactsByName() in the User class could be as
follows:
public Contact[] searchOrdinaryContactsByName(String name) {

Contact[]JordinaryContacts = PhoneBook.getInstance().getOrdinaryContacts();
Contact[]ordinaryContactsFound = new Contact[ordinaryContacts.length];

for (int i = ©, j = ©; 1 < ordinaryContacts.length; i++) {
if (ordinaryContacts[i] == null) {
break;

if (ordinaryContacts[i].getName().toUpperCase().contains(name.toUpperCase())) {
System.out.println(ordinaryContacts[i]);
ordinaryContactsFound[j] = ordinaryContacts[i];
J++;

3

return ordinaryContactsFound;

252

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

Finally, we could implement the SearchOrdinaryContacts class as follows:

package phonebook.ui;

import phonebook.data.*;

import phonebook.business.User;
import java.util.Scanner;

public class SearchOrdinaryContacts {
public static void main(String args[]) {
System.out.println("Search Ordinary Contacts");
System.out.println();
var user = new User();
System.out.println("Enter name or part of the name to be searched");
Scanner scanner = new Scanner(System.in);
String input = scanner.nextLine();
Contact[] ordinaryContactsFound = user.searchOrdinaryContactsByName(input);
System.out.println("Ordinary Contacts found with name containing \"" +
lnpUt + Il\llll);

for (Contact ordinary : ordinaryContactsFound) {

if (ordinary != null) {

System.out.println(ordinary + "\n");
}

Solution 8.z)

We could implement the required ContactFactory class, creating an overload for the method
called getContact():

package phonebook.data;

import phonebook.data.Special;
import phonebook.data.Contact;

public class ContactFactory {

public static Contact getContact(String name, String phoneNumber,
String address) {
return new Contact(name, phoneNumber, address);

}

public static Special getContact(String name, String phoneNumber,
String address, String ringtone) {
return new Special(name, phoneNumber, address, ringtone);

253

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

We have changed the constructor of the PhoneBook class as follows (changes in bold):

private PhoneBook () {
contacts = new Contact[] {
new Contact("Claudio De Sio Cesari'","13, Java Street'", '"131313131313"),
new Contact("Stevie Wonder","10, Music Avenue",6 "1010101010"),
new Contact("Gennaro Capuozzo",
"1, Four Days of Naples Square","1111111111"),
new Special("Mario Ruoppolo", "Neruda Street, 3",'"333333",
"The Postman"),
new Special("Vincenzo Malinconico", "Courts Street, 8", '888888",
"Tuca Tuca"),
new Special("Logan Howlett", "Canada Square, 6",'"66666","Hurt"),
null,
null,
null,
null
j
}

We have modified the User class, not only by adding the required add() method, but also by
introducing the phoneBook instance variable, and a constructor that initializes it (changes in
bold):

package phonebook.business;
import phonebook.data.*;

public class User {
private PhoneBook phoneBook;

public User() {
phoneBook = PhoneBook.getInstance();
}

public Contact[] searchContactsByName(String name) {
Contact[]contacts = phoneBook.getContacts();
Contact[]contactsFound = new Contact[contacts.length];
for (int i = ©®, j = ©; 1 < contacts.length; i++) {
if (contacts[i] == null) {
break;
}
if (contacts[i].getName().toUpperCase().
contains(name.toUpperCase())) {
contactsFound[j] = contacts[i];
j++;
}
}

return contactsFound;

254

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

public Special[] searchSpecialContactsByName(String name) {
Special[]specialContacts = phoneBook.getSpecialContacts();
Special[]specialContactsFound = new Special[specialContacts.length];

for (int i = ©, j = 0; 1 < specialContacts.length; i++) {

if (specialContacts[i] == null) {
break;

}

if (specialContacts[i].getName().toUpperCase().

contains(name.toUpperCase())) {

specialContactsFound[j] = specialContacts[i];
J++;

}

return specialContactsFound;

}

public Contact[] searchOrdinaryContactsByName(String name) {
Contact[]ordinaryContacts = phoneBook.getOrdinaryContacts();
Contact[]JordinaryContactsFound = new Contact[ordinaryContacts.length];

for (int i = @, j = 0; 1 < ordinaryContacts.length; i++) {

if (ordinaryContacts[i] == null) {
break;

}

if (ordinaryContacts[i].getName().toUpperCase().

contains(name.toUpperCase())) {

System.out.println(ordinaryContacts[i]);
ordinaryContactsFound[j] = ordinaryContacts[i];
J++;

}

return ordinaryContactsFound;

}

public void add(Contact contactToAdd) {
Contact[] contacts = phoneBook.getContacts();
for (int i = 0; i < contacts.length; ++i) {

if (contacts[i] == null) {
contacts[i] = contactToAdd;
break;

}

}

In fact, if we had not also created the instance variable and the constructor, we could have had

255

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 8 Exercise Solutions

an unexpected situation regarding the class SearchContacts, which we decided to modify it in
the following way (changes in bold):

package phonebook.ui;

import
import
import

public

phonebook.data. *;
phonebook.business.User;
java.util.Scanner;

class SearchContacts {

public static void main(String args[]) {

}

System.out.println("Search Contacts");
System.out.println();
var user = new User();
Contact newContact = ContactFactory.getContact (

"Molly Malone", "123456789", "Suffolk St, Dublin 2, D62 KX63, Ireland");
Special specialContact = ContactFactory.getContact(

"Phil Lynott", "987654321", "Harry St, Dublin, Ireland", "Rosalie");
user .add(newContact);
user.add(specialContact);
System.out.println("Enter name or part of the name to be searched");
Scanner scanner = new Scanner (System.in);
String input = scanner.nextLine();
Contact[] foundContacts = user.searchContactsByName(input);
System.out.println("Contacts found with name containing \"" + input

4L |l\l||l);
for (Contact contact : foundContacts) {
if (contact != null) {

System.out.println(contact + "\n");

}

If we had not introduced the variable and the constructor in the PhoneBook class, the objects
instantiated in the main() method newContact and specialContact, would have had id =1
and id = 2 respectively. In fact, the getSerialNumber () method of the Counter class, called by
the constructor of the Contact class, would have been called first for these two instances, while
the getInstance() method of the PhoneBook class, which in turn would have initialized the
contact array, would have been called later. Therefore, we would have had that id of the original
contacts created in the constructor of the PhoneBook class, would have started from number 3.

256

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9
Exercises

Exceptions and assertions

Exception handling is a key topic, it is very important to learn every detail (they are not so
many). The assertions are much less used, but could be used profitably.

Exercise 9.a) Exceptions and Errors Handling, True or False:

1. Any exception that extends ArithmeticException is an unchecked exception.

2. An Error differs from an Exception because it cannot be launched; in fact, it does not
extend the Throwable class.

3. The following code:

int a = 10;
int b = 0;
try {

int ¢ = a/b;
System.out.println(c);

}

catch (ArithmeticException exc) {
System.out.println("Division by zero...");

}

catch (NullPointerException exc) {
System.out.println("Null reference...");

}

catch (Exception exc) {
System.out.println("Generic exception...");

}

257

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercises

finally {
System.out.println("Finally!");
}

will produce the following output:

Division by zero...

Generic exception...
Finally!

4. The following code:

int a = 10,
int b = 09;
try {

int ¢ = a/b;
System.out.println(c);

}

catch (Exception exc) {
System.out.println("Generic exception...");

}

catch (ArithmeticException exc) {
System.out.println("Division by zero...");

catch (NullPointerException exc) {

System.out.println("Null reference...");
}
finally {

System.out.println("Finally!");
}

will cause an exception at runtime.

5. The throw keyword allows you to “throw” only the subclasses of Exception that are de-
fined by the programmer.

6. The throw keyword allows you to “throw” only the subclasses of Exception.

7. If a method uses the throw keyword, in the same method the exception to be thrown
must be handled, or the method itself must use a throws clause.

8. The Error class cannot be extended.

9. If a m2() method overrides a m2() method inherited from the superclass, it can declare
new exceptions with the throws clause, only if these are subclasses with respect to those
declared by the throws clause of the m2() method of the superclass.

10. From version 1.4 of Java it is possible to “wrap” another exception in an exception.

258

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercises

Exercise 9.b) Exception Handling, True or False:

1. If an assertion is not verified in an application, we must talk about bugs.
2. An assertion that is not verified causes the JVM to launch an AssertionError.
3. The preconditions serve to test the correctness of the parameters of public methods.

4. The use of assertions is not recommended to test the correctness of data entered by a
user.

5. A postcondition is useful to verify that an assertion is verified at the end of a method.
6. An internal invariant allows to test the correctness of the flows within the methods.

7. A class invariant is a particular internal invariant that must be verified for all instances
of a certain class, at any time of their life cycle, except during the execution of some
methods.

8. An invariant on the execution flow, it is usually an assertion with a syntax like:
assert false;

9. It is not possible to compile a program that makes use of assertions with the JDK 1.3.

10. It is not possible to run a program that makes use of assertions with the JDK 1.8.

Consider the classes created in the exercises of Chapter 8: File, SourceFile, Editor, IDE and
JavalDE. We also consider the addText(String) method of the SourceFile class we created in
exercise 8.f, which we coded in the following way:

public void addText(String text) {
if (content == null) {
content ="";

}
if (text != null) {

content += text;

}

The control of the if clause can certainly be improved. What would you use in this case, asser-
tions or exceptions?

259

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercises

Exercise 9.d)

(SPOILER ALERT: next lines will reveal the solution of the previous
exercise!)

After reading the solution of the previous exercise, use the keywords throw and (possibly)
throws to handle any exceptions in the addText(String) method mentioned in the previous
exercise.

Exercise 9.e)

Now let’s consider the method addText(String, int) that we created in exercise @
8.g and that we coded in the following way:

public void addText(String text, int position) {
final int length = content.length();
if (content != null && text != null && position > 0
&& position < length) {
content = content.substring(®, position) + text +
content.substring(position);

3

Handle an exception (or multiple exceptions) using the try-catch keywords, and possibly also
the finally clause.

Exercise 9.1)

After doing the previous exercise, create a SourceFileTest test class to verify that @
exception handling works correctly.

Exercise 9.g)

Consider the sources created with the exercises of Chapter 6. Create custom ex- @
ceptions to handle unexpected situations. In particular, create an exception

that is triggered in the Purse class constructor when too many coins are specified, call it
FullPurseException. Handle the exception in the constructor by instantiating the object with
a limited number of elements (i.e. without changing the behavior already defined in the exer-
cise of Chapter 6). Also handle the NullPointerException (which statement could generate
this exception?).

260

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercises

Exercise 9.h)

Consider the sources created with the exercises of Chapter 6. Use custom exception @
handlingtohandleunexpectedsituations.Inparticular,usethe Ful1PurseException
exception to be thrown in the add() method we defined in the following way:

public void add(Coin coin) {
System.out.println("Let's try adding one " +
coin.getDescription());
int freeIndex = firstFreeIndex();
if (freeIndex == -1) {
System.out.println("Purse full! The coin " +
coin.getDescription() + " has not been added!");
} else {
coins[freeIndex] = coin;
System.out.println(coin.getDescription() + " has been added");

}

Let the FullPurseException exception be thrown appropriately. Also handle any other
exceptions.

Exercise 9.i)

Consider the sources created with the exercises of Chapter 6. Create custom excep- @
tionstohandle unexpected situations. In particular, use the CoinNotFoundException
exception to be thrown in the withdraw() method that we defined in the following way:

public Coin withdraw(Coin coin) {
System.out.println("Let's try to get a " +
coin.getDescription());
Coin foundCoin = null;
int foundCoinIndex = foundCoinIndex(coin);

if (foundCoinIndex == -1) {
System.out.println("Coin not found!");
} else {

foundCoin = coin;
coins[foundCoinIndex] = null;
System.out.println("One " + coin.getDescription() + " withdraw");

}

return foundCoin;

}

Let the CoinNotFoundException exception be thrown appropriately. Also handle any other
exceptions.

261

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercises

Exercise 9.1)

Let’s consider the sources created with the exercises created of Chapter 6. Modify @
the CoinsTest class to correctly handle the FullPurseException exception.

Exercise 9.m)

Add assertions in the Purse class constructor.

Exercise 9.n)
Which of the following statements are correct?
1. The RuntimeException are unchecked exception.
2. ArithmeticException is a checked exception.
3. ClassCastException is an unchecked exception.

4. NullPointerException is a checked exception.

Exercise 9.0)

Which of the following statements are correct?

. In the throws clause it is possible to declare only checked exceptions.
. In the throws clause it is possible to declare only unchecked exceptions.
. In the throws clause it is possible to declare a Nul1lPointerException.

1

2

3

4. With the throw keyword it is possible to throw only checked exceptions.
5. With the throw clause it is possible to throw only unchecked exception.
6

. The throws clause is mandatory if a checked exception could be launched in our
method.

7. A method that declares a throws clause, can only be invoked if it is handled within a
try-catch block.

Exercise 9.p)

Which of the following statements are correct?

