

CLAUDIO DE SIO CESARI

LEARN JAVA FROM SCRATCH
AND BECOME A PRO

Appendices

Java for Aliens - Appendices
Copyright © 2019 by Claudio De Sio Cesari

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by

any means, without the prior written permission of the author, except in the case of brief quotations permitted

by copyright law. For permission requests, write to the author at the address: claudio@claudiodesio.com

Editor: Emanuele Giuliani (emanuele@giuliani.mi.it)

First Edition (November, 2019)

Font licenses
Libre Baskerville (https://fonts.google.com/specimen/Libre+Baskerville, Impallari Type): OFL
Libre Franklin (https://fonts.google.com/specimen/Libre+Franklin, Impallari Type): OFL
Cousine (https://fonts.google.com/specimen/Cousine, Steve Matteson): AL
Inconsolata (https://fonts.google.com/specimen/Inconsolata, Raph Levien): OFL
Roboto (https://fonts.google.com/specimen/Roboto, Christian Robertson): AL
Digits (https://www.1001fonts.com/digits-font.html, Dieter Steffmann): FFC
Journal Dingbats 3 (https://www.1001fonts.com/journal-dingbats-3-font.html, Dieter Steffmann): FFC
Musicals (https://www.1001fonts.com/musicals-font.html, Brain Eaters): FFC

Image licenses
Curiosity icon (https://www.flaticon.com/free-icon/toyger-cat_107975, www.freepik.com): FBL
Alien icon (http://www.iconarchive.com/show/free-space-icons-by-goodstuff-no-nonsense/alien-4-icon.html, goodstuffnononsense.com): CC
Trick icon (https://www.flaticon.com/free-icon/magic-wand_1275106, www.flaticon.com/authors/pause08): FBL

License specifications
Open Free License (OFL): https://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=OFL_web
Apache License, Version 2.0 (AL): http://www.apache.org/licenses/LICENSE-2.0
1001Fonts Free For Commercial Use License (FFC): https://www.1001fonts.com/licenses/ffc.html
Flaticon Basic License (FBL): https://file000.flaticon.com/downloads/license/license.pdf
CC Attribution 4.0 (CC): https://creativecommons.org/licenses/by/4.0/legalcode

Any other trademarks, service marks, product names or named features are assumed to be the
property of their respective owners, and are used only for reference. There is no implied
endorsement if we use one of these terms.

V
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Table of Contents

Appendix A - Brief history of Java 1

A.1 Oak, Gosling and the Green Team 1

A.2 Java = Internet 2

A.3 The Reasons for Success 3

A.4 Java... Run Everywhere 4

A.5 Licenses and Oracle Support 4

Appendix B - Setting the working environment on Microsoft Windows
operating systems: installation of the Java Development Kit 5

B.1 OpenJDK Download 6

B.2 Oracle JDK Standard Edition Download 7

B.3 Download API Documentation 10

B.4 PATH Environment Variable Setting 12
B.4.1 Windows 10 12
B.4.2 Windows 8 13
B.4.3 Windows 7 13

B.5 Verify the Installation 14

Appendix C - Basic Commands for Interacting with the Windows
Command Line 17

C.1 Introduction 17

C.2 Most Used DOS Commands Table 19

C.3 More Information on the Command Prompt 21

Appendix D - Introduction to the Design Pattern 23

D.1 Design Pattern Definition 24

D.2 GoF Book: Formalization and Classification 24

D.3 Examples of Patterns in the Book 26

Table of Contents

VI
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix E - The CLASSPATH Environment Variable 27

E.1 CLASSPATH 27

E.2 JAR File 29

E.3 CLASSPATH and JAR File 29

Appendix F - Introduction to the Unified Modeling Language 31

F.1 What is UML? 31

F.2 When and Where It Was Born 32

F.3 Why UML Was Born (Why) 32

F.4 Who Created UML (Who)? 33

Appendix G - UML Syntax Reference 35

G.1 UML 1.3 Syntax Reference 35
G.1.1 Use Case Diagram 38
G.1.2 Class Diagram 41
G.1.3 Component & deployment diagram 44
G.1.4 Interaction diagram 46
G.1.5 State Diagram 48
G.1.6 Activity diagram 49
G.1.7 General Purpose Elements 51

Appendix H - Introduction to XML 53

H.1 Markup Languages 53

H.2 The eXtensible Markup Language 54
H.2.1 XML Documents 54
H.2.2 Structure of an XML Document 55

H.2.2.1 Prologue Structure 55
H.2.2.2 Document Structure 56

H.2.3 Characteristics of an XML Document 57
H.2.3.1 Well Formed XML Document 57
H.2.3.2 Valid XML Document 58

Appendix I - Applet 61

I.1 Definition of Applet 62

I.2 Introduction to HTML 63

I.3 Installing Applet 65

Table of Contents

VII
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix J - Compiling Past Versions of Java Code 67

J.1 Warning 68

J.2 Keywords Used as Identifiers 68

J.3 Current Syntax vs Previous Syntax 68

J.4 The target Option 69

Appendix K - Introduction to Apache Derby 71

K.1 Apache Derby Installation 71
K.1.1 Software Download 72
K.1.2 Installation 73
K.1.3 Configuration 73

K.2 Execution and Use of Apache Derby 76
K.2.1 Server Mode 76
K.2.2 Embedded Mode 77
K.2.3 Interactive Console 77

Appendix L - JavaFX Environment Configuration 79

L.1 JAVA_HOME Variable Setting 80

L.2 Download JavaFX SDK and Runtime 80

L.3 PATH_TO FX Variable Setting 82

L.4 Configuration Check 83

Appendix M - EJE (Everyone’s Java Editor) 85

M.1 System Requirements 86

M.2 EJE Installation and Execution 86
M.2.1 For Windows Users 86
M.2.2 For Unix-like Operating Systems (Linux, Solaris, etc.) Users 86
M.2.3 For Users Who Have Problems with These Scripts
 (Windows 9x/NT/ME/2000/XP & Linux, Solaris) 87

M.3 User Manual 87

M.4 Descriptive table of the main EJE commands 89

Table of Contents

VIII
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix N - Easter Eggs, References and Quotes 97

N.1 Creativity 97
N.1.1 References, Easter Eggs and Quotes 99

N.1.1.1 Volume 1 99
N.1.1.2 Volume 2 100

N.1.2 Exercises References 102
N.1.3 Cover References 103

N.1.3.1 Volume 1 103
N.1.3.2 Volume 2 104

N.1.4 References in the analytical index 105

Appendix O - Bibliography 107

O.1 Resources for Java 108
O.1.1 Books 108
O.1.2 Online Resources 110

O.2 Resources for Java Technologies 111
O.2.1 Resources for Java EE 111
O.2.2 Resources for Android programming 111

O.3 Resources for Object Orientation 112

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix A

Brief history of Java

Goals:

At the end of this appendix, the reader should:

 Understand the history and the importance of Java (Units A.1, A.2, A.3, A.4).

 Understand the new licensing model (Unit A.5).

The following sections will briefly describe the history of the Java programming language.
Over the years, on the Sun Microsystems and Oracle sites, it has been told a bit like a legend,
so much so that, at times, it seemed like reading a historical, almost mythological, novel. The
protagonists of this story, however, are not heroes that sail oceans and fight weird creatures, but
people like James Gosling, principal creator of the Java language, Bill Joy, mythical vice-presi-
dent of Sun Microsystems in the nineties (also author of the VI editor, and father of the Solaris
operating system) and, in general, the Green Team, the group of engineers (including Joy and
Gosling) from which all ideas were born. We will never know if the anecdotes are all true, the
only thing certain is that today Java is the most used programming language in the world.
It is very important to read section A.5 about new Java licensing model.

A.1 Oak, Gosling and the Green Team
Java was born thanks to university research conducted at Stanford University in the early 1990s.
A small team of engineers (later nicknamed the Green Team) was commissioned by Sun Micro-
systems to search for new solutions in the field of embedded systems, or processing microsys-
tems that use microprocessors created to meet certain specific purposes. Examples of embed-
ded systems well known today are smartphones, decoders, smart cards and various domestic
appliances. The side effect of this research was the creation of a language designed to program
these systems, simpler and less heavy than the prevailing language in those years: C++.

3
3

Appendix A

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

In 1992, the Oak language was born, whose main architect was James Gosling, today one of the
most famous and esteemed “computer gurus” on the planet. The Green Team aimed to create
an experimental touch-screen handheld device called “*7” (i.e. “StarSeven”) for home enter-
tainment. For about eighteen months, they closed themselves away in an anonymous office on
Sand Hill Road in the city of Menlo Park (Silicon Valley). Gosling created Oak specifically to
program this demo, but he had in mind the goal of making the language independent of the
platform where the programs had to run.

The name Oak was chosen because outside of the office where the
Green Team worked, there was an oak tree and they dedicated the
language to that tree.

A.2 Java = Internet
At first, Sun decided to take advantage of the experience of *7 to enter fields that seemed stra-
tegic in those years, such as domotics and cable TV. However, the times were not yet prepared
for topics such as “video on demand” and “smart domestic appliances”. Only a few years later,
in fact, people began to request videos via the Internet or TV and even today, home automation
is not as widespread as it could be. So, the original idea was put aside in order to focus on a new
use for Oak, which turned out to be an amazing language.
In 1993, with the explosion of the Internet in the United States, the idea of using executable
code through HTML pages was born. The emergence of applications using CGI (Common
Gateway Interface) technology revolutionized the World Wide Web in such a way as to generate
an unbelievable increase in users, never seen in the history of mankind.
The market that seemed most appealing then, soon became the Internet itself. In 1994, a brows-
er was created that was briefly called Web Runner (from the movie Blade Runner, a favorite of
Gosling’s) and then, finally, HotJava. It was not a top-level browser, but its creation led to the
word “Java” being coupled with the word “Internet”.
On May 23, 1995, Oak, after an important revision, was officially renamed Java.

Java is the name of an Indonesian type of coffee very famous in the
United States, which seems to have been Gosling’s favorite.

At the same time the Netscape Corporation announced it was going to equip its famous browser
with the Java Virtual Machine (JVM). It was a software that allows programs written in Java to be
run directly within the browser itself, and consequently on every platform on which Netscape

Brief history of Java

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Navigator ran. This meant a new revolution in the Internet world: the pages became interactive
on the client computer thanks to Applet technology (explained in Appendix I). Users could, for
example, use games on web pages and take advantage of programs such as dynamic and inter-
active chats, which made the web much more attractive.

A.3 The Reasons for Success
Furthermore, in a very short time, Sun Microsystems made available the JDK (Java Develop-
ment Kit) for free from the website http://java.sun.com. Within a few weeks, downloads of JDK
1.02a ran into the thousands and Java began to be the word on everyone’s lips. Java’s popularity
was down to the possibility that it offered of allowing the developers to write small applications
on the Internet, called applets, which were secure, interactive and independent from the plat-
form. In the early days, it seemed that Java was the right language to create spectacular websites.
But Java was much more than just a tool to make navigation more enjoyable. In addition, tools
were quickly developed to achieve certain results with less effort (see Macromedia Flash). How-
ever, the popularity that Netscape provided (which in 1995 was a colossus that fought a “browser
war” with Microsoft) along with other large companies such as IBM, Oracle, etc., paid off.
Over the years, Java has increasingly become the ideal solution for problems shared by compa-
nies operating in different sectors, such as banks, software houses and insurance companies.
With the new millennium, Java technology has conquered new market shares such as smart
cards, mobile phones and later smartphones (embedded systems for which it was originally
born). These achievements have consolidated the success of the language. In fact, Java has pro-
vided a big boost to the spread of these consumer goods in recent years. Furthermore, Java is a
leader in the world of web-enterprise development.
Finally, thanks to its “write once, run everywhere” philosophy, Java technology can be run on
completely different platforms. It is even potentially executable on devices that have not yet
seen the light today!
In 2006, Java became open source and, in 2010, Sun Microsystems was absorbed by Oracle.
Oracle, after a long period of adjustment, has begun to evolve the Java platform.
In 2011, Java Release 7 (the first from Oracle) was not as amazing as expected. Many promised
features did not find a place in the release, despite the many delays caused by trying to publish
everything that was expected. Version 8 (2014), on the other hand, really brought a big step
forward, but this version suffered several delays too. From September 2017, with Java Release
9, a new release model has been adopted: every six months a new version will be released,
containing all the functionalities ready for production and delaying the functionalities that are
not ready to future versions. Hence, Java 10 was published in March 2018, Java 11 in September
2018, Java 12 in March 2019, Java 13 in September 2019, and it is not difficult to predict what the
subsequent versions will be and when they will be released.

Appendix A

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

A.4 Java... Run Everywhere
Today, Java is therefore a powerful and very well-established programming language and its
numbers are impressive. It counts the highest number of active developers in the world, over
three billion devices use Java technology, 97% of corporate desktops, 100% of Blu-ray players
and one billion downloads per year of Java runtime, etc.
Java technology has invaded our daily lives without us even realizing it. It is massively present,
for example, in our smartphones, decoders, smart cards, home appliances, even robots that
walk on Mars! Very often Java is the invisible engine of the gadgets that we use every day, and
it is probably the only programming language whose name is also in the vocabulary of those
who know nothing about programming. With Java, we can program applications for the Google
Android mobile operating system, most server-side applications use Java technology, and it is
one of the most requested language when searching for an IT job!

A.5 Licenses and Oracle Support
As for Oracle’s licensing and support, things have changed, and they may
change again. Up to Java 8, Oracle provided free security patches and impor-
tant updates. Now that the release model has changed, Oracle will not provide
these updates for each version for free. At the time of writing, Java 11 was de-

clared as the first Long Term Service (LTS) version after Java 8. This means that Oracle will
publish updates for Java 11 until September 2023 but for a fee. The next LTS version should be
the version that will be released in September 2021, Version 17, but it is better to check Oracle
site periodically to be sure.
The vast majority of developers, however, will not need to obtain a commercial license with
Oracle in order to develop in Java. By downloading the JDK from http://jdk.java.net, we can ob-
tain important updates and then update our version every 6 months, keeping up with the new
features offered by the new platform.

It is therefore essential not to download the JDK from the
Oracle site anymore (unless we need to pay Oracle for sup-
port), but rather download it from http://jdk.java.net. The
Oracle JDK and the OpenJDK are functionally equivalent,

but the first is distributed with the classic installer, while the second
is distributed as a zipped file (see Appendix B).

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix B

Setting the working environment
on Microsoft Windows operating

systems: installation of the
Java Development Kit

Goals:

At the end of this appendix the reader should:

 Be able to install the Java Development Kit correctly on Windows operating systems
(Units B.1, B.2, B.3, B.4, B.5).

Below are the procedures to install the Open JDK and Oracle JDK. As explained at
the end of Appendix A, the Oracle JDK needs to be installed only if we plan to create
programs that need the support of Oracle (for a fee) when they are up and running.
So, it’s much more likely that you will have to install the OpenJDK, ignoring the

“Oracle JDK Download” section (section B.2). When using this solution, it is always advisable
to keep up to date with the latest version, by updating the JDK. This will not only allow us to
get all the latest security patches for free, but will also give us the opportunity to preview new
features and libraries without having to wait for the next LTS version. Obviously, if you or your
company cannot update the JDK version for long periods, and you don’t want to accept the risk
of not having the latest security patch available, then you can also consider using Oracle JDK.

3

Appendix B

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

There are dozens of other free and open source solutions such as
those offered by Azul, AdoptOpenJDK, Amazon Corretto, etc. (and
some offer support to pay), but with OpenJDK we’ll know that we are
using something that is functionally identical to the Oracle JDK, for
every update.

B.1 OpenJDK Download
Below are the steps to be taken to download and install the OpenJDK on Windows operating
systems. This will allow you to program in Java for free.

You can alternatively watch a 2 minutes tutorial on my personal
YouTube channel, that explains how to install the OpenJDK on
Windows 10 (https://www.javaforaliens.com/yt/jdk.html). The video
is a quicker solution, but this appendix give you more information.
The choice is yours!

Go to http://jdk.java.net, and choose the JDK version to download. In general, you should choose
the most recent which, in the image B.1 is Version 12, but of course you can choose other
versions like 13.

Figure B.1 - Screenshot of http://jdk.java.net. The arrow highlights the right link to click on.

Installation of the Java Development Kit

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

We will be redirected to the page shown in Figure B.2, where you have to click on the zip link
relating to the Windows platform (see arrow).

Figure B.2 - JDK 12 download screen. The arrow shows the right link to click on.

Once you have the zipped file, unzip it into the C:/Program Files/Java folder (if it does not exist,
create it).

Actually, it is possible to decompress the content of the zip file
anywhere on your hard disk but, by convention, we should use the
C:/Program Files/Java directory, because it is the same one used by the
Oracle JDK installer.

B.2 Oracle JDK Standard Edition Download
Download the latest version of the Java Development Kit from:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.
The file name varies from release to release, but not that much. At the time of

Appendix B

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

writing, the current version is 12.0.1, and the file name to download for 64-bit systems is
jdk-12.0.1_windows-x64_bin.exe.

Figure B.3 - Download screen. The arrow highlights the right link to click on.

As seen in Appendix A, the Java version is updated every six months.
At the time of writing, the current version is 12, so every internet ad-
dress in these pages contains the number 12 for the current java ver-
sion. You can try to substitute 12 with the last available version of Java
to obtain the latest link.

To download the file, you will be asked to accept a license (click on the Accept License Agreement
option), then will you be allowed to download the correct file. In Figure B.4, the arrows high-
light the fundamental steps of the process to be carried out.

Installation of the Java Development Kit

�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure B.4 – JDK download screen.

Once you have obtained the installation file, run it and follow the steps proposed by the instal-
lation procedure. This is a very simple wizard with which it will be enough to advance from
page to page without choosing options other than those proposed by default. The JDK will then
be installed.
At the end of the process, the success of the installation will be confirmed, but we have not
finished yet.

Appendix B

�0
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure B.5 - JDK installation screen.

B.3 Download API Documentation

This step is theoretically optional since API

Documentation is always available online at

https://docs.oracle.com/en/java/javase/12/docs/api/index.html.
However, we recommend that you always have the

documentation offline, downloaded to your computer. From Ver-

sion 9 on, the search functionality is also readily available in the

interface.

Installation of the Java Development Kit

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

We have to go to http://www.oracle.com/technetwork/java/javase/downloads/index.html.
Also download the “Java API” documentation. Click the download button at the bottom of the
page under the Java SE 12 Documentation entry, as shown in Figure B.6.

Figure B.6 - Download screen, “Additional Resources” section.

Appendix B

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

You will be redirected to another page where you can download (after accepting the license) the
Java API documentation, as you can see in Figure B.7.

Figure B.7 - Screen to download the documentation.

This is a .zip file currently named jdk-12.0.1_doc-all.zip. In this case, the file name varies from
one release to the other. Unzip the file in the same folder as the JDK (or any other folder that
is easily accessible) in the Docs folder (or choose a suitable name). Create a shortcut on the
desktop (or any other location that is considered easily accessible) to index.html file of the Docs
folder.

B.4 PATH Environment Variable Setting
To use the compiler (javac), the interpreter (java) and all the software contained in the JDK bin
folder, you need to set the PATH environment variable, pointing it to the JDK bin folder.

B.4.1 Windows 10
For Windows 10 systems, perform the following steps:

open the control panel, then click on System, then on Advanced System Settings in the new
window;

in the new window that opens, select the Advanced tab and click on Environment variables;

1.

2.