N

62

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercises

1. New exceptions can only be defined as checked exception.

2. If we define a subclass of NullPointerException, it can be caught as a
NullPointerException.

3. If we define a subclass of NullPointerException, it will be caught instead of the
NullPointerException.

4. If we define a subclass of ArithmeticException, it will be thrown in case there is a prob-
lem in an arithmetic operation.

Exercise 9.q)

Not taking into account the try-with-resources construct, the finally block is mandatory
(choose all valid statements):

1. When there are no catch blocks after a try block.

2. When there are no try blocks before a catch block.

3. When there are at least two catch blocks after a try block.
4. Never.

Considering the following method:

public void methodThatThrowsAnException() throws ArrayIndexOutOfBoundsException{
//INSERT CODE HERE
}

Choose from the following snippets those that could be written in the method
methodThatThrowsAnException() method, so that it is valid:

1. throw new ArrayIndexOutOfBoundsException();

2. int i=0, j=0;
try {
i=1i/3;
} catch(ArithmeticException e) {
throw new ArrayIndexOutOfBoundsException ();
}

3. int i = 0;
4. System.out.println();

263

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercises

Exercise 9.s) @,
Considering the following class: @

public class Exercise9S {

public static void main(String args[]) throws NullPointerException {
Exercise9S e = new Exercise9S();
e.method();

}

public NullPointerException method() throws NullPointerException {
String s = null;
try {
s.toString();
} catch(ArithmeticException e) {
throw new NullPointerException ();
}

return null;

Which of the following statements are correct?

. The code does not compile because the method() method cannot return

NullPointerException.

. The code does not compile because the method() method returns null and not a

NullPointerException.

. The code does not compile because the main() method does not declare the right excep-

tion in its throws clause.

. The code compiles but at runtime ends with a Nul1lPointerException.

6. The code compiles but at runtime ends with an Exception.

The code compiles but at runtime ends with an ArithmeticException.

Exercise 9.t)

Create a SlidingDoor class that declares two methods, open() and close(), where the latter
must be compatible to be called with the try-with-resources technique.

Exercise 9.u)

Considering the solution of the exercise 9.t (i.e. the S1idingDoor class): write a simple class that
tests its operation by using the try-with resource construct.

264

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercises

Let’s continue with exercise 8.u where we had verified that the following classes compile with-
out errors, but that SumInteger could throw an exception at runtime.

public abstract class SumNumber {
public abstract Number sum(Number ni1, Number n2);

3

public class SumInteger extends SumNumber{
@Override
public Integer sum(Number n1, Number n2) {
return (Integer)nl + (Integer)n2;
}
}

In fact, with the following instructions:

SumInteger sumInteger = new SumInteger();
sumInteger.sum(1.0, 1.0);

we will get the following exception at runtime:
Exception in thread "main" java.lang.ClassCastException:

java.base/java.lang.Double cannot be cast to
java.base/java.lang.Integer

at SumInteger.sum(SumInteger.java:4)
ege ge j 19

In the exercise 8.v, we asked to make the implementation of the SumInteger class robust, and
the result was the following:

public class SumInteger extends SumNumber {
@Ooverride
public Integer sum(Number n1, Number n2) {
if (n1 == null || n2 == null) {
System.out.println("Impossible to sum a null operand, " +
"retrieving the default value");
return Integer.MIN_VALUE;
} else if (!(nl1 instanceof Integer && n2 instanceof Integer)) {
System.out.println("Pass integer variables only, " +
"retrieving the default value");
return Integer.MIN_VALUE;
}

return (Integer)nl + (Integer)n2;
}

Now that we know the theory of exceptions, redesign the summarized class using exception
handling.

265

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercises

Create a simple test class for the SumInteger class that we created in exercise 9.v.

266

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9
Exercise Solutions

Exceptions and assertions

Solution 9.a) Exceptions and Errors Handling, True or False:

1. True, because ArithmeticException is subclass of RuntimeException.
2. False.

3. False, will produce the following output:

Division by zero...

. False, will produce a compile-time error (the order of the catch blocks is not valid).
. False.

. False, only the subclasses of Throwable.

True.

. False.

© ©® N o u h

True.

10. True.

267

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

Solution 9.b) Exception Handling, True or False:

1. True.
2. True.
3. False.
4. True.
5. True.
6. True.
7. True.
8. True.
9. True.
10. True.

Solution 9.c)

As we saw in section 9.6.3.1, we should never use assertions to test the parameters of a public
method. So undoubtedly it is more correct to use exception handling.

Solution 9.d)

A possible implementation could be the following:

public void addText(String text) throws RuntimeException {
if (content == null) {
content ="";

}
if (text !'= null) {

throw new RuntimeException("text = null");

}

content += text;

}

Note that we have thrown a RuntimeException, but we could have thrown any other exception
(e.g. Exception itself). Furthermore, the throws clause next to the method declaration is not
technically mandatory, but advisable.

268

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

Solution 9.e)

The code could be similar to the following:

public void addText(String text, int position) {
try {
if (text !'= null) {
content = content.substring(®, position) + text +
content.substring(position);

}

} catch (NullPointerException exc) {
System.out.println("The content is null : " + exc.getMessage());
content = "" + text;

} catch (StringIndexOutOfBoundsException exc) {
System.out.println("The index " + position + " is not valid : " +

exc.getMessage());
content = (position < 0@ ? text + content : content + text);

}

In this example we have only checked if the text to be added is null, in which case no opera-
tion is performed. Then we catch the NullPointerException that would occur in the case the
content variable was null. In the catch clause we printed a meaningful message and main-
tained consistency with the method previously presented.

We also handled a StringIndexOutOfBoundsException that would be thrown if the specified
position contained a negative number or a number greater than the size of the file’s contents.
Also in this case, in the catch clause we first printed a meaningful message, and then imple-
mented a solution. In particular, we have ensured that (also using a ternary operator), if the
position variable is specified with a negative value, then the text variable is placed at the
beginning before the content variable (as if value @ had been specified). If instead it is set with
a value higher than the last index available for the content, then the text variable is added to
the end of the content.

At the end, we can avoid the use of the finally clause.

Solution 9.1)

The code of the SourceFileTest class could be the following:

public class SourceFileTest {
public static void main(String args[]) {
SourceFile sourceFile = new SourceFile("Test.java",
FileType.JAVA, "public class MyClass {\n\r");
System.out.println(sourceFile.getContent());
// Test addText(String) correct
sourceFile.addText("}");

269

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

System.out.println(sourceFile.getContent());

// Test addText(String,int) correct

sourceFile.addText("//Test adding text\n\r'", 23);

System.out.println(sourceFile.getContent());

// Test addText(String,int) incorrect

sourceFile.addText("//Test adding text\n\r'", -1);

System.out.println(sourceFile.getContent());

// Test addText(String,int) incorrect

sourceFile.addText("//Test adding text\n\r'", 100);

System.out.println(sourceFile.getContent());

SourceFile emptySourceFile = new SourceFile("EmptyFile.c",
FileType.C);

emptySourceFile.addText("//Test adding text\n\r", 3);

System.out.println(emptySourceFile.getContent());

SourceFile emptySourceFile2 = new SourceFile("EmptyFile2.cpp",
FileType.C_PLUS_PLUS);

emptySourceFile2.addText("//Test adding text\n\r'");

Solution 9.g)

The new implementation of the FullPurseException class, could be the following:

public class FullPurseException extends Exception {
public FullPurseException (String message) {
super (message);
}

3

The Purse class constructor implementation, with the new requirements could be transformed
as follows:

public Purse(int... values) {
try {
int numberOfCoins = values.length;
for (int i = ©; i < numberOfCoins; i++) {
if (i >= 10) {
throw new FullPurseException (
"Only the first 10 coins have been inserted!");
}
coins[i] = new Coin(values[i]);
} catch (FullPurseException | NullPointerException exc) {
System.out.println(exc.getMessage());
}

270

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

Note that passing null as argument to the constructor, we could cause aNullPointerException
when the length variable is used.

With a multi-catch we guaranteed the functioning of the constructor without interrupting
the program, printing the message of the problem that could occur. However, it is not cor-
rect in this case to manage these two types of exception in the same way, since in the case of
NullPointerException the printed message will simply be:

which is not very explanatory!
It would be better to handle the two exceptions in the following way:

public Purse(int... values) {
try {
int numberOfCoins = values.length;
for (int i = ©; i < numberOfCoins; i++) {
if (i >= 10) {
throw new FullPurseException (
"Only the first 10 coins have been inserted!");
}
coins[i] = new Coin(values[i]);
}
// } catch (FullPurseException | NullPointerException exc) {
} catch (FullPurseException exc) {
System.out.println(exc.getMessage());
} catch (NullPointerException exc) {
System.out.println("The purse has been created empty");

}
3
Solution 9.h)

The implementation of the add() method of the Purse class with the new requirements, could
be updated as follows:

public void add(Coin coin) throws FullPurseException {
try {
System.out.println("Let's try adding one " +
coin.getDescription());
} catch (NullPointerException exc) {
throw new NullPointerException("The added coin was null");

}
int freeIndex = firstFreeIndex();
if (freeIndex == -1) {

throw new FullPurseException("Purse full! The coin "
+ coin.getDescription() + " has not been added!");

271

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

} else {
coins[freeIndex] = coin;
System.out.println(coin.getDescription() + " has been added");

}
b

Note that we also handled the Nul1lPointerException by capturing it and raising it with a mes-
sage better than “null”. Also in this case, the exception would occur if the argument was null, as
soon as the getDescription() method was called on the coin object (which would be null).

Solution 9.i)

The requested exception could be the following:

public class CoinNotFoundException extends Exception {
public CoinNotFoundException(String message) {
super (message);
}
}

The code of the withdraw() method of the Purse class, with the new requirements, could be
updated as follows:

public Coin withdraw(Coin coin) throws CoinNotFoundException {

try {

System.out.println("Let's try to get a " +
coin.getDescription());

} catch (NullPointerException exc) {
throw new NullCoinException();

}

Coin foundCoin = null;

int foundCoinIndex = foundCoinIndex(coin);

if (foundCoinIndex == -1) {
throw new CoinNotFoundException("Coin not found!");
} else {

foundCoin = coin;
coins[foundCoinIndex] = null;
System.out.println("One " + coin.getDescription() + " withdrawn");

}

return foundCoin;
}
Note that we also handled the NullPointerException by capturing it and raising it with a mes-
sage better than “null”. Also in this case, the exception would occur if the argument was null, as
soon as the getDescription() method is called on the coin object (which would be null). We
can improve this mechanism by creating another custom exception:

272

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

public class NullCoinException extends RuntimeException {
public NullCoinException() {
super("The passed coin was null");
}
}

Note that NullCoinException extends RuntimeException, and therefore it is an unchecked
exception that does not need to be declared in the throws clause of the method that launches
it. And then the add() method can be changed as follows

public void add(Coin coin) throws FullPurseException {
try {
System.out.println("Let's try adding one " +
coin.getDescription());
} catch (NullPointerException exc) {
throw new NullCoinException();

}
int freeIndex = firstFreeIndex();
if (freeIndex == -1) {
throw new FullPurseException("Purse full! The coin "
+ coin.getDescription() + " has not been added!");
} else {
coins[freeIndex] = coin;
System.out.println(coin.getDescription() + " has been added");
}

Solution 9.1)

As the previous exercise, the required code could be the following:

/**

* Test classe for the Coin and Purse classes.
*
* @author Claudio De Sio Cesari

*/

public class CoinsTest {

public static void main(String args[]) {

Coin twentyCentsCoin = new Coin(20);

Coin oneCentCoin = new Coin(1);

Coin oneEuroCoin = new Coin(100);

// Creation of a Purse with 11 coins

Purse purseToFail = new Purse(2, 5, 100, 10, 50, 10, 100, 200, 10, 5, 2);
// Creation of a Purse with 8 coins

Purse purse = new Purse(2, 5, 100, 10, 50, 10, 1600, 200);
purse.state();

273

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

try {
// we add a 20 cents coin

purse.add(twentyCentsCoin);
} catch (FullPurseException | NullCoinException exc) {
System.out.println(exc.getMessage());

3

try {
// we add a 1 cents coin

purse.add(oneCentCoin);
} catch (FullPurseException | NullCoinException exc) {
System.out.println(exc.getMessage());

3

try {
// We add the eleventh coin (we should get an error and the

// coin will not be added)
purse.add(oneEuroCoin);

} catch (FullPurseException | NullCoinException exc) {
System.out.println(exc.getMessage());

3

// We evaluate the status of the purse
purse.state();

try {
// we withdraw 20 cents

purse.withdraw(twentyCentsCoin);
} catch (CoinNotFoundException exc) {
System.out.println(exc.getMessage());

3

try {
// Let's add the tenth coin again

purse.add(oneEuroCoin);
} catch (FullPurseException | NullCoinException exc) {
System.out.println(exc.getMessage());