Installation of the Java Development Kit

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

among the System Variables (or if you prefer among the User Variables) select the PATH
variable and click Modify;

on the new window that is shown click on New;

move to the Variable value box and move the cursor to the beginning of the row, then add
the path to the JDK bin folder, which should look like this:

C:\Program Files\Java\jdk-12.0.1\bin

after confirming the insertion of the new item, select it and bring it to the beginning of
the list by clicking on the Move up button;

click OK and the installation is finished.

B.4.2 Windows 8
For Windows 8 systems, perform the following steps:

open the control panel, then click on System, then on Advanced System Settings in the new
window;

in the new window that opens, select the Advanced tab and click on Environment variables;

among the System Variables (or if you prefer among the User Variables) select the PATH
variable and click Modify;

on the new window that is presented click on New;

move to the Variable value box and move the cursor to the beginning of the row, then add
the path to the JDK bin folder, which should look like this:

C:\Program Files\Java\jdk-12.0.1\bin;

the “;” will allow us to separate our value from other values;

click OK and the installation is finished.

B.4.3 Windows 7
For Windows 7 systems, perform the following steps:

press the start button, then right click on My Computer and click on Properties;

select Advanced System Settings and click Environment Variables;

among the System Variables (or if you prefer among the User variables), select the PATH
variable and click Edit;

3.

4.

5.

6.

7.

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

Appendix B

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

move to the Variable value box and move the cursor to the beginning of the row, then add
the path to the JDK bin folder, which should look like this:

C:\Program Files\Java\jdk-12.0.1\bin;

the “;” will allow us to separate our address from other references;

click OK and the installation is finished.

B.5 Verify the Installation
To verify that everything has been successful, open a command prompt and, in the text field,
available in the Windows Start menu, type the command:

cmd

Once the command prompt is open, to test the version of Java installed, type:

java –version

If everything is OK, a message like the following should be printed:

openjdk version "12.0.1" 2019-04-16
OpenJDK Runtime Environment (build 12.0.1+12)
OpenJDK 64-Bit Server VM (build 12.0.1+12, mixed mode, sharing)

Also test that the compiler is correctly installed by typing the command:

javac

If everything is OK, a message like the following should be printed:

Usage: javac <options> <source files>
where possible options include:
 @<filename> Read options and filenames from file
 -Akey[=value] Options to pass to annotation processors
 --add-modules <module>(,<module>)*
 Root modules to resolve in addition to the initial
 modules, or all modules on the module path if <module>
 is ALL-MODULE-PATH.
 --boot-class-path <path>, -bootclasspath <path>
 Override location of bootstrap class files
 --class-path <path>, -classpath <path>, -cp <path>
 Specify where to find user class files and annotation
 processors
 -d <directory> Specify where to place generated class files

 -deprecation Output source locations where deprecated APIs are used

4.

5.

6.

Installation of the Java Development Kit

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 --enable-preview Enable preview language features. To be used in
 conjunction with either -source or --release.
 -encoding <encoding> Specify character encoding used by source files
 -endorseddirs <dirs> Override location of endorsed standards path
 -extdirs <dirs> Override location of installed extensions
 -g Generate all debugging info
 -g:{lines,vars,source} Generate only some debugging info
 -g:none Generate no debugging info
 -h <directory> Specify where to place generated native header files
 --help, -help, -? Print this help message
 --help-extra, -X Print help on extra options
 -implicit:{none,class} Specify whether or not to generate class files for
 implicitly referenced files
 -J<flag> Pass <flag> directly to the runtime system
 --limit-modules <module>(,<module>)*
 Limit the universe of observable modules
 --module <module>(,<module>)*, -m <module>(,<module>)*
 Compile only the specified module(s), check timestamps
 --module-path <path>, -p <path>
 Specify where to find application modules
 --module-source-path <module-source-path>
 Specify where to find input source files for multiple
 modules
 --module-version <version>
 Specify version of modules that are being compiled
 -nowarn Generate no warnings
 -parameters Generate metadata for reflection on method parameters
 -proc:{none,only}
 Control whether annotation processing and/or compilation
 is done.
 -processor <class1>[,<class2>,<class3>...]
 Names of the annotation processors to run; bypasses
 default discovery process
 --processor-module-path <path>
 Specify a module path where to find annotation processors
 --processor-path <path>, -processorpath <path>
 Specify where to find annotation processors
 -profile <profile>
 Check that API used is available in the specified profile
 --release <release>
 Compile for a specific release. Supported releases:
 7, 8, 9, 10, 11, 12
 -s <directory> Specify where to place generated source files
 --source <release>, -source <release>
 Provide source compatibility with specified release.
 Supported releases: 7, 8, 9, 10, 11, 12
 --source-path <path>, -sourcepath <path>
 Specify where to find input source files
 --system <jdk>|none Override location of system modules
 --target <release>, -target <release>
 Generate class files for specific VM version.
 Supported versions: 7, 8, 9, 10, 11, 12
 --upgrade-module-path <path>
 Override location of upgradeable modules
 -verbose Output messages about what the compiler is doing

Appendix B

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 --version, -version Version information
 -Werror Terminate compilation if warnings occur

If you have previously installed another version of the JDK (and maybe you won’t be aware), to
be sure that it’s all ok, also type:

javac -version

That should print the current version (12.0.1 in our case):

javac 12.0.1

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix C

Basic Commands
for Interacting with

the Windows Command Line

Goals:

At the end of this appendix, the reader should:

 Be able to use simple DOS commands to move between Windows folders (Units C.1,
C.2 and C.3).

C.1 Introduction
Windows is an operating system that originated from another historical operating system
called MS DOS (MS means Microsoft). Before becoming independent from DOS, Windows
systems were nothing more than a DOS interface. It was possible to open the DOS system from
Windows with a Start menu item called DOS Prompt. Since the release of Windows 7, this en-
try is gone, and to open a DOS session (which is now also called command line or command
prompt) we can type the statement:

cmd

in the test field that is visible by clicking the Start button, for Windows 8, by simply typing the
instruction in the search field at the top right of the desktop, while for Windows 10, in the text
field at the bottom left of the desktop. A window similar to the one shown in figure C.1 should
appear.

3

Appendix C

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure C.1 – Command prompt (Windows 7).

The DOS operating system did not have a graphical window interface. To navigate between
folders, or to perform any other type of operation on files, we had to type a command. Below
is a list of basic commands that should allow us to approach the study of this book without
problems. The commands executed on the prompt are always case insensitive (they do not
distinguish between uppercase and lowercase letters).

Each command described must be followed by pressing the Enter key
on the keyboard to take effect.

Basic Commands for Interacting with the Windows Command Line

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

C.2 Most Used DOS Commands Table

Command Explanation

cd folderName

cd foldersPath

Used to move to a folder contained in the working folder. If the folder
name contains spaces, we must include the folder name in quotation
marks. Here are some examples:

cd JavaHandbook
cd "Java Handbook"

We can also move to sub-folders:

cd folder/subfolder/subsubfolder

Or move to paths that are located outside the folder where it is
located:

cd "../parallelfolder/folder whose name contains spaces"

cd .. Moves to the folder that contains the working folder.

dir Lists the contents of the current folder with vertical alignment.

dir /w Lists the contents of the current folder with horizontal alignment.

dir /p

Lists the contents of the current folder with a vertical alignment. If
the files to be listed exceed the visual availability of the window, only
the files that fall within the window are initially displayed. When any
other key is pressed, the system will display the next screen.

cd driveName:/...

Moving to a folder of another drive will not immediately produce the
desired result. Suppose, for example, we are in the C:/Test folder, by
typing the command:

cd D:/Java

It will not move to the destination folder if we do not type the follow-
ing command too:

D:

So, to move to another drive, we need an additional command.

Appendix C

�0
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

control c
(that is, the simul-
taneous pressing of
the keys ctrl and c)

It interrupts the ongoing process (useful in the case of an infinite life
cycle process).

TAB

The tab key allows us to write the name of a file or folder contained
in the folder where it is positioned. By repeatedly pressing the tab
key, all the names of the files and folders in the current folder will be
listed in alphabetical order. For example, if we are in a folder where
there are HelloWorld.java and HelloWorld.class files and the Test folder.
Pressing the tab key repeatedly will write HelloWorld.class first, then
HelloWorld.java and then Test. Then the cycle starts again.
We can also start writing the initial part of the file or folder name we
want to write, and then press tab. In this case, the system will complete
the word only with compatible alternatives. For example, if we write:

cd t

and then we press tab, the system will complete our command like
this:

cd Test

Or if we write:

javac Hell

and then we press tab, the system will complete our command like
this:

javac HelloWorld.class

Pressing tab again will give us:

javac HelloWorld.java

The system is smart enough to understand that if we press tab after
the command:

cd

only the names of folders (and not files) will be proposed.

Basic Commands for Interacting with the Windows Command Line

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Up and Down Arrow
keys

Allows us to navigate through the last commands typed.

exit The command line session is closed.

C.3 More Information on the Command Prompt
Pressing the right button of the mouse on the title bar will allow us to customize the command
prompt by clicking on the Properties menu. From the window that appears, we can customize
colors, layouts, fonts and so on.
To paste an externally-copied string at the DOS prompt, we must always press the right button
on the title bar, then click on the Paste submenu of the Edit menu. In the case of Windows 10,
we can also paste text using the key combination (shortcut) ctrl and v.

Figure C.2 - Command Prompt Menu (Windows 10).

If our goal is to copy a path to a folder (which could also be very long), we can also type the
command:

cd

followed by a space. Then drag from the Windows window interface the folder we want to

Appendix C

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

move to, by dragging it into the command prompt.
To copy a string from the command prompt, we need to:

press the right button on the title bar;

click on the Select submenu of the Edit menu (on Windows 10, we can use the key com-
bination ctrl and m);

select the string to copy by dragging the mouse with the left key pressed on the characters
to be copied;

click on the Copy submenu of the Edit menu or press the Enter key.

At that point, the selected text will be copied, and it is ready to be pasted.
We can also search by clicking on the Find... sub-menu of the Edit menu (on Windows 10, use
the key combination ctrl and f).

1.

2.

3.

4.