3

// We evaluate the status of the purse
purse.state();

try {
// We withdraw a non-existent currency (we should get an error)

purse.withdraw(new Coin(7));
} catch (CoinNotFoundException exc) {
System.out.println(exc.getMessage());

3

274

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

try {
//We try to add null
purse.add(null);

} catch (FullPurseException | NullCoinException exc) {
System.out.println(exc.getMessage());

}

try {
//We try to withdraw null
purse.withdraw(null);

} catch (CoinNotFoundException | NullCoinException exc) {
System.out.println(exc.getMessage());

3

//we test the passage of the null value to the purse constructor
Purse purseWithNullPointerException = new Purse(null);
purse.state();

}

whose output will be:

coin of 20 cents of EURO
coin of 1 cent of EURO
coin of 1 EURO

coin of 2 cents of EURO
coin of 5 cents of EURO
coin of 1 EURO

coin of 10 cents of EURO
coin of 50 cents of EURO
coin of 10 cents of EURO
coin of 1 EURO

coin of 2 EURO

Created coin of 10 cents of EURO
Created coin of 5 cents of EURO
Only the first 10 coins have been inserted!
Created coin of 2 cents of EURO
Created coin of 5 cents of EURO
Created coin of 1 EURO

Created coin of 10 cents of EURO
Created coin of 50 cents of EURO
Created coin of 10 cents of EURO
Created coin of 1 EURO

Created a coin of 2 EURO

The purse contains:

One coin of 2 cents of EURO

One coin of 5 cents of EURO

One coin of 1 EURO

One coin of 10 cents of EURO

One coin of 50 cents of EURO

One coin of 10 cents of EURO

One coin of 1 EURO

One coin of 2 EURO

Created
Created
Created
Created
Created
Created
Created
Created
Created
Created
Created

OO LD DD

JOI O R)

275

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

Let's try adding one coin of 20 cents of EURO
coin of 20 cents of EURO has been added
Let's try adding one coin of 1 cent of EURO
coin of 1 cent of EURO has been added
Let's try adding one coin of 1 EURO

Purse full! The coin coin of 1 EURO has not been added!
The purse contains:

One coin of 2 cents of EURO

One coin of 5 cents of EURO

One coin of 1 EURO

One coin of 10 cents of EURO

One coin of 50 cents of EURO

One coin of 10 cents of EURO

One coin of 1 EURO

One coin of 2 EURO

One coin of 20 cents of EURO

One coin of 1 cent of EURO

Let's try to get a coin of 20 cents of EURO
One coin of 20 cents of EURO withdrawn
Let's try adding one coin of 1 EURO

coin of 1 EURO has been added

The purse contains:

One coin of 2 cents of EURO

One coin of 5 cents of EURO

One coin of 1 EURO

One coin of 10 cents of EURO

One coin of 50 cents of EURO

One coin of 10 cents of EURO

One coin of 1 EURO

One coin of 2 EURO

One coin of 1 EURO

One coin of 1 cent of EURO

Created a coin of 7 cents of EURO

Let's try to get a coin of 7 cents of EURO
Coin not found!

The passed coin was nulll

The passed coin was nulll

The purse has been created empty

The purse contains:

One coin of 2 cents of EURO

One coin of 5 cents of EURO

One coin of 1 EURO

One coin of 10 cents of EURO

One coin of 50 cents of EURO

One coin of 10 cents of EURO

One coin of 1 EURO

One coin of 2 EURO

One coin of 1 EURO

One coin of 1 cent of EURO

Solution 9.m)

We could modify the Purse code in the following way:

276

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

public class Purse {

private static final int DIMENSION = 10;
private final Coin[] coins = new Coin[DIMENSION];

public Purse(int... values) {
assert coins.length == DIMENSION;
try {

int numberOfCoins = values.length;
for (int i = ©; i < numberOfCoins; i++) {
if (i >= 10) {
throw new FullPurseException (
"Only the first 10 coins have been inserted!");

3

coins[i] = new Coin(values[i]);

}
// 3} catch (FullPurseException | NullPointerException exc) {

} catch (FullPurseException exc) {
System.out.println(exc.getMessage());

} catch (NullPointerException exc) {
System.out.println("The purse has been created empty");

}
assert coins.length == DIMENSION;

aer

Note that we have defined the constant DIMENSION initialized to 10. Then, as assertions we
used a pre-condition and a post-condition. In both cases we have stated the same concept: the
length of the coins array is equal to the DIMENSION value. Note also that with these simple
assertions we are reinforcing the logic of the constructor, it is as if we were saying “whatever
happens, the value of the length of the array cannot change”. In this way our code will remain
consistent with this assertion through all the changes that will be made later.

Solution 9.n)

Only statement number 3 is correct.

Solution 9.0)

The statements number 3 and number 6 are correct. In fact, the throws clause and the throw
command can be used for every type of exception, and this excludes that the statements 1, 2,
4 and 5 are correct. Statement 7 is incorrect because the method that invokes a method that
declares a throws clause, could in turn declare the throws clause!

277

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

Solution 9.p)

None of the statements is correct.

Solution 9.qg)

Only the first statement is correct.

Solution 9.r)

All snippets are valid because, in the throws clause, the ArrayIndexOutOfBoundsException
is declared which is an unchecked exception, and which is therefore not explicitly man-
datory. Note that answer 2 throws an ArithmeticException, handles it and raises an
ArrayIndexOutOfBoundsException.

Solution 9.s)

The only correct statement is 3. Its correctness excludes the correctness of statements 4, 5 and
6. The 1 and 2 are false because NullPointerException is still a class.

Solution 9.1)

A simple implementation could be the following:

public class SlidingDoor implements AutoCloseable {
public void close(){
System.out.println("The door is closing");
}

public void open(){
System.out.println("The door is opening");

w
(]

Solution 9.u)
The solution could be as simple as the following:

public class Exercise9uU {
public static void main(String args[]) {
try (SlidingDoor slidingDoor = new SlidingDoor();) {
slidingDoor.open();
}

N

78

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 9 Exercise Solutions

whose output, once executed, will be:

The door is opening
The door is closing

Solution 9.v)
The solution with exception handling is undoubtedly simpler and more elegant:

public class SumInteger extends SumNumber {
@Override
public Integer sum(Number n1, Number n2) {
Integer result = null;
try {
result = (Integer)nl + (Integer)n2;
} catch (NullPointerException e) {
System.out.println("Impossible to sum a null operand");
} catch (ClassCastException e) {
System.out.println("Pass only integer variables");

}

return result;

-
(o)

Solution 9.z)
With the following test class:

public class Exercise9Z {
private static final String FIRST_PART_OF_THE_STRING ="The result is ";
public static void main(String args[]) {
SumInteger sumInteger = new SumInteger();
System.out.println(FIRST_PART_OF_THE_STRING + sumInteger.sum(1.0, 1.0));
System.out.println(FIRST_PART_OF_THE_STRING + sumInteger.sum(1, null));
System.out.println(FIRST_PART_OF_THE_STRING + sumInteger.sum(1, 25));

}

we can verify the expected results.

279

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10
Exercises

A Guided Example to
Object-Oriented Programming

For this chapter we have reserved summary exercises about all the topics that we have studied
so far. All exercises include programming. In particular, in the first part we will create an appli-
cation starting from the Point class that we defined in the Chapter 10, up to graphically drawing
polylines on a Cartesian plane. Then we will create an application that is capable of converting
the values expressed in the Kelvin, Celsius and Fahrenheit scale. Finally, we will create an ap-
plication that simulates a configurable and multi-user text game. From the next chapter on, we
will study more complex topics starting the third part about the “Advanced language features”,
so this is the time to reinforce our programming bases.

Exercise 10.a)

Create:

1. ThePoint class with x and y coordinates, the setter and getter methods, a constructor and
a toString() method (which is a method inherited from the Object class, and therefore
inherited in all classes).

2. TheRuler class declaring a method getDistance () which takes two objects of type Point
as input, and returns the value of the geometric distance as double type. Read the docu-
mentation and take advantage of the methods of the Math class to perform the calcula-
tions. Also consider whether to declare the method as static or not.

281

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

3. Create an Exercisel10A class, which prints the distance of two points and check if the
result is correct, using an assertion as seen in chapter 9.

In order to use the assertions, you must enable them at the time of ex-
ecution using the -ea option (see Section 9.4.2). If you use E]JE, asser-
tions should already be enabled by default. You can check inside the
EJE options as shown in figure 10.a.1. If you use another IDE instead,
please consult the IDE documentation.

EJE Options

Project | Java | Editor | EJE

JDK Path C:\Program Files\Java\jdk-13 . Change Path
Docs Path C:\Program Files\Java\jdk-13/docs Change Path

[] Show Warnings |v] Enable Assertions .‘ Java Version (13 | = Target JUM |13 |v|

Ok | Cancel ‘ Apply |

Figure 10.a.1 - Assertions enabling in EJE.

Exercise 10.b)

Starting from the previous exercise, create the Exercise10B class. This time we parameterize
the application using the array of strings args, the input parameter of the main() method. In
particular, when we launch the Exercise10B class, we need to enter the four coordinates of the
two points. For example:

java Exercisel0B 2 1 1 2

Since these variables within the main() method will be of the String type, using the documen-
tation of the Integer class, find the correct method that will allow us to transform a string into
an integer, and manage any exception.

The check made with the assertions in the previous exercise is not
required, because we cannot know in advance the values of the coor-
dinates that will be passed as input to the main() method.

282

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

Exercise 10.c)

Starting from the solution of the previous exercise, create the Exercise10C class using the
Scanner class, to acquire the coordinates of the two points from the command line. This class

must:

1. Request the insertion of the coordinates (one at a time) to the user.

2. Acquire the coordinates using the most appropriate Scanner class method (consult the
documentation).

3. If the user enters a coordinate in an incorrect format (remember that the coordinates
must be integer numbers), the program must manage the exception, print an error
message and terminate.

Below is an example of the output that the application should generate:

Enter the x coordinate of the first point

P

Enter the y coordinate of the first point

1

Point created:(2,1)

Enter the x coordinate of the second point
1

Enter the y coordinate of the second point
P

Point created:(1,2)

Distance between two points: (2,1) and (1,2) = 1.4142135623730951

Exercise 10.d)

Starting from the solution of the previous exercise, create the Exercise10d class, performing
a refactoring on the Exercise10C class, trying to limit the duplicate code and make it more
readable.

Exercise 10.e)

Starting from the solution of the previous exercise, create the class Exercise10E, @ﬁ
making sure that, if the user enters a coordinate with a wrong format (for example

by entering a letter), the application must report the error to allow the user to re-enter the
coordinate. The program must end only when all the coordinates are entered correctly and the
distance is printed. Below is an example of output that could generate the application:

283

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

£
Invalid coordinate f! All coordinates must be integers!
Please enter only integers

2

Enter the coordinate y of point 1

1

Point created: (2,1)

Enter the coordinate x of point 2

1

Enter the coordinate y of point 2

y

Invalid coordinate y! All coordinates must be integers!
Please enter only integers

foo

Invalid coordinate foo! All coordinates must be integers!
Please enter only integers

3

Point created: (1,3)

ap . = 60679 49979

A wie; 0 and =

- - - e
Exercise 10.f)

Starting from the solution of the previous exercise:

1. create the Segment class, which abstracts the concept of a straight line between two points.
This class must declare the two extreme points and the length as instance variables. Also
create the setter and getter methods you think you need to implement, a constructor and
a toString() method.

2. Create the Exercisel0F class, similar to the Exercise1@E class, which asks for the
coordinates of the two extreme points of the segment and prints its length.

Below is an example of output that could generate the application:

Please define a segment specifying its extreme points:
Edit coordinate x of the extreme point 1

2

Edit coordinate y of the extreme point 1

foo

Invalid coordinate foo! All coordinates must be integers!
Please enter only integers

3

Point created: (2,3)
Edit coordinate x of the extreme point 2
1
Edit coordinate y of the extreme point 2
1
Point created: (1,1)

egme O

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

Exercise 10.8)

In this exercise we will use a class called CartesianPlane, which will allow us to view our points
on a Cartesian plane.