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix D

Introduction to the
Design Pattern

Goals:

At the end of this appendix, the reader should:

 Know how to define what a Design Pattern is (Units D.1, D.2, D.3).

Applying Object Orientation to complex software development processes involves many dif-
ficulties. One of the most critical moments in the development cycle is that in which one passes
from the analysis phase to the design phase. In such situations, it is necessary to make particu-
larly delicate design choices, since they could jeopardize the functioning and release date of the
software. In this context (but not only), we introduce the concept of Design Pattern, imported
into software engineering directly from architecture. In fact, the first definition of a pattern
was given by Cristopher Alexander, an important Austrian architect (teacher at the University
of Berkeley - California), who began to formalize this concept in the 60s. In his book “Pattern
Language: Towns, Buildings, Construction” (Oxford University Press, 1977) Alexander defines a
pattern as an architectural solution that can solve problems in heterogeneous contexts.
The formalization of the concept of Design Pattern is widely attributed to the so-called Gang of
Four (briefly GoF). The “gang of four” consists of Erich Gamma, Richard Helm, Ralph Johnson
and John Vlissides who, despite coming from three different continents, cataloged - after four
years of comparing - the first set of 23 patterns that constituted the fundamental core of the
technique. In 1994, their book was considered the reference guide for the pattern community:
“Design Patterns: elements of reusable object-oriented software” (Addison-Wesley). Other au-
thors later published texts that extend the number of known patterns.

3

Appendix D

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

D.1 Design Pattern Definition
Design Patterns are generic design solutions applicable to recurring problems within
heterogeneous contexts. Aware that the above statement may not be clear to the reader who is
not familiar with certain situations, we will try to describe the concept by presenting, as well as
the theory, also some examples of patterns within the book. In this way, we can better appreci-
ate both the concepts and applicability.
The basic idea, however, is rather simple. It is well known that the goodness of the design is
directly proportional to the designer’s experience. An expert designer solves the problems that
arise by using solutions that have already led to good results in the past. The GoF did nothing
but compare its (broad) experience in finding design solutions, thus discovering some obvious
intersections. Since these intersections are also solutions that often solve problems in heteroge-
neous contexts, they can be declared and formalized as a Design Pattern. In this way, solutions
to common problems are available, even to designers who do not have extensive experience
like that of the GoF. So, we are talking about a real gold mine!

D.2 GoF Book: Formalization and Classification
The GoF has cataloged the patterns using a very precise formalism. Each pattern is presented
through a name, the problem to which it can be applied, the solution (not in a particular case)
and the consequences. In particular, each pattern is described by the following list of elements
that they consider most characteristic:

Name and classification: important for the vocabulary used in the project.

Purpose: brief description of what the pattern does and its logical foundation.

Alternative names (if any): many patterns are known by several names, perhaps because

they are “discovered” by different people who gave them different names.

Motivation: description of a scenario illustrating a design problem and the solution

offered.

Applicability: when the pattern can be applied.

Structure (or model): graphical representation of the classes of the pattern using a notation

language.

1.

2.

3.

4.

5.

6.

Introduction to the Design Pattern

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

In this book, we will use UML, but in the book of GoF, which was cre-
ated prior to the definition of UML, the OMT notation language (ac-
ronym of “Object Modeling Technique”) created by James Rumbaugh
is used, plus Grady Booch’s interaction diagrams.

Participants: classes/objects with their own responsibilities.

Collaborations: how the participants collaborate in order to take responsibility.

Consequences: pros and cons of the application of the pattern.

 Implementation: how to implement the pattern.

 Sample code: code fragments that help in understanding the pattern.

This book will use Java, but C++ and SmallTalk are used in the book,
whose birth pre-dates Java.

 Related patterns: relationships with other patterns.

 Known uses: examples of real uses of the pattern in existing systems.

The 23 patterns presented in the GoF book are classified into three main categories, based on
the purpose of the pattern:

Creational patterns: they propose solutions for creating objects.

Structural patterns: they propose solutions for the structural composition of classes and
objects.

Behavioral patterns: they propose solutions to manage the way in which the responsi-
bilities of classes and objects are divided.

Furthermore, a distinction is also made based on the range of action of the pattern:

Class patterns: offer solutions through classes and subclasses in static relationships
between them.

Object patterns: offer dynamic solutions based on objects.

7.

8.

9.

10.

11.

12.

13.

1.

2.

3.

1.

2.

Appendix D

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

We can summarize the 23 patterns of the GOF book through the following table.

Purpose

Creational Structural Behavioral

Scope

Class Factory Method Adapter (class) Interpreter
Template Method

Object Abstract Factory
Builder
Prototype
Singleton

Adapter (object)
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Chain of responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy

D.3 Examples of Patterns in the Book
Examples of GOF patterns are described in this book. In particular, after introducing the static key-
word in section 6.8.5, the Singleton pattern, one of the most famous, and used, is described in 6.8.6.
In section 9.6.3, a solution based on the Factory Method is presented, in a module that talks
about exceptions. It is a very famous pattern but often used in a simplified way. The pattern is
taken up in section 19.3.1, when we talk about the services created with the ServiceLoader.
The Thread Pool pattern is described according to its implementation in section 15.6.3.3 when
it comes to “Executor Interfaces”.
The same is true for the Iterator pattern, which finds an excellent representation in the
Iterator interface and its implementations. This is all described above in module 18.2.3.2.
The spectacular Decorator structural pattern, on the other hand, is described in sufficient de-
tail in section 20.2, to describe the structure of the Input-Ouput base library.
The MVC architectural pattern (acronym for Model View Controller) is mentioned in Chap-
ters 23 and 24 when talking about GUIs.
Finally, the previously-mentioned Chapter 23, dedicated to Swing/AWT and GUIs in general,
in addition to the MVC, also explains the behavior of the Observer pattern, which is the basis
for the Java event management mechanism, and also shows how the libraries AWT and Swing
were constructed using the Composite structural pattern.
We have only referred to the pattern known as DTO (acronym for Data Transfer Object) in
section 5.4.1, which features an introduction to software architecture.

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix E

The CLASSPATH
Environment Variable

Goals:

At the end of this appendix, the reader should:

 Be able to correctly set the CLASSPATH environment variable (Units E.1, E.3).

 Understand and know how to create and use JAR files (Units E.2, E.3).

Sometimes it happens that we cannot run a Java program. In fact, it may be necessary to use
external libraries, or it could happen that even if we are in the same directory as our execut-
able files, these are not “seen” by the virtual machine. In both cases, it is very probable that the
problem results from an incorrect setting of the CLASSPATH environment variable.

E.1 CLASSPATH
The CLASSPATH environment variable is used at runtime by the virtual machine to
find the classes that the program wants to use. To understand it better, let’s give an
example. Suppose we place our application in the C:\OurApplication directory. Now,
suppose our application wants to use some classes located within another directory,

let’s say C:\OtherClassesToUse. The virtual machine will not scan all the directories on the hard
disk to find the classes it needs, but will only search the directories indicated by the CLASSPATH
environment variable. In this case, therefore, it is necessary to set the CLASSPATH both on the
C:\OtherClassesToUse directory, and on the C:\OurApplication directory, in order to run our ap-
plication correctly. To reach the goal, there are two solutions:

3
3

Appendix E

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

set the CLASSPATH environment variable directly from the operating system;

set CLASSPATH only for our application.

The first solution is highly discouraged. It involves permanently setting an operating sys-
tem environment variable (the procedure is identical to the one described in Appendix B for
the PATH variable). This would cause the permanent setting of the variable, and will prevent
the execution of an application from another directory other than those referenced by the
CLASSPATH (unless we set the CLASSPATH variable again).
The second solution is more flexible and is implemented by specifying the value of the
CLASSPATH variable with an option of the java command. In fact, the -classpath (or -cp) flag of
the java command allows us to specify the CLASSPATH, but only for the application we are run-
ning. For example, if we are in the C:\OurApplication directory and we want to run our applica-
tion, we need to execute the following command:

java –cp .;C:\OtherClassesToUse mypackage.MyMainClass

where, with the -cp option, we have specified that the classpath must point to the current
directory (specified with “.”) and to the directory C:\OtherClassesToUse.
It is also possible to use relative paths. The following command is equivalent to the previous
one:

java –cp .;..\OtherClassesToUse mypackage.MyMainClass

Note that we have used the “;” as a separator, since we are assuming
that we are on a Windows system. On a Unix-Like system, the separa-
tor would have been “:”.

The same option can also be used for the javac command, if we need to compile files that
depend on others already compiled (the CLASSPATH must point to class files, not source files).
For example, if to compile the file MyMainClass.java, we need classes already compiled that are
inside the folder C:\OtherClassesToUse, then we will have to use the command:

javac –cp.; C:\OtherClassesToUse mypackage.MyMainClass

However, consult section 6.6.1 for details on compiling the files be-
longing to packages using the command line.

1.

2.

The CLASSPATH Environment Variable

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

E.2 JAR File
It is not uncommon to refer to our application for external class libraries. Class libraries can be
distributed within directories, but the most common format in which class libraries are cre-
ated is the JAR format. The term JAR stands for “Java Archive”. This is an absolutely equivalent
format to the classic ZIP format. The only difference between a ZIP and a JAR format is that
a JAR file must contain a directory called META-INF, containing a text file called MANIFEST.MF.
This file can be used to add properties to the JAR archive in which it is contained. To create
a JAR file, we can then use a utility such as WinZIP or WinRar, adding the MANIFEST.MF file
in a META-INF directory. But JDK offers a more convenient alternative: the jar tool. With the
following command:

jar cvf library.jar MyDirectory

we will create a file called library.jar with the MyDirectory directory and all its contents inside.

On the Windows operating system, it is possible to create executable
jar files. This means that, once the jar file has been created with our
application in it, it will be possible to start it with a typical double
click of the mouse, as if it were an .exe file. This will be discussed in
Chapter 23.