Unfortunately, unless you have already studied all the chapters in this book, you shouldn’t be
able to understand all the code. However, for the sake of completeness, we report the following
code (in any case, find the class ready in the exercises file in the folder 10.g):

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;
import java.awt.BorderLayout;
import java.awt.Color;

import java.awt.Graphics;

import java.awt.Dimension;

import java.util.*;

public class CartesianPlane {
private final static int LENGTH = 600;
private final static int MID_LENGTH = LENGTH/2;
private final static int GAP = LENGTH/10;
private JFrame frame;
private JPanel panel;
private ArraylList<Point> points;

public CartesianPlane() {
frame = new JFrame('"Cartesian Plane");
panel = new CartesianPlanePanel();
points = new ArrayList<>();
setup();
addDetails();

}

private void setup() {
frame.add(panel);

}

private void addDetails() {
frame.getContentPane().setPreferredSize(new Dimension(LENGTH , LENGTH));
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setLocationRelativeTo(null);
frame.setVisible(true);

}

public void drawPoint(Point point) {
points.add(point);

285

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

panel.repaint();

}

private class CartesianPlanePanel extends JPanel {
public CartesianPlanePanel() {
setBackground(Color.lightGray);

3

protected void paintComponent(Graphics g) {
super.paintComponent(g);
drawAxes(g);
g.setColor(Color.RED);
drawPoints(g);

3

private void drawPoints(Graphics g) {
for (Point point : points) {
drawPoint(point, g);
}
}

private void drawPoint(Point point, Graphics g) {
int x = getX(point.getX(), 2);
int y = getY(point.getY(), 2);
g.drawOval(x,y,5,5);
g.filloval(x,y,5,5);
g.drawString(point.toString(), x-15, y-8);

}

private int getX(int x, int delta) {
return MID_LENGTH + (gap(x)-delta);

3

private int getY(int y, int delta) {
return MID_LENGTH - (gap(y)+delta);

3

private void drawAxes(Graphics g) {
drawReferencePoints(g);
g.setColor(Color.BLACK);
g.drawlLine (MID_LENGTH, ©, MID_LENGTH, LENGTH);
g.drawLine(©®, MID_LENGTH, LENGTH, MID_LENGTH);

3

private void drawReferencePoints(Graphics g) {
g.setColor(Color.YELLOW);
for(int 1 = 1; i < 10; i++) {
g.drawLine(GAP*i, O, GAP*i, LENGTH);
}

286

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

Eile Edit Search [nsert View Build Tools Help

13

illimport java.util.*;
pllimport javax.swing.*;

[

public class Exercise10G {
private Scanner scanner;
private CartesianPlane cartesianPlane;

public Exercise10G () {
scanner = new Scanner(System.in);

}

public void start() {

wibicl S INYOKE

L - S

EJE30.2 ClaudioDe SioCesari [@] B ¥ B3 @) #Running Jvm_. Line: 142 Column: 120 -2%

Figure 10.a.2 - The application in action.

for(int i = 1; i < 10; i++) {
g.drawLine(©®, GAP*i, LENGTH, GAP*1i);

}

private int gap(int value) {
return value*GAP;

}

public static void main(String args[]) {
SwingUtilities.invokelLater(() -> new CartesianPlane());

}

This is the first programming exercise where you will see an application that uses graphics
(the last two chapters of the book are dedicated to this topic). In any case, the purpose of our
exercise is not to understand the CartesianPlane class code, but to use this class by creating
the Exercise10G class starting from the Exercise10F class. The Exercise10G class will have to
open the window containing the Cartesian plane with the following instruction:

SwingUtilities.invokelLater(() -> cartesianPlane = new CartesianPlane());

(also import javax.swing.SwingUtilities).

287

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

Also, will have to:

1. add a new instance variable name to the Point class, with its setter and getter methods and
a new constructor.

2. Build a point with the coordinates entered by the user. Also set the name of the point,
with an automatic mechanism (for example the first point must be called P1, the second
P2, the third P3, and so on).

3. Instead of printing the point details on the console, the class must invoke the drawPoint ()
method of the CartesianPlane class.

4. Check that the points are correctly displayed on the Cartesian plane (see Figure 10.a.2).

Exercise 10.h)

Starting from the previous exercise, evolve the Exercise10G class into the Exercise10H class.
This must continue to ask the user to enter the coordinates of a point indefinitely, until the ap-
plication is closed by closing the Cartesian plane window. In this way the user can view multiple
points on the Cartesian axis.

The resolution of this exercise is very simple.

Exercise 10.i)

Starting from the previous exercise, and using the Segment class created in Exercise @@
10.f, we provide a new version of the CartesianPlane class, to which we have added

the functionality of being able to display segments (just invoke the drawSegment() method).
The new CartesianPlane class is shown below with the changes in bold (however, find the class
ready in the exercises file in folder 10.i):

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;
import java.awt.BorderLayout;
import java.awt.Color;

import java.awt.Graphics;

import java.awt.Dimension;

import java.util.*;

288

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

public class CartesianPlane {
private final static int LENGTH = 600;
private final static int MID_LENGTH = LENGTH/2;
private final static int GAP = LENGTH/10;
private JFrame frame;
private JPanel panel;
private ArraylList<Point> points;
private ArraylList<Segment> segments;

public CartesianPlane() {
frame = new JFrame('"Cartesian Plane");
panel = new CartesianPlanePanel();
points = new ArrayList<>();
segments = new ArraylList<>();
setup();
addDetails();

}

private void setup() {
frame.add(panel);

}

private void addDetails() {
frame.getContentPane().setPreferredSize(new Dimension(LENGTH , LENGTH));
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setLocationRelativeTo(null);
frame.setVisible(true);

}

public void drawPoint(Point point) {
points.add(point);
panel.repaint();

}

public void drawSegment(Segment segment) {
segments.add(segment) ;
panel.repaint();

}

private class CartesianPlanePanel extends JPanel {
public CartesianPlanePanel() {
setBackground(Color.lightGray);

}

protected void paintComponent(Graphics g) {
super.paintComponent(g);
drawAxes(g);
g.setColor(Color.RED);

289

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

drawPoints(g);
g.setColor(Color.BLUE);
drawSegments(g);

3

private void drawSegments(Graphics g) {
for (Segment segment : segments) {

Point extremePointl = segment.getExtremePointi();

drawPoint (extremePoint1, g);

Point extremePoint2 = segment.getExtremePoint2();

drawPoint (extremePoint2, g);

g.setColor(Color.BLUE);

g.drawLine(getX(extremePointl.getX()),
getY(extremePointl.getY()), getX(extremePoint2.getX()),
getY(extremePoint2.getY()));

}

private void drawPoints(Graphics g) {
for (Point point : points) {
drawPoint(point, g);
}
}

private void drawPoint(Point point, Graphics g) {
int x = getX(point.getX(), 2);
int y = getY(point.getY(), 2);
g.drawOval(x,y,5,5);
g.filloval(x,y,5,5);
g.drawString(point.toString(), x-15, y-8);

}

private int getX(int x) {
return getX(x, 0);
}

private int getY(int y) {
return getY(y, 0);
}

private int getX(int x, int delta) {
return MID_LENGTH + (gap(x)-delta);

3

private int getY(int y, int delta) {
return MID_LENGTH - (gap(y)+delta);

3

private void drawAxes(Graphics g) {

290

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

drawReferencePoints(g);
g.setColor(Color.BLACK);
g.drawlLine (MID_LENGTH, ©, MID_LENGTH, LENGTH);
g.drawLine(©®, MID_LENGTH, LENGTH, MID_LENGTH);

}

private void drawReferencePoints(Graphics g) {
g.setColor(Color.YELLOW);
for(int 1 = 1; i < 10; i++) {
g.drawLine(GAP*i, O, GAP*i, LENGTH);
}
for(int 1 = 1; i < 10; i++) {
g.drawLine(0, GAP*i, LENGTH, GAP*1i);
}
}

private int gap(int value) {
return value*GAP;

}
b

public static void main(String args[]) {
SwingUtilities.invokeLater(() -> new CartesianPlane());

b
}

Create an Exercise10I class, similar to the Exercise10H class, that allows the user to specify
the extremes points of segments that must be displayed on the Cartesian plane.

Exercise 10.j)

Starting from the solution of the previous exercise, create a Polyline class, which @
abstracts the concept of polyline. This must declare an ArrayList of segments. A
polyline has the constraint that the second extreme point of a segment must coincide with the
first extreme point of the next segment. Note that a polyline always consists of at least two seg-
ments. Then create one or more constructors, the addSegment () method which allows you to
add a segment to the polyline, and the toString() method. Handle any problems with excep-
tions, as studied in Chapter 9.
Also create a test class called PolylineTest which will have the following main() method:
public static void main(String args[]) {

testCorrectPolyline();

testCorrectPolylinewWithFourPoints();

testPolylinewWithoutSegments();

testPolylinewithOneSegment();
testPolylinewWithTwoNonConsecutiveSegmentsInConstructor();

291

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

}

testPolylineWithThreeNonConsecutiveSegmentsInConstructor();
testCorrectPolylineAddingAConsecutiveSegment();
testInvalidPolylineAddingANonConsecutiveSegment();

Implement these methods with assertions (if the test fails, an error must be thrown through an

assertion).

Exercise 10.k)

In Section 10.4.2, we ran this test with JUnit: @

import org.junit.Assert;
import org.junit.Test;

public class PointTest {
@Test
public void testDistanceOnX() {

292

3

Point pl1 = new Point(1,1);
Point p2 = new Point(1,2);
double distance = pl.distance(p2);
Assert.assertTrue(distance == 1);

@Test
public void testDistanceWithNull() {

3

Point pl1 = new Point(1,1);

Point p2 = null;

double distance = pl.distance(p2);
Assert.assertTrue(distance == -1);

@Test
public void testDistanceFromTheSamePoint() {

3

Point pl1 = new Point(1,1);
Point p2 = new Point(1,1);
double distance = pl.distance(p2);
Assert.assertTrue(distance == 0);

@Test
public void testDistanceFromAThreeDimensionalPoint() {

Point pl1 = new Point(1,1);

Point p2 = new ThreeDimensionalPoint(1,2,2);
double distance = pl.distance(p2);
Assert.assertTrue(distance == -1);

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

for the Point class:

public class Point {
private int x, y;

public Point() {
//Constructor without parameters
}

public Point(int x, int y) {
this.setXY(x, y); //this is optional
//code reuse

}

public void setX(int x) {
this.x = x; //this is mandatory
}

public void setY(int y) {
this.y = y; //this is mandatory
}

public void setXY(int x, int y) {
this.setX(x); //this is optional
this.setY(y);

}

public int getX() {
return this.x; //this is optional
}

public int getY() {
return this.y; //this is optional
}

public double distance(Point p) {
//square of the difference of the x of the two points
int tmpl = (x - p.X)*(x - p.Xx);
//square of the difference of the y of the two points
int tmp2 = (y - p.y)*(y - p-Y);
//square root of the sum of the two squares
return Math.sqrt(tmpl + tmp2);

}
and for the ThreeDimensionalPoint class:

public class ThreeDimensionalPoint extends Point {
private int z;

293

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

public ThreeDimensionalPoint() {
//Constructor without parameters

}

public ThreeDimensionalPoint(int x, int y, int z) {
this.setXYZ(x, y, z); //Code reuse

}

public void setz(int z) {
this.z = z; //this is mandatory

}

public void setXYZ(int x, int y, int z) {
this.setXY(x, y); ///Code reuse
this.setZ(z); //this is optional

}

public int getz() {
return this.z; //this is optional

}

@Override
public double distance(Point p) {
if (p instanceof ThreeDimensionalPoint) {
//Call to a private method using casting
return this.calculateDistance((ThreeDimensionalPoint)p);

}
else {

return -1; //distance not valid!
}

}

private double calculateDistance(ThreeDimensionalPoint p1) {
//square of the difference of the x of the two points
int tmpl=(getX()-pl.getX())*(getX()-pl.getX());
//square of the difference of the y of the two points
int tmp2=(getY()-pl.getY())*(getY()-pl.getY());
//square of the difference of the z of the two points
int tmp3=(z-pl.z)*(z-pl.z);
//square root of the sum of the three squares
return Math.sqrt(tmpl+tmp2+tmp3);

}

/* @Override

public double distance (ThreeDimensionalPoint p) {
//square of the difference of the x of the two points
int tmpl=(getX()-p.getX())*(getX()-p.getX());
//square of the difference of the y of the two points
int tmp2=(getY()-p.getY())*(getY()-p.getY());

294

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

//square of the difference of the z of the two points
int tmp3=(z-p.z)*(z-p.z);
//square root of the sum of the three squares
return Math.sqrt(tmpl+tmp2+tmp3);
+r/

/* @Override
public double distance(Point p) {
if (p instanceof ThreeDimensionalPoint) {

//square of the difference of the x of the two points
int tmpl=(getX()-pl.getX())*(getX()-pl.getX());
//square of the difference of the y of the two points
int tmp2=(getY()-pl.getY())*(getY()-pl.getY());
//square of the difference of the z of the two points
int tmp3=(z-pl.z)*(z-pl.z);
//square root of the sum of the three squares
return Math.sqrt(tmpl+tmp2+tmp3);

}
else {
return -1; //distance not valid!
}
7/

3

achieving failure in 50% of tests. In this exercise we will modify the PointTest class, solving the
problems highlighted by the test.

To make things easier, we recommend using an IDE such as Eclipse
which already integrates the JUnit tool.

Exercise 10.1)

Starting from the solution of Exercise 10j, transform the PolylineTest class, using the JUnit
tool instead of the assertions.

To make things easier, we recommend using an IDE such as Eclipse
which already integrates the JUnit tool.

295

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

Exercise 10.m)

Starting from the solution of Exercise 10.i, and adding the Polyline and @
InvalidPolylineException classes defined in Exercise 10, create along the lines
of the Exercisel10I class, the Exercise10M class that allows the user to create polylines on

the Cartesian plane. The application will have to request the user to insert point by point the
ends of the segments that make up a polyline (which in the meantime will be displayed by the
CartesianPlane class). Only for the first segment the first extreme point must be specified,
while for the following, it is assumed that the first extreme point coincides with the second
extreme point of the previous segment.

Below is an example of the output that will generate our application:

Let's define the first two segments of a polyline:

Define the first extreme point of the first segment of the polyline:
Edit coordinate x of the extreme point P1

1

Edit coordinate y of the extreme point P1

2

Point created: (1,2)

Define the second extreme point of the first segment of the polyline:
Edit coordinate x of the extreme point P2

3

Edit coordinate y of the extreme point P2

4

Point created: (3,4)

Define the second extreme point of the second segment of the polyline:
Edit coordinate x of the extreme point P3

5

Edit coordinate y of the extreme point P3

6

Point created: (5,6)

Edit coordinate x of the extreme point P4

3

Edit coordinate y of the extreme point P4

3

Point created: (3,3)

Exercise 10.n)

By testing the solution of Exercise 10.m, we noticed that by specifying a segment @@
of coincident extreme points, the system draws two points one above the other,
therefore we should not have to consider it as a segment. So, manage the exception so that the
system does not allow you to create segments with two coincident extreme points.

296

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

Exercise 10.0)

Let’s create the Exercise100 class which will represent a converter from the Kelvin scale to the
Celsius and Fahrenheit scales. Our application must ask the user to enter a value in Kelvin, and
the program will have to convert the entered value into Celsius and Fahrenheit degrees.

Here is an example of output that our application will generate:

Enter a Kelvin value
0]

0.0 Kelvin equals:
-273.15 Celsius
-459.66998 Fahrenheit

Use the float type to do all the calculations.

Recall that the formula for converting Kelvin degrees (which we rep-
resent with “K”) to Celsius (which we represent with “C”) is: 0 K - 273,15
= -273,1 C. Recall that the formula for converting degrees Kelvin in
Fahrenheit (which we represent with “F”) is: (0 K - 273,15) x 9/5 + 32 =
-459,7 F.

Exercise 10.p)

The output of the previous exercise does not satisfy us, as the use of the float type does not al-
low us to define a unique format. Evolve the Exercise100 class to the Exercise10P class, using
the BigDecimal class, so that the values are formatted by specifying only the first two decimal
places. You need to study the documentation of the BigDecimal class.

Below is an example of output that our application will generate:

Enter a Kelvin value
0]

0 Kelvin equals:
-273.15 Celsius
-459.67 Fahrenheit

Exercise 10.q)

Evolve the Exercise10P class into the Exercise10Q class, so that the user can start from any
scale and get to the other scales.
Below is an example of output that our application will generate:

297

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

Enter a value in Kelvin (for example 12K), Celsius (25C) or Fahrenheit (451F)
ok

0 Kelvin equals:

-273.15 Celsius

-4

Enter a value in Kelvin (for example 12K), Celsius (25C) or Fahrenheit (451F)
266

25 Celsius equals:

298.15 Kelvin

Enter a value in Kelvin (for example 12K), Celsius (25C) or Fahrenheit (451F)
500F

500 Fahrenheit equals:

260.00 Celsius

A n
Exercise 10.r)

Evolve the Exercise10Q class into the Exercise10R class, trying to improve the abstraction
of our code. So, let’s create a Converter class that will be responsible for performing all the
arithmetic conversions. It will therefore declare all the (static) methods that are used to
convert one scale into another. For example, here is the declaration of the Kelvin to Fahrenheit
conversion method:

public static BigDecimal convertKelvinToFahrenheit(BigDecimal kelvin) {
//your code here

}

Obviously the Exercise10R class will now have to use the methods of the Converter class.

Exercise 10.s)

Evolve the Exercisel10R class into the Exercise10S class, trying to improve the abstraction of
our code. So, let’s create a Printer class that will be responsible for printing all the messages.
It will then declare all the (static) methods needed to print the messages. For example, here is
the declaration of the method that prints the error message when inserting an invalid symbol
to choose the scale of the entered value:

298

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

public static void printInvalidScale (String scale) {
//your code here

3

Obviously the Exercise10S class will now have to use the methods of the Printer class.

Exercise 10.1)

In this exercise we will try to use the java.logging API for the first time. Unlike what is seen in
Section 10.4.3, we are going to configure our logging via the following configuration file (found
in the 10.t folder of the book code):

handlers=java.util.logging.FileHandler

.level=ALL

java.util.logging.FileHandler.pattern=./exercisel0t.log

java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter
ExerciselOT.level=ALL

Where it is specified that the log will be generated within a file in the same folder
called exercise10t.log. It also specifies that all log messages will be printed at any level
(Exercise10T.level = ALL statement).

Add the following method only within the Exercisel0T file (evolution of the Exercise10S
file):

private static void initLogging() {

try {
logManager .readConfiguration(

new FileInputStream('"logging.properties"));
} catch (IOException exception) {
LOGGER.log(Level.SEVERE,
"Problem reading configuration file",exception);

}

and invoke it in the first statement of the main() method, so that the configuration via file is
correctly performed. Also insert some log instructions with different levels, as you like. Test
that everything works correctly launching the application and checking the log file. Test the
application several times by specifying in the configuration file, in place of the word ALL, other
configuration levels such as SEVERE, INFO, etc. checking that only messages with the log levels
allowed by the configuration are printed.

Exercise 10.u)

Now, we will implement a simple game after all this math and physics! Our applica- @
tion will ask the user to guess a random number between 1 and 100 counting the

299

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

number of attempts.
An example of the output that must be generated by this application is the following:

thinking of a number between 1 and 100, guess what!
high, try again
high, try again
high, try again
high, try again

high, try again

low, try again

Create the GuessNumber class which contains a single static method that generates the random
number between 1 and the maximum number that is passed to it as input. Here is the method
declaration:

public static int generateRandomNumber (int max) {
//your code here

}
Then, given the following interface:

public interface Game {
public void init();
public void start();
public void play();
public void end();

}
implement it in a class called GuessNumberGame, which implements the interface methods in
the most appropriate way. In the same class we can also put the main() method that will start
the application.

Exercise 10.v)

The solution of the previous exercise, however, did not take into account the possibility that
the user enters invalid data. Then evolve the GuessNumberGame class, in order to manage any
incorrect user input.

An example of the output that must be generated by this application is the following:

300

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

I'm thinking of a number between 1 and 100, guess what!
u

Exercise 10.w)

Let’s begin to modify our application to make it a multi-player game. So, let’s create @
the Player class that needs to define:

1.

2.
3.

the instance variables name and id (which will be used to uniquely identify a player even
in case of coincidence of names).

A single constuctor.

A simple toString() method.

Defining an abstract class MultiPlayerGame that implements the Game interface defined in
Exercise 10.u, and which defines:

1.

2.

as an instance variable, an ArrayList of Player objects called players.

The getPlayers() getter method, which returns the players instance variable.

. The addPlayer() and removePlayer () methods that add or remove a Player type object

from the players instance variable.

. A getPlayer() method which takes the index of the player as input into the players list,

and which returns the corresponding Player object, or throws a PlayerException (to be
created too), in cases the index is not valid .

. A getPlayer() method that takes as input the name of a player present in the players

list, and that returns the corresponding Player object, or throws a PlayerException, in
cases where the player with the specified name is not found , or if there are multiple play-
ers with the same name on the list.

. Create a concrete MultiPlayerGameImpl (“Impl” stands for implementation) class that

extends MultiPlayerGame, and defines a new printPlayers() method that prints the
details of all players in the players list.

Finally create a MultiPlayerGameTest test class that instantiates an object from
MultiPlayerGameImpl, and all tests all the methods defined by MultiPlayerGame.

301

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

Exercise 10.x)

Considering the classes implemented in the solution of Exercise 10.w (excluding @
MultiPlayerGameImpl), and the following interface:

public interface Configurator {
public void config();

3

The goal of this exercise is to create an implementation of the Configurator interface called
MultiPlayerGameConfigurator. This class must have the responsibility of allowing the con-
figuration of a game to become multiplayer. In particular, it must allow the user to enter the
names of the players who must participate in the game, assigning each of them a progressive
ID. This class must declare at least one MultiPlayerGameImpl type object as an instance vari-
able, to which players must be added.

Then launching the following class:

public class MultiPlayerGameConfiguratorTest {

public static void main(String args[]) {
new MultiPlayerGameConfigurator();

b
b

we want our program output to look like this:

Enter player name 1

Claudio

Enter player name 2 Or 'i' to start playing
Foo

Enter player name 3 Or 'i' to start playing
i

Players list:

Player 1: Claudio

Player 2: Foo

Exercise 10.y)

Now after realizing implementations of the MultiPlayer and Configurator in- @@
terfaces, we just have to combine everything and evolve our application defined

in Exercise 10.v, into a multi-user and configurable game. So first, let’s make the Player class
abstract by adding the following play () abstract method to it:

public abstract boolean play();

on the other hand, a player who does not define a play () method does not make much sense!

302

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercises

Then define the implementation of the Player class for our game, which we will call
GuessNumberPlayer. It must be responsible for:
1. count the number of attempts made to guess the number.

2. Implement the play() method along the lines of the GuessNumberGame class play()
method. In fact, now the player will play, and therefore must implement the code that
allows him to play. The play() method must return true, only when the player guesses
the number.

3. Furthermore, the GuessNumberGame class must be redefined, so that it implements the
Configurator interface, and manages the game in a multi-player way using objects of the
GuessNumberPlayer type. In particular it must:

4. redefine the config() method to manage the application configuration.

5. Redefine the play() method to take advantage of the play() method of the objects of
type GuessNumberGame.

Exercise 10.z)

In this last exercise, the only goal is to place each class in a package with a meaningful name,
in order to make the architectural structure of our application evident. All the application
packages are listed below:

1. games.generic.exceptions
. games.generic.data

. games.guessnumber.data

. games.guessnumber.util

2
3
4. games.guessnumber.business
5
6. games.generic.business

7

. games.generic.business

your job is therefore to assign the right package to the right type.

303

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10
Exercise Solutions

A Guided Example to
Object-Oriented Programming

Solution 10.a)

We could implement the Point class in the following way:

public class Point {
private int x;
private int vy;

public Point (int x, int y) {

setX(x);
setY(y);
}
private void setY(int y) {
this.y = vy;
}
public int getY() {
return y;
}

private void setX(int x) {
this.x = x;

}

305

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

public int getX() {
return x;

}

public String toString() {
return II(II +X+ Il,ll + y + II)II;
}
}

The Ruler class follows (note that we have chosen to declare the method as static, since it de-
pends only on the input parameters and not on any instance variables):

import static java.lang.Math.*;

public class Ruler {
public static double getDistance(Point pl1, Point p2) {
return sqrt(pow(pl.getX()-p2.getX(), 2) + pow(pl.getY()-p2.getY(), 2));
}
}

Finally follows the Exercise10A class, which instantiates two points, calculates the distance and
uses an assertion as requested:

public class Exercisel0A {
private final static double CORRECT_RESULT = 2;
public static void main(String args[]) {
Point pl1 = new Point(0,0);
Point p2 = new Point(2,0);
double distance = Ruler.getDistance(pl,p2);
System.out.println("Distance between points: " + pl1 + " e " + p2
+ " =" + distance);
assert distance == CORRECT_RESULT : "Error! The result should be "
+ CORRECT_RESULT;
System.out.println("Correct distance!");

Solution 10.b)

The code of the Exercise10B class is as follows:

public class Exercisel0B {
public static void main(String args[]) {
if (args.length '= 4) {
System.out.println("Insert 4 coordinates to calculate the distance"
+ " between two points");

306

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

try {
Point pl = new Point(Integer.parseInt(args[0]),

Integer.parseInt(args[1]));

Point p2 = new Point(Integer.parseInt(args[2]),
Integer.parseInt(args[3]));

System.out.println("Distance between two points: " + p1 + " and "
+ p2 + " = " + Ruler.getDistance(pl, p2));

} catch (NumberFormatException exc) {

System.out.println("All coordinates must be integers! Error: "

+ exc.getMessage());

}

By launching the application with the following command:

java Exercise 160B 2 1 1 2

we will get the output:

Distance between two points: (2,1) and (1,2) = 1.4142135623730951

Solution 10.c)

Following is the code of the Exercise10C class:

import java.util.Scanner;
import java.util.InputMismatchException;

public class Exercisel0C {
public static void main(String args[]) {

Scanner scanner = new Scanner (System.in);

try {
System.out.println("Enter the x coordinate of the first point");
int x1 = scanner.nextInt();
System.out.println("Enter the y coordinate of the first point");
int yl1 = scanner.nextInt();
Point pl = new Point(x1, y1);
System.out.println("Point created:" + p1);
System.out.println("Enter the x coordinate of the second point");
int x2 = scanner.nextInt();
System.out.println("Enter the y coordinate of the second point");
int y2 = scanner.nextInt();
Point p2 = new Point(x2, y2);
System.out.println("Point created:" + p2);
System.out.println("Distance between two points: " + p1 + " and "