E.3 CLASSPATH and JAR File
If we want to use, from our application, classes contained within a JAR file that are not directly
available in the same directory as where the application is located, it is always possible to use
the CLASSPATH. In this case, to run our application, we will use a command similar to the fol-
lowing:

java –cp .;C:\DirectoryWithJARFile\MyFile.jar mypackage.MyMainClass

The JVM will recover the .class files within the JAR file automatically. If we want to use multiple
JAR files, we will have to execute a command similar to the following:

java –cp .;C:\DirectoryWithJARFile\MyFile.jar;C:\DirectoryWithJARFile\
MyOtherFile.jar mypackage.MyMainClass

If the JAR files that interest us are in the same directory, we can also use the so-called “CLASSPATH
wildcards”; that is, the “*” symbol can be used to refer to all the JAR files within a certain

Appendix E

�0
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

directory. This means that the following command is equivalent to the previous one:

java –cp .;C:\DirectoryWithFileJARFile* mypackage.MyMainClass

We can use CLASSPATH wildcards only from Version 6 of the language
onwards.

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix F

Introduction to the
Unified Modeling Language

Goals:

At the end of this appendix, the reader should:

 Know how to define UML, and know its history (Units F.1, F.2, F.3, F.4).

Nowadays we hear about UML very often, but not everyone who talks about UML knows what
it really is. Some think it’s a programming language and this equivocation is due to the word
“language”. Others think it is an object-oriented methodology and this is probably due to the
misinterpretation of not very in-depth readings. We often hear about UML together with vari-
ous methodologies. Therefore, to define correctly what UML is, it is preferable to first broadly
define what a methodology is.

F.1 What is UML?
An object-oriented methodology, in its most general definition, can be under-
stood as a couple constituted by a process and a modeling language.

The term we are using, for accuracy, is the definition of a “method”. A
methodology is technically defined as “the science that studies meth-
ods”. However, these terms are often considered synonymous.

3

Appendix F

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

A modeling language is, on the other hand, the tool that the methodologies use to describe
(possibly in a graphic way) all the static and dynamic characteristics of a project.
Actually, UML is nothing more than a modeling language. It is made up, essentially, of a series
of graphic diagrams whose elements are simple lines, ovals, rectangles, stylized men and so on.
These diagrams have the task of clearly describing everything that may be difficult or too long
when it comes to textual documentation during a project.

F.2 When and Where It Was Born
Starting from the early eighties, the global computer scene began to be invaded by object-
oriented languages such as SmallTalk and, above all, C++. This is because, with the increasing
complexity of the software, and the corresponding design philosophy, the limits of functional
programming became evident and it proved insufficient to satisfy the ever-increasing techno-
logical pretensions. A new object-oriented mentality was affirmed and new theories emerged
which set themselves the ultimate goal of providing more innovative techniques of creating
software, obviously exploiting the paradigms of objects. The object-oriented methodologies,
in large quantities and all more or less valid, were born one after the other. Initially, they were
closely related to a well-defined programming language, but the mentality changed quite early.
Beginning in 1988, the first books on object-oriented analysis and design were published. By
‘93, we had reached a point where there was great confusion: analysts and expert designers
such as James Rumbaugh, Jim Odell, Peter Coad, Ivar Jacobson, Grady Booch, Ivar Jacobson
and others, all proposed their own methodology, and each of them had their own group of
enthusiastic followers. The beginning of the end of the “war of methodologies” coincided with
the definition of UML in 1997, but the times had yet to mature.

F.3 Why UML Was Born (Why)
The fundamental problem was that different methodologies proposed not only different pro-
cesses, which can be positively evaluated, but also different notations. It was clear to everyone
that a standard methodology couldn’t exist. In fact, the various existing processes had charac-
teristics particularly suited to solving some particular problems. In practice, when starting a
project, it is good to be able to choose between different resolutive stratagems (processes). The
fact that every process is strictly linked to a specific modeling language obviously represents
nothing but a hindrance to the various members of a development team. The need for a stan-
dard language for methodologies was felt by many, but none of the authors intended to take
the first step.

Introduction to the Unified Modeling Language

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

F.4 Who Created UML (Who)?
At that time, Rational Software Corporation (now acquired by IBM) thought about it and
among its experts was Grady Booch, author of a very famous methodology at the time, known
as Booch Methodology. In 1994, James Rumbaugh, creator of the Object Modeling Tech-
nique (OMT), one of the most used object-oriented methodology, joined the Booch team at
Rational. In October 1995, the 0.8 version of the so-called Unified Method was released. So,
in the space of a few days, the Swede, Ivar Jacobson also joined Booch and Rumbaugh, start-
ing a collaboration that then became historic. In addition to the fundamental concept of “Use
Case”, Jacobson brought the famous Object-Oriented Software Engineering methodology
(OOSE), also known as Objectory (which in reality was the name of the Jacobson company
then incorporated by Rational). Here then the tres amigos (as they were nicknamed) began to
work on the Unified Software Development Process (USDP) which was then renamed, sim-
ply Unified Process (UP) and, above all, the UML project. The Object Management Group
(OMG, http://www.omg.org), a non-profit-making consortium that deals with standardization,
maintenance and creation of specifications that may be useful in the world of information
technology, in the same period, forwarded to all the most important authors a “request for
proposal” (RFP) of a standard modeling language. So Rational, together with other big partners
such as IBM and Microsoft, proposed version 1.0 of UML in October 1997. OMG responded by
setting up a “Revision Task Force” (RTF) led by Cris Kobrin to make improvements to UML.
The current version of UML is 2.5.1, but there is a lot of confusion among UML users. In fact,
the difficulty of “interpreting the specifications”, the different points of view of the most impor-
tant authors and the anchoring of some authors to the first versions of the language (for exam-
ple, the tres amigos), unfortunately make the picture unclear. Indeed, OMG’s ultimate goal is to
make UML an ISO standard and that’s why the specifications are intended, rather than for UML
users, for the creators of UML development tools. That’s why the specifications are defined in
the very complex format: the UML metamodel. That is, UML is described by itself. In particular,
the UML metamodel is divided into four sections and, just to get an idea of how complex it is,
a language is defined (the Object Constraint Language, also called OCL) only for the purpose
of defining unambiguous syntax. All this is in the appreciable future hypothesis of creating ap-
plications only by dragging UML elements on top of each other through development tools.
Highly recommended (also in the bibliography of Appendix O) for learning UML, is Martin
Fowler’s evergreen best seller “UML Distilled”. This book is pragmatic, practical, “sincere” and
full of precious references.

The syntax of the most important diagrams of UML will be
introduced schematically in the next appendix G.

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix G

UML Syntax Reference

Goals:

At the end of this appendix the reader should:

 Know how to consult the following Syntax Reference to be able to interpret or create
simple UML diagrams (Unit G.1).

This appendix presents schematic tables of UML 1.3 syntax. Even if the version is obsolete, it
is possible to take advantage of all the following definitions that constitute the fundamental
nucleus of the language.

G.1 UML 1.3 Syntax Reference

Unified Modeling Language Syntax Reference
Diagram

Name
Element Names

Use Case
Diagram

Actor Use Case

Relationship Link System Boundary

Inclusion Extension

Generalization Actor Generalization

Use Case Diagram: shows the interaction between the system and the system users.

3

Appendix G

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Unified Modeling Language Syntax Reference

Class
Diagram

Class / Object Association / link Navigability

Attribute Aggregation Multiplicity

Operation Composition Qualified Association

Member Properties Extension Association Class

Abstract Class / Interface Implementation Roles Names

Class Diagram: shows the system classes and the existing relationships among them.
N.B.: when it shows the system objects, it’s sometimes called as Object Diagram.

Component
Diagram Component Dependency

Component Diagram: shows the software components and their dependencies.

Deployment
Diagram Node Link

Deployment Diagram: shows the physical (hardware) structure of the system.

Interaction
Diagrams:
Sequence &
Collaboration

Actor Message

Object Asynchronous Message

Creation Life Line

Destruction Activity Line

Interaction Diagram: shows how a group of objects collaborate in a fixed lap of time.
Sequence Diagram: highlights the messages sequence.
Collaboration Diagram: highlights the architectural structure of the objects.

UML Syntax Reference

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Unified Modeling Language Syntax Reference

State
Transition
Diagram

State Transition

Start Action

End History

State Transition Diagram (or State Chart Diagram or State Diagram): describes the ob-
ject behavior showing the states and the events that determinate the transitions from state
to state.

Activity
Diagram

Activity Flow

Branch/Merge Fork/Join

Swimlane Other elements

Activity Diagram: describes the system processes with either conditional and parallel
activities sequences.

General
Purpose
Elements &
Extension
Mechanism

Package Iteration mark

Stereotype Condition

Constraint Tagged Value

Generic Elements and Extension Mechanisms: UML elements useful in various
diagrams.

Appendix G

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

G.1.1 Use Case Diagram
The following table shows the elements of the use case diagram.

Use Case Diagram Syntax Reference
Diagram Name Element Names

Actor

 Alternative

Actor: role played by the user towards the system.
N.B.: an actor may not be a person (but for example, a system).

Use Case Alternative

Use Case: set of scenarios linked by a common goal for the user.
Scenario: is a sequence of steps that describes the interaction between the user and the system.
NB: it is possible to describe scenarios using dynamic diagrams.

Relationship
link

Alternative

Relationship Link: logical relationship link between an actor and a use case.

<<Actor>>

Actor Name

<<Actor>>

Actor Name

Actor NameActor Name

Use Case NameUse Case Name

Use Case NameUse Case Name

Use Case 1

Actor 1

Use Case 1

Actor 1

Use Case 1

Actor 1

Use Case 1

Actor 1

UML Syntax Reference

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Use Case Diagram Syntax Reference

System
Boundary

System Boundary: system domain boundary.

Inclusion

Inclusion: logical relationship link between use cases, that extract a common behavior for
more use cases.

Extension Alternative

Extension: logical relationship link among use cases with the same semantic target. The
specialized use case, reach his target adding extension points, written in the base use case.
Extension Point: describes a specialized use case behavior, not used by the base use case.