+ p2 + " = " + Ruler.getDistance(pl,p2));

307

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

} catch (InputMismatchException exc) {
System.out.println("All coordinates must be integers!");

3
b

Solution 10.d)

Following is the code of the Exercise1@D class, refactoring of the Exercise10C class:

import java.util.Scanner;
import java.util.InputMismatchException;

public class Exercisel@D {
private Scanner scanner;

public Exercisel0D () {
scanner = new Scanner(System.in);

3
public void start() {
try {
Point pl1 = getPoint("1");
Point p2 = getPoint("2");
printDistance(pl, p2) ;
}
catch (InputMismatchException exc) {
System.out.println("All coordinates must be integers!");
}
3

private int getCoordinate(String coordinateName, String pointName) {
System.out.println("Enter the coordinate " + coordinateName
+ " of point " + pointName);
return scanner.nextInt();

}

private Point getPoint(String pointName) {
int x = getCoordinate("x", pointName);
int y = getCoordinate("y", pointName);
Point p = new Point(Xx,y);

System.out.println("Point created: " + p);
return p;
}
public void printDistance(Point p1, Point p2) {
System.out.println("Distance between two points: " + p1 + " and " + p2
+ " = " + Ruler.getDistance(p1,p2));
}

308

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

public static void main(String args[]) {
Exercisel0D exercisel®D = new Exercisel®D();
exercisel@D.start();

Solution 10.e)

A possible implementation of the Exercisel0E class follows:

import java.util.Scanner;

public class Exercisel@E {
private Scanner scanner;

public Exercisel@E () {
scanner = new Scanner(System.in);

}

public void start() {
Point pl1 = getPoint("1"
Point p2 = getPoint("2"
printDistance(pl, p2) ;

)7
)7

}

private int getCoordinate(String coordinateName, String pointName) {
System.out.println("Enter the coordinate " + coordinateName
+ " of point " + pointName);
while (scanner.hasNext()) {
if (scanner.hasNextInt()) {
return scanner.nextInt();

} else {
System.out.println("Invalid coordinate " + scanner.next()
+ "I All coordinates must be integers! "
+ "Please enter only integers");
}

3

return -1;

}

private Point getPoint(String pointName) {
int x = getCoordinate("x", pointName);
int y = getCoordinate("y", pointName);
Point p = new Point(x,y);
System.out.println("Point created: " + p);
return p;

309

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

public void printDistance(Point p1, Point p2) {
System.out.println("Distance between two points: " + p1 + " and " + p2
+ " = " + Ruler.getDistance(p1,p2));

}

public static void main(String args[]) {
ExerciselOE exerciselOE = new ExerciselQ@E();
exercisel@E.start();

Solution 10.f)

The code of our Segment class could be the following:

public class Segment {
private Point extremePointil;
private Point extremePoint2;

private double length;

public Segment(Point extremePointl, Point extremePoint2) {
this.extremePointl = extremePointl;
this.extremePoint2 = extremePoint2;
setLength();

}

public Point getExtremePointl() {
return extremePointil;

}

public Point getExtremePoint2() {
return extremePoint2;

}

private void setLength() {
this.length = Ruler.getDistance(extremePointl, extremePoint2);

}

public String toString() {
return "Segment from P1" +extremePointl+ " to P2" +extremePoint2
+ " with length = " + length;

}
Finally, we implemented the Exercisel10F class as follows:

import java.util.*;

310

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

public class ExerciselOF {
private Scanner scanner;

public Exercisel0F () {
scanner = new Scanner(System.in);

}

public void start() {
System.out.println("Please define a segment specifying its extreme"
+ " points:");
Point pl1 = getPoint("1");
Point p2 = getPoint("2");
print(new Segment(pl, p2));
}

private int getCoordinate(String coordinateName, String pointName) {
System.out.println("Edit coordinate " + coordinateName
+ " of the extreme point " + pointName);
while (scanner.hasNext()) {
if (scanner.hasNextInt()) {
return scanner.nextInt();

} else {
System.out.println("Invalid coordinate " + scanner.next()
+ "1 All coordinates must be integers! "

+ "Please enter only integers");
}
}
return -1;

}

private Point getPoint(String pointName) {
int x = getCoordinate("x", pointName);
int y = getCoordinate("y", pointName);
Point p = new Point(x,y);
System.out.println("Point created: " + p);
return p;

}

public void print(Segment segment) {
System.out.println(segment);

}

public static void main(String args[]) {
ExerciselOF exerciselOF = new ExerciselQF();
exerciselOF.start();

311

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

Solution 10.g)

We have modified the Point class as follows (changes in bold):

public class Point {

}

private String name;
private int x;
private int y;

public Point (String name, int x, int y) {
setName (nhame) ;
setX(x);
setY(y);

}

public Point (int x, int y) {
this("", x, y);
}

public void setName(String name) {
this.name = name;
}

public String getName() {
return name;
}

private void setY(int y) {
this.y = vy;
}

public int getY() {
return vy;
}

private void setX(int x) {
this.x = Xx;

}

public int getX() {
return x;

}

public String toString() {
return name + ll(ll +X+ ll,ll B y 4L ll)ll’.

}

Finally, we implemented the Exercise10G class as follows:

312

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

import java.util.*;
import javax.swing.*;

public class Exercisel0G {
private Scanner scanner;
private CartesianPlane cartesianPlane;

public Exercisel0G () {
scanner = new Scanner(System.in);

}

public void start() {
SwingUtilities.invokelLater(() -> cartesianPlane = new CartesianPlane());
Point pl1 = getPoint("P1");
cartesianPlane.drawPoint(pl);

}

private int getCoordinate(String coordinateName, String pointName) {
System.out.println("Edit coordinate " + coordinateName
+ " of the extreme point " + pointName);
while (scanner.hasNext()) {
if (scanner.hasNextInt()) {
return scanner.nextInt();

} else {
System.out.println("Invalid coordinate " + scanner.next()
+ "1 All coordinates must be integers! "

+ "Please enter only integers");

b
3

return -1;

}

private Point getPoint(String pointName) {
int x = getCoordinate("x", pointName);
int y = getCoordinate("y", pointName);
Point p = new Point(x,y);
System.out.println("Point created: " + p);
return p;

}

public static void main(String args[]) {
Exercisel0G exercisel0G = new Exercisel0G();
exercisel0G.start();

313

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

Solution 10.h)

The code of the Exercise10H class is as follows:

import java.util.?*;
import javax.swing.*;

public class ExerciselOH {
private Scanner scanner;
private CartesianPlane cartesianPlane;
private static int counter = 1;

public Exercisel0H () {
scanner = new Scanner(System.in);

}

public void start() {
SwingUtilities.invokelLater(() -> cartesianPlane = new CartesianPlane());
while(true) {
Point pl1 = getPoint("P" +(counter++));
cartesianPlane.drawPoint(p1);

}

private int getCoordinate(String coordinateName, String pointName) {
System.out.println("Edit coordinate " + coordinateName
+ " of the extreme point " + pointName);
while (scanner.hasNext()) {
if (scanner.hasNextInt()) {
return scanner.nextInt();

} else {
System.out.println("Invalid coordinate " + scanner.next()
+ "1 All coordinates must be integers! "

+ "Please enter only integers");

}
}

return -1;

}

private Point getPoint(String pointName) {
int x = getCoordinate("x", pointName);
int y = getCoordinate("y", pointName);
Point p = new Point(x,y);
System.out.println("Point created: " + p);
return p;

}

public static void main(String args[]) {
Exercisel@H exercisel®H = new ExerciselOH();

314

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

exercisel@H.start();

Solution 10.i)

Follows the Exercise10I: class:

import java.util.*;
import javax.swing.*;

public class Exercisel0I {
private Scanner scanner;
private CartesianPlane cartesianPlane;
private static int counter = 1;

public Exercisel0I () {
scanner = new Scanner(System.in);

}

public void start() {
SwingUtilities.invokelLater(() -> cartesianPlane = new CartesianPlane());
while(true) {
System.out.println("Define a segment");
Point pl1 = getPoint("P" +(counter++));
Point p2 = getPoint("P" +(counter++));
Segment s1 = new Segment(pl, p2);
cartesianPlane.drawSegment(sl);

}

private int getCoordinate(String coordinateName, String pointName) {
System.out.println("Edit coordinate " + coordinateName
+ " of the extreme point " + pointName);
while (scanner.hasNext()) {
if (scanner.hasNextInt()) {
return scanner.nextInt();

} else {
System.out.println("Invalid coordinate " + scanner.next()
+ "1 All coordinates must be integers! Please enter only"
+ " integers");

}

3

return -1;

}

private Point getPoint(String pointName) {
int x = getCoordinate("x", pointName);

315

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

int y = getCoordinate("y", pointName);
Point p = new Point(x,y);
System.out.println("Point created: " + p);
return p;

}

public static void main(String args[]) {
Exercisel0@I exercisel®I = new ExerciselQI();
exercisel@I.start();

Solution 10.j)

We have implemented the Polyline class in the following way:
import java.util.*;

public class Polyline {
private List<Segment> segmentList;

public Polyline (Segment... segments) throws InvalidPolylineException {
this.segmentList = new ArraylList(Arrays.asList(segments));
if (segments.length < 2 || !checkConsecutiveSegments()) {

throw new InvalidPolylineException(segmentlList);

b
b

public void addSegment(Segment newSegment) throws InvalidPolylineException {
Segment lastSegment = segmentlList.get(segmentList.size()-1);
Point lastSegmentExtremePoint2 = lastSegment.getExtremePoint2();
Point newSegmentExtremePointl = newSegment.getExtremePointl();
segmentList.add(newSegment);
if ('equal(newSegmentExtremePointl, lastSegmentExtremePoint2)) {
throw new InvalidPolylineException(segmentList);

b
b

private boolean checkConsecutiveSegments() {
int segmentListSize = segmentlList.size();
for (int i = 0; i < segmentListSize-1;) {
Point previousSegmentExtremePoint2 =
segmentList.get(i++).getExtremePoint2();
Point nextSegmentExtremePointl =
segmentList.get(i).getExtremePointl();
if (!equal(previousSegmentExtremePoint2, nextSegmentExtremePointl)) {
return false;

}

316

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

3

return true;

}

private boolean equal(Point p1, Point p2) {
return pl.getX()==p2.getX() & & pl.getY()== p2.getY();
}

public String toString() {
String descrizione ="Polyline defined by:\n";
for (Segment segment : segmentList) {
descrizione += segment + "\n";

3

return descrizione;

}
Where the InvalidPolylineException class is implemented as follows:
import java.util.List;

public class InvalidPolylineException extends Exception {
public InvalidPolylineException (List<Segment> segments) {
super(segments.size() < 2 ?
"A polyline must consist of at least 2 segments"
"These segments " + segments + " do not constitute a polyline");

}

public String toString() {
return "Invalid polyline:\n" + getMessage();
}
}

Finally, the implementation of the PolylineTest class is not simple:

public class PolylineTest {
private static final String TEST_OK ="TEST OK:\n";
private static final String TEST_KO ="TEST FAILED: ";

public static void main(String args[]) {
testCorrectPolyline();
testCorrectPolylineWithFourPoints();
testPolylineWithoutSegments();
testPolylineWithOneSegment();
testPolylineWithTwoNonConsecutiveSegmentsInConstructor();
testPolylineWithThreeNonConsecutiveSegmentsInConstructor();
testCorrectPolylineAddingAConsecutiveSegment();
testInvalidPolylineAddingANonConsecutiveSegment();

317

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

public static void testCorrectPolyline() {

try {
System.out.println("testCorrectPolyline:");
Point pl = new Point(0,0);
Point p2 = new Point(1,1);
Segment s1 = new Segment(pl, p2);
Point p3 = new Point(1,2);
Segment s2 = new Segment(p2, p3);
Polyline poll = new Polyline(sl, s2);
System.out.println(TEST_OK + poll);

} catch (Exception exc) {
assert false : TEST_KO + exc.getMessage();

}

}

public static void testCorrectPolylineWithFourPoints() {
try {
System.out.println("testCorrectPolylineWithFourPoints:");
Point pl = new Point(0,0);
Point p2 = new Point(1,1);
Segment s1 = new Segment(pl, p2);
Point p3 = new Point(1,1);
Point p4 = new Point(2,3);
Segment s2 = new Segment(p3, p4);
Polyline poll = new Polyline(sl, s2);
System.out.println(TEST_OK + poll);
} catch (Exception exc) {
assert false : TEST_KO + exc.getMessage();
}

}

public static void testPolylineWithoutSegments() {
try {
System.out.println("testPolylineWithoutSegments:");
Polyline poll = new Polyline();
System.out.println(TEST_KO + poll);
assert false :"A polyline without segments has been created!";
} catch (Exception exc) {
System.out.println(TEST_OK + exc.getMessage());
System.out.println();

}

public static void testPolylineWithOneSegment() {
try {
System.out.println("testPolylineWithOneSegment:");
Point pl = new Point(0,0);
Point p2 = new Point(1,1);
Segment s1 = new Segment(pl, p2);

318

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

Polyline poll = new Polyline(s1);

System.out.println(TEST_KO + poll);

assert false :"A polyline with a single segment has been created!";
} catch (Exception exc) {

System.out.println(TEST_OK + exc.getMessage());

System.out.println();

}

public static void testPolylineWithTwoNonConsecutiveSegmentsInConstructor() {
try {
System.out.println(
"testPolylineWithTwoNonConsecutiveSegmentsInConstructor:");
Point pl = new Point(0,0);
Point p2 = new Point(1,1);
Segment s1 = new Segment(pl, p2);
Point p3 = new Point(1,2);
Point p4 = new Point(2,2);
Segment s2 = new Segment(p3, p4);
Polyline poll = new Polyline(sl, s2);
System.out.println(TEST_KO+ pol1l);
assert false :"A polyline with two non-consecutive segments "
+ "has been created (in the constructor)!";
} catch (Exception exc) {
System.out.println(TEST_OK + exc.getMessage());
System.out.println();

}

public static void testPolylineWithThreeNonConsecutiveSegmentsInConstructor() {
try {
System.out.println(
"testPolylineWithThreeNonConsecutiveSegmentsInConstructor:");
Point pl = new Point(0,0);
Point p2 = new Point(1,1);
Segment s1 = new Segment(pl, p2);
Point p3 = new Point(1,1);
Point p4 = new Point(2,2);
Segment s2 = new Segment(p3, p4);
Point p5 = new Point(2,3);
Point p6 = new Point(3,2);
Segment s3 = new Segment(p5, p6);
Polyline poll = new Polyline(sl1, s2, s3);
System.out.println(TEST_KO+ pol1l);
assert false :"A polyline with three non-consecutive segments"
+ " has been created (in the constructor)!";
} catch (Exception exc) {
System.out.println(TEST_OK + exc.getMessage());
System.out.println();

319

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

}

public static void testCorrectPolylineAddingAConsecutiveSegment() {

}

try {

System.out.println("testCorrectPolylineAddingAConsecutiveSegment:");
Point pl = new Point(0,0);

Point p2 = new Point(1,1);

Segment s1 = new Segment(pl, p2);
Point p3 = new Point(1,2);

Segment s2 = new Segment(p2, p3);
Polyline poll = new Polyline(sl, s2);
Point p4 = new Point(3,2);

Segment s3 = new Segment(p3, p4);
poll.addSegment(s3);
System.out.println(TEST_OK+ pol1l);

} catch (Exception exc) {

assert false : TEST_KO + exc.getMessage();

public static void testInvalidPolylineAddingANonConsecutiveSegment() {

3

try {

System.out.println(
"testInvalidPolylineAddingANonConsecutiveSegment:");

Point pl = new Point(0,0);

Point p2 = new Point(1,1);

Segment s1 = new Segment(pl, p2);

Point p3 = new Point(1,2);

Segment s2 = new Segment(p2, p3);

Polyline poll = new Polyline(sl, s2);

Point p4 = new Point(3,2);

Point p5 = new Point(3,3);

Segment s3 = new Segment(p4, p5);

poll.addSegment(s3);

System.out.println(TEST_KO+ pol1l);

assert false
"A polyline with a non-consecutive segment has been created!";

} catch (Exception exc) {

System.out.println(TEST_OK + exc.getMessage());

Solution 10.k)

Actually, the errors highlighted by our test were mostly due to errors in the test itself! This
is to underline that we can create bugs even in tests! So, you have to be very careful. In

320

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

fact in the testDistanceWithNull() it is correct that a NullPointerException is thrown
(although it would be the case to create a custom exception to handle this problem), while in the
testDistanceFromAThreeDimensionalPoint() method, we had expected that the result of the
distance would have been -1, but obviously the value of a distance cannot coincide with a nega-
tive number! In this case we solved it by changing the sign, since we had decided to allow this
type of operation (we could also have implemented a solution that would throw another cus-
tom exception since we could have assumed that it is not possible to calculate the distance be-
tween a point that is on a two-coordinate reference, from a point that is on a three-coordinate
reference). In any case, we report below the new PointTest class, with the changes in bold.

import org.junit.Assert;
import org.junit.Test;

public class PointTest {

@Test

public void testDistanceOnX() {
Point pl1 = new Point(1,1);
Point p2 = new Point(1,2);
double distance = pl.distance(p2);
Assert.assertTrue(distance == 1);

}

@Test(expected = NullPointerException.class)

public void testDistanceWithNull() {
Point pl1 = new Point(1,1);
Point p2 = null;
double distance = pil.distance(p2);

// Assert.assertTrue(distance == -1);

}

@Test

public void testDistanceFromTheSamePoint() {
Point pl1 = new Point(1,1);
Point p2 = new Point(1,1);
double distance = pil.distance(p2);
Assert.assertTrue(distance == 0);

}

@Test

public void testDistanceFromAThreeDimensionalPoint() {
Point pl1 = new Point(1,1);
Point p2 = new ThreeDimensionalPoint(1,2,2);
double distance = pil.distance(p2);
Assert.assertTrue(distance == 1);

321

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

Solution 10.1)

The implementation of the new PolylineTest class follows (among the book code file, you will
find the entire project to be imported into Eclipse):

import org.junit.Assert;
import org.junit.Test;
import static org.junit.jupiter.api.Assertions.assertThrows;

public class PolylineTest {
private static final String TEST_OK
private static final String TEST_KO

"TEST OK:\n";
"TEST FALLITO: ";

// public static void main(String args[]) {

// testCorrectPolyline();
// testCorrectPolylinewWithFourPoints();
// testPolylineWithoutSegments();
// testPolylineWithOneSegment();
// testPolylinewWithTwoNonConsecutiveSegmentsInConstructor();
// testPolylineWithThreeNonConsecutiveSegmentsInConstructor();
// testCorrectPolylineAddingAConsecutiveSegment();
// testInvalidPolylineAddingANonConsecutiveSegment();
// }

@Test

public void testCorrectPolyline() {

try {

System.out.println("testCorrectPolyline:");
Point pl = new Point(0, 0);
Point p2 = new Point(1, 1);
Segment s1 = new Segment(pl, p2);
Point p3 = new Point(1, 2);
Segment s2 = new Segment(p2, p3);
Polyline poll = new Polyline(sl, s2);
Assert.assertNotNull(poll);

} catch (Exception exc) {
exc.printStackTrace();

}

}

@Test

public void testCorrectPolylineWithFourPoints() {
try {

System.out.println("testCorrectPolylineWithFourPoints:");
Point pl = new Point(0, 0);

Point p2 = new Point(1, 1);

Segment s1 = new Segment(pl, p2);

Point p3 new Point(1, 1);

Point p4 new Point(2, 3);

322

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

Segment s2 = new Segment(p3, p4);
Polyline poll = new Polyline(sl, s2);
Assert.assertNotNull(poll);

} catch (Exception exc) {
exc.printStackTrace();

}
}
@Test
public void testPolylineWithoutSegments() {
try {
System.out.println("testPolylineWithoutSegments:");
Polyline poll = new Polyline();
assert false : "A polyline without segments has been"
+ " created!";
} catch (Exception exc) {
Assert.assertNotNull(exc);
System.out.println(TEST_OK + exc.getMessage());
System.out.println();
}
}
@Test
public void testPolylineWithOneSegment() {
try {
System.out.println("testPolylineWithOneSegment:");
Point pl = new Point(0, 0);
Point p2 = new Point(1, 1);
Segment s1 = new Segment(pl, p2);
Polyline poll = new Polyline(sl);
System.out.println(TEST_KO + poll);
assert false : "A polyline with a single segment has"
+ " been created!";
} catch (Exception exc) {
Assert.assertNotNull(exc);
System.out.println(TEST_OK + exc.getMessage());
System.out.println();
}
}

public void testPolylineWithTwoNonConsecutiveSegmentsInConstructor() {
try {
System.out.println(
"testPolylineWithTwoNonConsecutiveSegmentsInConstructor:");
Point pl = new Point(0, 0);
Point p2 = new Point(1, 1);
Segment s1 = new Segment(pl, p2);
Point p3 new Point(1, 2);
Point p4 new Point(2, 2);

323

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

Segment s2 = new Segment(p3, p4);

Polyline poll = new Polyline(sl, s2);

System.out.println(TEST_KO + poll);

assert false : "A polyline with two non-consecutive"

+ " segments has been created (in the constructor)";

} catch (Exception exc) {

Assert.assertNotNull(exc);

System.out.println(TEST_OK + exc.getMessage());

System.out.println();

}

public void testPolylineWithThreeNonConsecutiveSegmentsInConstructor() {
try {
System.out.println(
"testPolylineWithThreeNonConsecutiveSegmentsInConstructor:");
Point pl = new Point(0, 0);
Point p2 = new Point(1, 1);
Segment s1 = new Segment(pl, p2);
Point p3 = new Point(1, 1);
Point p4 = new Point(2, 2);
Segment s2 = new Segment(p3, p4);
Point p5 = new Point(2, 3);
Point p6 = new Point(3, 2);
Segment s3 = new Segment(p5, p6);
Polyline poll = new Polyline(sl, s2, s3);
System.out.println(TEST_KO + poll);
assert false : "A polyline with three non-consecutive"
+ " segments has been created (in the constructor)!";
} catch (Exception exc) {
Assert.assertNotNull(exc);
System.out.println(TEST_OK + exc.getMessage());
System.out.println();

}

@Test
public void testCorrectPolylineAddingAConsecutiveSegment() {
try {
System.out.println(
"testCorrectPolylineAddingAConsecutiveSegment:");
Point pl = new Point(0, 0);
Point p2 = new Point(1, 1);
Segment s1 = new Segment(pl, p2);
Point p3 = new Point(1, 2);
Segment s2 = new Segment(p2, p3);
Polyline poll = new Polyline(sl, s2);
Point p4 = new Point(3, 2);
Segment s3 = new Segment(p3, p4);

324

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

poll.addSegment(s3);

System.out.println(TEST_OK + poll);
} catch (Exception exc) {

exc.printStackTrace();

b
by

@Test
public void testInvalidPolylineAddingANonConsecutiveSegment() {
try {
System.out.println(
"testInvalidPolylineAddingANonConsecutiveSegment:");
Point pl = new Point(0, 0);
Point p2 = new Point(1, 1);
Segment s1 = new Segment(pl, p2);
Point p3 = new Point(1, 2);
Segment s2 = new Segment(p2, p3);
Polyline poll = new Polyline(sl, s2);
Point p4 = new Point(3, 2);
Point p5 = new Point(3, 3);
Segment s3 = new Segment(p4, p5);
poll.addSegment(s3);
System.out.println(TEST_KO + poll);
assert false : "A polyline with a non-consecutive segment "
+ "has been created!";
} catch (Exception exc) {
Assert.assertNotNull(exc);
System.out.println(TEST_OK + exc.getMessage());

Solution10.m)

The implementation of the Exercise10M class follows (changes compared to the Exercise10I
class in bold):

import java.util.*;
import javax.swing.*;

public class Exercisel0M {
private Scanner scanner;
private CartesianPlane cartesianPlane;
private static int counter = 1;

public Exercisel®M () {
scanner = new Scanner(System.in);

}

325

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

public void start() {
SwingUtilities.invokelLater(() -> cartesianPlane = new CartesianPlane());
System.out.println("Let's define the first two segments of a "
+ " polyline:");
System.out.println("Define the first extreme point of the first"
+ " segment of the polyline:");
Point p1 = getPoint("P" +(counter++));
System.out.println("Define the second extreme point of the first"
+ " segment of the polyline:");
Point p2 = getPoint("P" +(counter++));
Segment s1 = new Segment(pl, p2);
cartesianPlane.drawSegment(s1);
System.out.println("Define the second extreme point of the"
+ " second segment of the polyline:");
Point p3 = getPoint("P" +(counter++));
Segment s2 = new Segment(p2, p3);
cartesianPlane.drawSegment(s2);
Point lastExtreme = p3;
while(true) {
Point nextExtreme = getPoint("P" +(counter++));
Segment nextSegment = new Segment(lastExtreme, nextExtreme);
cartesianPlane.drawSegment (nextSegment);
lastExtreme = nextExtreme;

}

private int getCoordinate(String coordinateName, String pointName) {
System.out.println("Edit coordinate " + coordinateName
+ " of the extreme point " + pointName);
while (scanner.hasNext()) {
if (scanner.hasNextInt()) {
return scanner.nextInt();

} else {
System.out.println("Invalid coordinate " + scanner.next()
+ "1 All coordinates must be integers! Please enter only"
+ " integers");
}
}
return -1;