Use Case 1

Actor 1

Use Case 2

Use Case 1

Actor 1

Use Case 2

Use Case 1

Use Case 2

Use Case 3

<<include>>

<<include>>

Use Case 1

Use Case 2

Use Case 3

<<include>>

<<include>>

Use Case 1

Use Case 2___________________
Extension Point name 1
Extension Point name 2

<<extend>>

Use Case 1

Use Case 2___________________
Extension Point name 1
Extension Point name 2

<<extend>>

Use Case 1

Use Case 2

<<extend>>

Use Case 1

Use Case 2

<<extend>>

Appendix G

�0
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Use Case Diagram Syntax Reference

Generalization

Generalization: logical relationship link between use cases, with the same semantic target.
The specialized use case, reaches his target adding new behaviors not used by the base use
case, but without syntax formalisms.

Actor
generalization

Actor Generalization: logical relationship linking actors. An actor who specializes an actor
can relate to any use case related to the extended actor. It can also relate to other use cases,
not related to the actor extended.

Use Case 1

Use Case 2

Use Case 1

Use Case 2

Actor 1

Actor 2 Actor 3

Actor 1

Actor 2 Actor 3

UML Syntax Reference

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

G.1.2 Class Diagram
The following table shows the elements of the class diagram.

Class Diagram Syntax Reference
Diagram Name Element Names

Class &
Object

 Class

Object

Class: abstraction for a group of objects that share the same functions and features.
Object: physical creation (or instance) of a class.

Attribute

Attribute (or instance variable or variable member or class characteristic): character-
istic of a class/object.

Operation

Operation (method or function member): functionality of a class/object.

ClassName

-attributeName: typeName

+operationName(): returnType

ClassName

-attributeName: typeName

+operationName(): returnType

ObjectNameObjectName

ClassName

-attributeName: typeName

ClassName

-attributeName: typeName

ClassName

+operationName(): returnType

ClassName

+operationName(): returnType

Appendix G

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Class Diagram Syntax Reference

Member
Properties

+ memberName “public member”

memberName “protected member”

- memberName “private member”

memberName o $memberName “static member”

operation o operation {abstract} “abstract operation”

/attributeName “derived attribute”

Public, protected, private: visibility modifiers.
Static Member (or class member): member of the class.
Abstract Operation: method signature (method without implementation).
Derived Attribute: attribute derived from others.

Abstract
Class &
Interface

Abstract Class

Interface

Abstract Class: class that cannot be instantized that usually declare abstract methods.
Interface: data structure non-instantiable that can declare only abstract methods (and pub-
lic static constants).

Extension &
Implementation

 Extension

Implementation

Extension: inheritance relationship among classes.
Implementation: extension to implement abstract methods of an interface.

ClassNameClassName <<Interface>>

InterfaceName
<<Interface>>

InterfaceName

Class 1

Class 2

Class 1

Class 2

<<Interface>>

Interface 1

Class 1

<<Interface>>

Interface 1

Class 1

UML Syntax Reference

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Class Diagram Syntax Reference

Association

Association

Link

Association: relationship among classes where one uses the services (the operations) pro-
vided from the other.
Link: association relationship among objects.

Aggregation

Aggregation: association characterized by containment.

Composition

Composition: aggregation among objects with shared life cycle.

Navigability

Navigability: direction of an association.

Multiplicity

Multiplicity: correspondence among the cardinalities of the objects of the classes involved
in the association.

Class 1

Class 2

Class 1

Class 2

Class 1

Class 2

Class 1

Class 2

Class 1 Class 2Class 1 Class 2

Class 1 Class 2Class 1 Class 2

Class 1 Class 2Class 1 Class 2

Class 1 Class 2
0..1 1..*

Class 1 Class 2
0..1 1..*

Appendix G

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Class Diagram Syntax Reference

Role Names

Role Names: description of a class behavior in an association.

Qualified
Association

Class 1 Class 2ID

Qualified Association: association in which a class object is identified from another class
through a sort a “foreign key”.

Association
Class

Class 1 Class 2

AssociationClassName

Association Class: association coded as a class.

G.1.3 Component & deployment diagram
The following table shows the components of the component diagram and of the deploy-
ment diagram.

Component & Deployment Diagram Syntax Reference
Diagram Name Element Names

Component ComponentName

Component: executable software module, with identity and with a well specified interface.
Usually, it can be developed independently.

Class 1 Class 2role1 role2Class 1 Class 2role1 role2

UML Syntax Reference

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Component & Deployment Diagram Syntax Reference

Dependency

Component 1 Component 2

Dependency: relationship among two modelling elements, for which a change in the inde-
pendent element implies a change in the dependent one. module.

Link

Node 1 Node 2

Link: logical relationship in which a participant (a component, a node or a class) uses the
other participant services.

Node

NodeName
Node: representation of a hardware platform.

Appendix G

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

G.1.4 Interaction diagram
The following table shows the elements of the interaction diagrams, i.e. the sequence
diagram and the collaboration diagram.

Interaction Diagram Syntax Reference
Diagram Name Element Names

Actor

Actor: role played by the user towards the system.
N.B.: a user may not be a person (but for example, a system).

Object

Object: physical creation (or instance) of a class.

Creation &
Destruction

Creation

Destruction

Creation: starting point of an object life line (it can coincide with a call of the created object
constructor).
Destruction: ending point of an object life line (it can coincide with a call of the created
object destructor).

Actor NameActor Name

ObjectNameObjectName

Object 1

Object 2

Object 1

Object 2

Object 1 Object 2Object 1 Object 2

UML Syntax Reference

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Interaction Diagram Syntax Reference

Life Line &
Activity Line

Life Line

Activity Line

Life Line: object life line.
Activity Line: activity line of an object (coincides with a method execution block).

Message

Sequence

Object 1 Object 2

1:

Collaboration

Message: collaboration message among objects (it can coincide with a call of the target ob-
ject destructor).

Asynchronous
Message

Asynchronuos Message

Asynchronous Message: message that can be executed asynchronously.

Object 1Object 1 Object 1 Object 2Object 1 Object 2

Object 1 Object 2Object 1 Object 2

Object 1 Object 2Object 1 Object 2

Appendix G

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

G.1.5 State Diagram
The following table shows the elements of the state diagram.

State Transition Diagram Syntax Reference
Diagram Name Element Names

State

State: represents the object state. It can be specialized with actions (internal transitions).

Transition

Transition: activity that ends with a new state for the object.

Start & End

Start End

Start: starting point of a state transition diagram.
End: ending point of a state transition diagram.

Action

Action: activity that characterizes a state.

History

History: state with memory: it can repristinate precedent states.

StateNameStateName

State 1 State 2
eventName(eventsArgs)[condition]/Action

State 1 State 2
eventName(eventsArgs)[condition]/Action

StateName

action/actionName

StateName

action/actionName

State 1

State 2H

State 1

State 2H

UML Syntax Reference

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

G.1.6 Activity diagram
Nella tabella seguente sono riportati gli elementi del diagramma delle attività (activity
diagram).

Activity Diagram Syntax Reference
Diagram Name Element Names

Activity

Activity: system process.

Flow

Flow (of activity): set of scenarios linked by a common goal for the user.

Branch & Merge

Branch

Merge

Branch: represents a conditional choice.
Merge: represents a termination point of a conditional block.

Fork & Join

Fork

Join

Fork: represents a starting point for concurrent activities.
Join: represents a termination point for concurrent activities.

ActivityNameActivityName

Activity 1 Activity 2Activity 1 Activity 2

Activity 1

Activity 2 Activity 3

Activity 1

Activity 2 Activity 3 Activity 1

Activity 2 Activity 3

Activity 1

Activity 2 Activity 3

Activity 1

Activity 2 Activity 3

Activity 1

Activity 2 Activity 3
Activity 1

Activity 2 Activity 3

Activity 1

Activity 2 Activity 3

Appendix G

�0
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Activity Diagram Syntax Reference

SwimLane

Activity 1 Activity 2

Swimlane: area of activity competence.

Start & End

Start

End

Start: starting point of a state transition diagram.
End: ending point of a state transition diagram.

Object & State

Object

State

Object: physical creation (or instance) of a class.
State: represents the object state. It can be specialized with actions (internal transitions).

ObjectNameObjectName StateNameStateName

UML Syntax Reference

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

G.1.7 General Purpose Elements
The following table shows all the UML elements, which can be used on all the diagrams.

General Purpose Elements Syntax Reference
Diagram Name Element Names

Package &
Stereotype

Package

<<Stereotype>>
Stereotype

Package: notation useful to group UML elements.
Stereotype: extension mechanism useful to stereotype non-standard constructs in UML.

Constraint &
Tagged value

{constraint}
Constraint

{key = value}
Tagged Value

Constraint: extension mechanism useful to specify constraints.
Tagged value: property constraint.

Iteration Mark &
condition

*
Iteration Mark

[condition]
Condition

Iteration Mark: represents an iteration.
Condition: represents a condition.

PackageNamePackageName

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix H

Introduction to XML

Goals:

At the end of this appendix, the reader should:

 Understand what markup languages are (Unit H.1).

 Know how to briefly define XML, understand how to structure an XML document,
and learn the concepts of a well-formed and valid XML document (Unit H.2).

XML is the acronym of eXtensible Markup Language. So, let’s start with this definition first.