}

private Point getPoint(String pointName) {
int x = getCoordinate("x", pointName);
int y = getCoordinate("y", pointName);
Point p = new Point(x,y);
System.out.println("Point created: " + p);
return p;

326

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

public static void main(String args[]) {
Exercisel0M exercisel®M = new ExerciselOM();
exerciselOM.start();

Solution 10.n)

Let’s first create a simple exception for the incorrect creation of a segment in this way:

public class InvalidSegmentException extends Exception {

public String toString() {
return "The extreme points of a segment cannot coincide!";
}
}

Then let’s throw this exception in the Segment class in case there is a coincidence of the two
extreme point (changes in bold):

public class Segment {
private Point extremePointl;
private Point extremePoint2;

private double length;

public Segment(Point extremePointl, Point extremePoint2)
throws InvalidSegmentException {
this.extremePointl = extremePointil;
this.extremePoint2 = extremePoint2;
setLength();

3

public Point getExtremePointl() {
return extremePointil;
}

public Point getExtremePoint2() {
return extremePoint2;
}

private void setLength() throws InvalidSegmentException {
this.length = Ruler.getDistance(extremePointl, extremePoint2);
if (length == 0) {
throw new InvalidSegmentException();
}

327

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

}

public String toString() {
return "Segment from P1" +extremePointl+ " to P2" + extremePoint2
+ " with length = " + length;

Finally, let’s make our Exercise10M class evolve into the Exercise10N class, creating a recursive

method createSegment(), which manages the exception by calling itself. We also note that
we have transformed the temporary variable lastExtreme, as an instance variable (changes in

bold):

import java.util.?*;
import javax.swing.*;

public class Exercisel1ON {

328

private Scanner scanner;

private CartesianPlane cartesianPlane;
private Point lastExtreme;

private static int counter = 1;

public Exerciseld®N () {
scanner = new Scanner(System.in);

}

public void start() {
SwingUtilities.invokelLater(() -> cartesianPlane = new CartesianPlane());
System.out.println("Let's define the first two segments of a"
+ " polyline:");
System.out.println("Define the first extreme point of the first"
+ " segment of the polyline:");
Point pl = getPoint("P" +(counter++));
System.out.println("Define the second extreme point of the first"
+ " segment of the polyline:");
createSegment(p1);
/* Point p2 = getPoint("P" +(counter++));
Segment s1 = new Segment(pl, p2);
cartesianPlane.drawSegment(si);*/
System.out.println("Define the second extreme point of the second"
+ " segment of the polyline:");
createSegment (lastExtreme);
/* Point p3 = getPoint("P" +(counter++));
Segment s2 = new Segment(p2, p3);
cartesianPlane.drawSegment(s2);
Point lastExtreme = p3;*/
while(true) {
/* Point nextExtreme = getPoint("P" +(counter++));
Segment nextSegment = new Segment(lastExtreme, nextExtreme);
cartesianPlane.drawSegment (nextSegment) ;

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

lastExtreme = nextExtreme; */
createSegment (lastExtreme);

}
}
public void createSegment(Point firstExtreme) {
try {
lastExtreme = getPoint ("P" +(counter++));
Segment segment = new Segment(firstExtreme, lastExtreme);
cartesianPlane.drawSegment (segment);
} catch (InvalidSegmentException exc) {
System.out.println(exc);
counter--;
createSegment (firstExtreme);
}
}

private int getCoordinate(String coordinateName, String pointName) {
System.out.println("Edit coordinate " + coordinateName
+ " of the extreme point " + pointName);
while (scanner.hasNext()) {
if (scanner.hasNextInt()) {
return scanner.nextInt();

} else {
System.out.println("Invalid coordinate " + scanner.next()
+ "I All coordinates must be integers! "
+ " Please enter only integers");
}
}
return -1;

}

private Point getPoint(String pointName) {
int x = getCoordinate("x", pointName);
int y = getCoordinate("y", pointName);
Point p = new Point(x,y);
System.out.println("Point created: " + p);
return p;

}

public static void main(String args[]) {
Exercisel0N exerciselON = new Exercisel1ON();
exerciselON.start();

329

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

Solution 10.0)

The solution could be implemented as follows:

import java.util.*;

public class Exercisel00 {
public static void main(String[] args) {
Exercisel00 exercisel®0 = new Exercisel@0();
exercisel@0.start();

}

public void start() {

try {
Scanner scanner = new Scanner (System.in);

System.out.println("Enter a Kelvin value");
float kelvin = scanner.nextFloat();
float celsius = kelvin - 273.15F;
float fahrenheit = celsius * 9/5 + 32;
System.out.println(kelvin + " Kelvin equals:\n"
+ celsius + " Celsius\n"
+ fahrenheit + " Fahrenheit");
} catch (InputMismatchException exc) {
System.out.println("The value must be numeric");
start();

Solution 10.p)

The solution could be implemented as follows:

import java.util.*;
import java.math.*;

public class Exercisel0P {
public static void main(String[] args) {
ExerciselOP exerciselOP = new ExerciselO@P();
exercisel@OP.start();

}

public void start() {

try {
Scanner scanner = new Scanner (System.in);

System.out.println("Enter a Kelvin value");
BigDecimal kelvin = scanner.nextBigDecimal();
BigDecimal celsius = kelvin.subtract(BigDecimal.valueOf(273.15));

330

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

BigDecimal fahrenheit = celsius.multiply(BigDecimal.valueOf(9))
.divide(BigDecimal.valueOf(5)).add(BigDecimal.valueOf(32));
System.out.println(kelvin + " Kelvin equals:\n"
+ celsius + " Celsius\n" + fahrenheit + " Fahrenheit");
} catch (InputMismatchException exc) {
System.out.println("The value must be numeric");
start();

Solution 10.q)

The solution could be implemented as follows:

import java.util.*;
import java.math.*;

public class Exercisel0Q {
public static void main(String[] args) {
Exercisel0Q exercisel0Q = new Exercisel0Q();
exercisel0Q.start();

}

public void start() {
try {
System.out.println("Enter a value in Kelvin (for example 12K)," +
" Celsius (25C) or Fahrenheit (451F)");
Scanner scanner = new Scanner (System.in);
String input = scanner.next();
int lastCharIndex = input.length()-1;
BigDecimal value = new BigDecimal(
input.substring (0, lastCharIndex));
String scale = input.substring(lastCharIndex);
switch(scale) {
case"k":
case"K":
{

BigDecimal celsius = value.subtract(
BigDecimal.valueOf(273.15));

BigDecimal fahrenheit = celsius.multiply(
BigDecimal.valueOf(9)).divide(BigDecimal.valueOf(5), 2,
RoundingMode .HALF_UP) .add(BigDecimal.valueOf(32));

System.out.println(value + " Kelvin equals:\n"

+ celsius + " Celsius\n" + fahrenheit + " Fahrenheit");
break;

331

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

case''c":
case'C":
{
BigDecimal kelvin = value.add(BigDecimal.valueOf(273.15));
BigDecimal fahrenheit = value.multiply(
BigDecimal.valueOf(9)).divide(BigDecimal.value0Of(5), 2,
RoundingMode.HALF_UP) .add(BigDecimal.valueOf(32));
System.out.println(value + " Celsius equals:\n"
+ kelvin + " Kelvin\n" + fahrenheit + " Fahrenheit");

break;
}
case'"f":
case"F":
{

BigDecimal celsius = value.subtract(BigDecimal.valueOf(32))
.multiply(BigDecimal.valueOf(5)).divide(
BigDecimal.valueOf(9), 2, RoundingMode.HALF_UP);

BigDecimal kelvin = celsius.add(BigDecimal.valueOf(273.15));

System.out.println(value + " Fahrenheit equals:\n"

+ celsius + " Celsius\n" + kelvin + " Kelvin");
break;
}
default:
System.out.println("Invalid scale " + scale
+ ". Use K for Kelvin, C for Celsius, F for Fahrenheit");
start();

}

} catch (NumberFormatException exc) {
System.out.println("Wrong format!");
start();

Solution 10.r)

The Converter class could be implemented as follows:

import java.math.*;

public class Converter {
public static BigDecimal convertKelvinToCelsius(BigDecimal kelvin) {
return kelvin.subtract(BigDecimal.valueOf(273.15));
}

public static BigDecimal convertKelvinToFahrenheit(BigDecimal kelvin) {
BigDecimal celsius = convertKelvinToCelsius(kelvin);
return celsius.multiply(BigDecimal.valueOf(9)).divide(

332

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

BigDecimal.valueOf(5), 2, RoundingMode.HALF_UP).add(
BigDecimal.value0Of(32));

}

public static BigDecimal convertCelsiusToKelvin(BigDecimal celsius) {
return celsius.add(BigDecimal.valueOf(273.15));

}

public static BigDecimal convertCelsiusToFahrenheit(BigDecimal celsius) {
return celsius.multiply(BigDecimal.valueOf(9)).divide(
BigDecimal.valueOf(5),2, RoundingMode.HALF_UP) .add(
BigDecimal.valueOf(32));

}

public static BigDecimal convertFahrenheitToKelvin(BigDecimal fahrenheit) {
BigDecimal celsius = convertFahrenheitToCelsius(fahrenheit);
return celsius.add(BigDecimal.valueOf(273.15));

}

public static BigDecimal convertFahrenheitToCelsius(BigDecimal fahrenheit) {
return fahrenheit.subtract(BigDecimal.valueOf(32))
.multiply(BigDecimal.valueOf(5)).divide(BigDecimal.valueOf(9), 2,
RoundingMode.HALF_UP);

So, the Exercise10R class could be implemented in the following way:

import java.util.*;
import java.math.*;

public class ExerciselOR {
public static void main(String[] args) {
Exercisel@R exerciselOR = new ExerciselOR();
exerciselOR.start();

}

public void start() {
try {

System.out.println("Enter a value in Kelvin (for example 12K),"
+ " Celsius (25C) or Fahrenheit (451F)");

Scanner scanner = new Scanner (System.in);

String input = scanner.next();

int lastCharIndex = input.length()-1;

BigDecimal value = new BigDecimal(input.substring(o,
lastCharIndex));

String scale = input.substring(lastCharIndex);

switch(scale) {

333

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

case"k":
case"K": {
BigDecimal celsius =
Converter.convertKelvinToCelsius(value);
BigDecimal fahrenheit =
Converter.convertKelvinToFahrenheit (value);
System.out.println(value + " Kelvin equals:\n"
+ celsius + " Celsius\n" + fahrenheit + " Fahrenheit");
break;
}
case''c":
case"C": {
BigDecimal kelvin = Converter.convertCelsiusToKelvin(value);
BigDecimal fahrenheit =
Converter.convertCelsiusToFahrenheit(value);
System.out.println(value + " Celsius equals:\n"
+ kelvin + " Kelvin\n" + fahrenheit + " Fahrenheit");
break;
}
case'"f":
case"F": {
BigDecimal celsius =
Converter.convertFahrenheitToCelsius(value);
BigDecimal kelvin =
Converter.convertFahrenheitToKelvin(value);
System.out.println(value + " Fahrenheit equals:\n"
+ celsius + " Celsius\n" + kelvin + " Kelvin");

break;
}
default:
System.out.println("Invalid scale " + scale
+ ". Use K for Kelvin, C for Celsius, F for Fahrenheit");
start();

b
b

catch (NumberFormatException exc) {
System.out.println("Wrong format!");
start();

3

Solution 10.s)

The Printer class could be implemented in the following way:

import java.math.*;

public class Printer {

334

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

public static void printInstructions() {
System.out.println("Enter a value in Kelvin (for example 12K), " +
"Celsius (25C) or Fahrenheit (451F)");

}

public static void printMessage(BigDecimal valuel, String scalel,
BigDecimal value2, String scale2,BigDecimal value3, String scale3) {
System.out.println(valuel + " " + scalel+ " equals:\n"
+ value2 + " " + scale2 + "\n" + value3d + " " + scale3);

}

public static void printInvalidScale(String scale) {
System.out.println("Invalid scale " + scale
+ ". Use K for Kelvin, C for Celsius, F for Fahrenheit");

}

public static void printWrongFormat() {
System.out.println("Wrong format!");

b
b

So, the Exercise10S class could be implemented in the following way:

import java.util.*;
import java.math.*;

public class Exercisel0S {
private static final String K ="Kelvin";
private static final String C ="Celsius";
private static final String F ="Fahrenheit";

public static void main(String[] args) {
Exercisel0S exercisel0S = new Exercisel0S();
exercisel@S.start();

}

public void start() {
try {
Printer.printInstructions();
Scanner scanner = new Scanner (System.in);
String input = scanner.next();
int lastCharIndex = input.length()-1;
BigDecimal value = new BigDecimal(
input.substring(®, lastCharIndex));
String scale = input.substring(lastCharIndex);
switch(scale) {
case"k":
case"K": {
BigDecimal celsius =

335

Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Chapter 10 Exercise Solutions

Converter.convertKelvinToCelsius(value);
BigDecimal fahrenheit =
Converter.convertKelvinToFahrenheit (value);
Pri