H.1 Markup Languages
A markup language is a language that allows us to annotate textual documents in such a way
that they are readable both from the point of view of the machine and from the point of view
of the human user. Usually, the markings are the so-called tags, that surround parts of the text
of the document just to label them. Markup languages, more than anything else should be
considered metalanguages. In fact, the tags of a markup language annotate the text, associating
information that can be interpreted by both a human and a piece of software.
There are several markup languages, the first was invented by IBM in 1969, and is called GML
(stands for Generalized Markup Language).
GML evolved later into SGML (that stands for Standard Generalized Markup Language). It was
created by ANSI (https://www.ansi.org) and was standardized by ISO (https://www.iso.org/home.htm)
in 1986. It is a metalanguage that allows us to create markup languages (like XML and HTML).
The merits of SGML were portability, flexibility, power, standardization (ISO-8879) and the
fact that it wasn’t a proprietary technology. Its flaws were two-fold: too complex for most de-
velopers, and too heavy. In fact, an SGML document necessarily requires a Document Type

3
3

Appendix H

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Definition (DTD) and a style sheet (Style-Sheet) to be associated with it.
Tim Berners-Lee, was inspired by SGML when he created HTML, which stands for Hyper-
Text Markup Language, the main language for writing hypertexts (web pages).

A “hypertext” is a type of document (for example a web page) that in-
cludes, as well as simple text, links to other pages or resources.

HTML is also briefly introduced in Appendix I.
Like HTML, XML is also a markup language, and was initially defined in 1996, by an SGML
working group, with a view to replacing SGML, but it is currently supported and defined by the
W3C consortium (https://www.w3.org).

H.2 The eXtensible Markup Language
XML, on the other hand, was designed to be a simple, robust, extensible and generic language
that can be used over the Internet. The XML format is text-based, and is therefore readable and
easy to document. Its robustness is given by the fact that an XML document passes through
two verification phases, including the validation test through another file (DTD or Schema, see
section H.2.3). It is extensible because we can create custom tags, and new files to validate them
and then new technologies. In fact, XML was also the basis on which many technologies were
born, such as SOAP Web Services, the format of Microsoft Office documents, RSS feeds and
many others.

H.2.1 XML Documents
An XML document is very simple. Below, we create one with a single tag called greeting.

<?xml version="1.0"?>
<greeting>
 Hello World!
</greeting>

The first line is called a prologue, and it’s optional (see section H.2.2). Then the greeting tag
follows, surrounding the text “Hello World!”. The tag name is always enclosed in sharp brackets,
and a tag is optionally composed of an opening tag and a closing tag. The latter is recogniz-
able by the symbol / which precedes the tag name. There are other tags that are composed
of a single element characterized by a / that, in this case, follows the tag name, and which
represents an opening and closing tag at the same time. Sometimes this type of tag is called
an empty tag, since it does not contain any other tags or text. For example, let’s consider the
following example that abstracts an email with XML:

Introduction to XML

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

<?xml version="1.0"?>
<email>
 <from>claudio@claudiodesio.com</from>
 <recipients>daxixlx.sxpxrx@gmail.com</recipients>
 <subject>New project</subject>
 <urgent/>
 <body format='text'>Ok, let's do it! Bye!</body>
</email>

The urgent tag is a tag type consisting of a single opening and closing element (empty tag). The
rest of the code is clear enough, within the email tag tags are declared that represent the sender
(from tag), recipients (recipients tag), the subject of the mail (subject tag), the urgency of the
mail (urgent tag) and the body of the mail (body tag) also accompanied by a format attribute,
which indicates the format (in this case, text) of the body of the email.

XML is case sensitive, and free-form.

H.2.2 Structure of an XML Document
The structure of an XML document is always made up of a prologue (optional but recom-
mended), followed by the actual tags that make up the element called document. For exam-
ple:

<?xml version="1.0"?> <!-- prologue -->
<greeting> <!-- start document -->
 Hello world!
</greeting> <!-- end document -->

H.2.2.1 Prologue Structure
The prologue has the following structure:

 XML declaration (optional, but recommended)

 Version information

 Stand-alone information

 Encoding information (encoding)

 Document Type Declaration (DTD) (explicit and/or redirected) (optional)

 Comments (optional)

An example of an XML prologue could be:

E

E

E

E

E

E

Appendix H

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

<?xml version="1.0" standalone="yes" encoding="UTF-8"?>

Where:

 <?xml ... ?>: is the XML declaration

 version: defines the version information

 standalone: defines how to use the DTD file associated (if any)

 encoding: defines the encoding information

Comments are always included within this symbol structure:

<!-- This is a comment -->

and can be placed anywhere in the XML between one tag and another.

H.2.2.2 Document Structure
The document has the following structure:

 root element (root)

 other elements (optional)

 attributes (optional)

 text (optional)

 comments (optional)

Let’s take again the example of an XML document already seen in the previous section 2.1
which abstracts an email:

<email>
 <from>claudio@claudiodesio.com</from>
 <recipients>daxixlx.sxpxrx@gmail.com</recipients>
 <subject>New project</subject>
 <urgent/>
 <body format='text'>Ok, let's do it! Bye!</body>
</email>

In this case:

 <email> is the root element

 <from>, <subject>, <recipients>, <urgent> and <body> are other elements

 format is the attribute of the body tag

E

E

E

E

E

E

E

E

E

E

E

E

Introduction to XML

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 New project is the test of the tag subject, and Ok, let's do it! is the text of the tag
body

H.2.3 Characteristics of an XML Document
An XML document must be well formed. A well-formed XML document can also be declared
valid if it satisfies the constraints specified in a file that defines its syntax.

H.2.3.1 Well Formed XML Document
An XML document is well-formed when:

 a root element exists

 it defines elements with opening tags (for example <data>) and closing tags (for example
</data>)

 it optionally defines elements with special empty tags (for example <data/>)

 the tags can be inserted but without overlapping:

 example of NOT valid nesting:

<outer>outer tag text<inner>inner tag text</outer></inner>

 valid nesting:

<outer>outer tag text<inner>inner tag text</inner></outer>

 the attribute values can be enclosed in single or double quotes. For example:

font test

 the names of the elements and attributes are case-sensitive. The following tags are all
different: <foo>, <FOO> and <Foo>

We can check if an XML file is well formed by opening it with a browser. In Figure H.1, we
can see the result of opening the well-formed file that abstracts an email, with the browser
Microsoft Edge:

<email>
 <from>claudio@claudiodesio.com</from>
 <recipients>daxixlx.sxpxrx@gmail.com</recipients>
 <subject>New project</subject>
 <urgent/>
 <body format='text'>Ok, let's do it! Bye!</body>
</email>

E

E

E

E

E

E

E

E

E

Appendix H

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure H.1 - View a well-formed document in the Microsoft Edge browser.

We can see how tags can also be compacted by clicking on the symbol - next to the email tag. If,
instead, we modify the file incorrectly, for example by deleting the closing tag </subject>:

<email>
 <from>claudio@claudiodesio.com</from>
 <recipients>daxixlx.sxpxrx@gmail.com</recipients>
 <subject>New project
 <urgent/>
 <body format='text'>Ok, let's do it! Bye!</body>
</email>

the browser will no longer be able to analyze the XML and will show the screen shown in
Figure H.2.

Figure H.2 - Display of a document NOT well formed in the browser Microsoft Edge.

H.2.3.2 Valid XML Document
XML allows us to create tags as needed. In this way, it allows us to abstract any kind of concept.
Then, however, a program that must interact with XML must know the grammar of the docu-
ment to be able to interpret it. For example, suppose we create a program that turns documents
that abstract emails into real emails to be sent. It is important that all XML documents of the
email type have the same characteristics and follow the rules, or are valid for the purposes of

Introduction to XML

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

the program. The validation mechanism is used to define the rules that an XML document
must comply with. This mechanism requires:

the creation of a validation file that defines the rules of one or more XML documents
(as we will see, a DTD or XML Schema file);

the association of the XML document to be validated with the validation file;

the execution of a parser that analyzes the validity of the XML document with respect to
its validation file.

There are two types of validation files that can be created. The first type (fallen into dis-
use) is called a DTD file (acronym of Data Type Definition). The second type is called
XML Schema.
With a DTD document, we can define the structure of an XML document. Consider the
following simple XML file:

<?xml version="1.0"?>
<user>
 <name>Oscar</name>
 <surname>Wilde</surname>
 <id>8</id>
</user>

The following DTD file defines the structure of the previous XML document:

<!DOCTYPE user
[
<!ELEMENT user (name,surname,id)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT id (#PCDATA)>
]>

With DOCTYPE, we define the root element (email) and with ELEMENT we define the various tags.
With (#PCDATA), we indicate to the parser that it will take care of validating the document, that
the tag contains some text, while we would have used EMPTY in case we used an empty tag.
If we want to use an XML Schema instead of a DTD file, then the syntax changes:

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="user">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="surname" type="xs:string"/>
 <xs:element name="id" type="xs:integer"/>

1.

2.

3.

Appendix H

�0
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

XML Schema today represents the standard for the validation of XML
documents, since it allows us to specify more constraints than a DTD,
as well as having a more intuitive syntax. With Java, it is very easy to
validate files as we will see in Chapter 22.

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix I

Applet

Goals:

At the end of this appendix, the reader should:

 Know how to define what an applet is (Unit I.1).

 Know how to define what HTML is (Unit I.2).

 Understand how an applet can be distributed (Unit I.3).

The Applet API has been deprecated in Java 9 and officially abandoned from Java
11 onwards. Currently, all the most important browsers no longer support the Java
Plugin, which was necessary to run applets. Also other historical technologies such
as Java Web Start, based on the Java Plugin, are now definitely dead.

Java Web Start is a technology that allows us to download
a Java application, always updated, by clicking on a link
on a web page. For information see the following page:

https://docs.oracle.com/javase/9/deploy/java-web-start-technology.htm.

For Oracle, the new standard for the distribution of Java applications with a graphical interface,
is to create desktop standalone applications, to be distributed together with their own runtime
environment created with jlink (see Chapter 19).
Although the Applet API can no longer be used in practice, given the historical importance of
the technology (see Appendix A), we prefer not to completely eliminate the definition from this
book. Those who are not interested can safely avoid reading this appendix.

3
3
3

Appendix I

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

I.1 Definition of Applet
An applet is an application designed to run directly within a web page; that is, an
applet can be directly incorporated into an HTML page using a special tag: the
<APPLET> tag. We will therefore briefly introduce the HTML language in the next
section.

An applet, by definition, must extend the Applet class of the java.applet package. It inherits
its methods and can override them. The applet does not have a main() method, but the inher-
ited methods are directly invoked by the JVM browser (the Java Plugin) following certain rules.
So, if we rewrite the methods properly, we can get the applet to execute the code we want. The
following is a trivial applet containing explanatory comments:

import java.applet.*;
import java.awt.*;
public class BasicApplet extends Applet {
 public void init() {
 // Called only once by the browser as soon as the applet is run
 }
 public void start () {
 // Called whenever the page it contains the applet becomes visible
 }
 public void paint (Graphics g) {
 // Called whenever the page it contains the applet must be drawn
 }
 public void stop () {
 // Called whenever the page it contains the applet becomes invisible
 }
 public void destroy () {
 // Called only once by the browser when the applet is destroyed
 }
}

Taking into account what is written in the comments, the programmer must manage the ex-
ecution of the applet. It is not mandatory to write all five methods, but at least one should be
overridden. For example, the following applet prints a word:

import java.applet.*;
import java.awt.*;
public class StringApplet extends Applet {
 public void paint(Graphics g) {
 g.drawString("Applet", 10, 10);
 }
}

The Graphics object provides many methods for drawing (as mentioned in Chapter 23).

Applet

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

The term “applet” could be derived from “little application”. This is
because an applet must be a lightweight application, since it has to be
downloaded from the Web along with the HTML pages. Think about
the fact that, in 1995, when Java was born (alongside applets), there
were no broadband connections. In addition to the size, an applet
must also undergo loading, security checks and the interpretation of
the JVM. So, it’s good to be small.

To be able to run an applet, however, we also need to create an HTML page that incorporates
it. So let’s introduce briefly what HTML is.

I.2 Introduction to HTML
HTML is the acronym for HyperText Markup Language, that is, a markup language for
hypertexts. A hypertext is a type of document that, in addition to including simple text, has
links to other pages. This is not a real programming language, but only a language for format-
ting documents. For example, there are no control structures like if or for. HTML instructions
are called tags, as already defined in Appendix H. The tags are simple instructions with the fol-
lowing syntax:

<TAG_NAME [ATTRIBUTES_LIST]>

where each optional attribute has a syntax like this:

KEY=VALUE

The value of an attribute could and should be between two single quotes or two double quotes.
However, this is necessary if, and only if, the value consists of several separate words. But it is a
convention that everyone always uses. Furthermore, almost all HTML tags, with some excep-
tions, should be closed with a statement like this:

</TAG_NAME>

For example, the tag

<HTML>

must be closed with:

</HTML>

Appendix I

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

While the tag:

<applet code='StringApplet' width='100' height='100'>

must be closed with:

</applet>

A simple HTML page can be written in a text file with a .htm or .html extension. All you need is a
simple text editor like Windows Notepad. A browser like Mozilla Firefox, Google Chrome, etc.
then can show us the formatted page. So, let’s consider the following HelloWorld.html file which
contains the following tags:

<HTML>
 <HEAD>
 <TITLE>Test HTML</TITLE>
 </HEAD>
 <BODY bgcolor='green'>
 <CENTER>
 <H1>
 Hello

 HTML World!
 </H1>
 </CENTER>
 </BODY>
</HTML>

In this example, the tags HTML, HEAD, TITLE, BODY and CENTER are declared. The name of the tag
is always enclosed within “acute brackets”, and a tag is optionally composed of an opening tag
and a closing tag. The latter is recognizable by the symbol / which precedes the name of the
tag. The only tag that is not declared with an opening and a closure in our example is the BR
tag, which is declared with an optional symbol / which this time follows the name of the tag,
and which wants to indicate that the tag represents an opening and closing tag. When we open
it in a browser, then we will see a web page entitled “Test HTML”, with the word “Hello World!”
centred at the top, on a green background (see Figure L.1). The browser, in fact, knows how to
interpret the HTML tags and formats the page accordingly.
In fact, the tags of the example have a meaning that browsers know how to interpret. In par-
ticular, the HTML tag indicates that we are declaring an HTML file, and must contain all the
HTML code. The HEAD tag contains other tags that represent information about the document.
In our case, it contains the TITLE tag, which contains the title of the document. When the HEAD
tag is closed, the BODY tag opens, which contains the visible body of the document. Let’s note
that BODY also declares an attribute called BGCOLOR (which stands for “background color”) that
specifies to the browser that the background color must be green. The CENTER tag will lead to

Applet

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure I.1 - HTML page opened in the Mozilla Firefox browser.

an alignment centred on the page. The text contained in the H1 tag will have a size of type H1
(there are also H2, H3, H4, H5, and H6 tags) and represents the maximum text size. Finally, the BR
tag which, as we have noted, does not consist of an opening and closing tag, it only represents
the command to wrap the next text (it wouldn’t be sufficient to simply write the word “HTML
WORLD” on the next line).

HTML is not case-sensitive.

All that remains is for us to get an HTML manual (for example http://www.w3schools.com/html).

I.3 Installing Applet
Returning to our applet, it will be enough to create a simple file with the suffix .htm
or .html, which contains the following tag:

<applet code='StringApplet' width='100' height='100'>
</applet>

As the width and height attributes change, the size of the area that the HTML page will dedi-
cate to the applet will vary. It is also possible to pass to the HTML page parameters that will
be read at runtime by the applet using the mechanism explained in the following example.

Appendix I

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

By adding the following override of the init() method to the previous example, you can
parameterize, for example, the sentence to be printed:

import java.applet.*;
import java.awt.*;
public class ParameterApplet extends Applet {
 String s;
 @Override
 public void init() {
 String parameterName = "p";
 s = getParameter(parameterName);
 }
 @Override
 public void paint(Graphics g) {
 g.drawString(s, 10, 10);
 }
}

The code of the HTML page that must load the previous applet will slightly change:

<applet code='ParameterApplet' width='100' height='100'>
 <param name='p' value='Java'/>
</applet>

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix J

Compiling Past Versions
of Java Code

Goals:

At the end of this appendix, the reader should:

 Understand and be able to handle the problems of compiling code written with
different versions of Java (Units J.1, J.2, J.3, J.4).

Java 5 introduced new rules in syntax (such as the foreach loop, generics, static imports and
more) and even a new keyword: enum (as well as @interface). Also, Java 1.4 introduced a new
keyword: assert. Then successive versions of Java like 7, with the construct try -with-resourc-
es, and Java 8 with lambda, type annotation, reference to methods, etc. have further altered the
syntax. Java 10 again, introduced the special word var, Java 13 the word yield, while the intro-
duction of the reserved words introduced in Java 9 (exports, modules, open, opens, provide,
require, to, transitive, uses and with), however, does not create problems in compiling
obsolete code, from the moment they are relevant to inside the declaration of a module. For
example, we can use the module keyword as a reference to a string in the following way:

public class RestrictedWords {
 public static void main(String args[]) {
 String module = "this string use the reference 'module'";
 System.out.println(module);
 }
}

But then we have to ask ourselves: what happens when we compile code that was written before
the version we are using?

3

Appendix J

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Usually nothing, the code is compiled quietly without problems. The code can be compiled
with a command like:

javac [options] FileName.java

However, there are cases where problems can arise.

J.1 Warning
You can come across some warnings (see unit 9.3.5.5) for several reasons. For example, in pre-
Java 5 code, there were no generics and annotations. Thus, all collections were used as raw type
(without specifying generics) and all methods that overrode an inherited method were not
annotated with the @Override standard annotation. This type of code causes a warning if com-
piled with post-Java 1.4 compilers. But the warnings do not prevent the compiler from creating
valid bytecode, the compilation is successful anyway. Where it is not possible to update the old
code, it is still possible to disable warnings, or ultimately, to simply ignore them.

J.2 Keywords Used as Identifiers
In particular, since Versions 10, 1.4 and 1.5 (better known as Version 5) have introduced new
keywords, we might come across an obsolete code that uses the keywords assert or enum as
variable identifiers. In fact, when these keywords did not exist, it was not uncommon to come
across classes that declared Enumeration references (see Chapter 18) with the enum identifier.
If we tried to compile such a class with a 1.5 (or higher) compiler, it would not be able to un-
derstand that the word enum should be considered as an identifier instead of a keyword, and
we would get a compile-time error. The same applies to the code written before Java 1.4, which
could make use of the assert identifier which, from Java 1.4, has become a keyword. If it is not
possible to modify the obsolete code, then we just have to use an option at compilation time to
specify which version of the source code you want to use

javac –source 1.4 FileName.java

In this way, we will inform the compiler to compile the file as if it were a version 1.4 compiler,
i.e. without considering the new features introduced in versions subsequent to 1.4 (and there-
fore without the new keywords and new syntax features).

J.3 Current Syntax vs Previous Syntax
If we compile code that contains Java 5 syntax (static import, foreach loop, generics, etc.) us-
ing the above flag, we will get compile-time errors. The same is repeated if we use syntax from

Compiling Past Versions of Java Code

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

newer versions such as Version 7 (try-with-resources) or 8 (lambda expressions, etc.) or Java 10
(var keyword) or 13 (yield keyword).
So, if we are forced to compile with a -source flag, specifying a version prior to
the one we are using, then we will have to limit ourselves to using the syntax of the
specified version.

J.4 The target Option
As for the execution of the code compiled with the -source 1.4 option, if you plan to execute
the file with a specific version of the JVM, you have to specify it with the -target flag, as in the
following example:

javac -target 1.4 –source 1.4 FileName.java

In fact, while the -source option declares that the code contained in the file (or files) to be com-
piled contains a valid syntax for Version 1.4, the -target option declares the version of the Java
Virtual Machine on which it will be possible to execute the bytecode compiled.

If these options are not specified, the default value for both -source
and for -target will be that of the compiler version used.

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix K

Introduction to Apache Derby

Goals:

At the end of this appendix, the reader should:

 Be able to install and use the basic features of Apache Derby (Units K.1, K.2).

Up to Version 8 of Java, the JDK incorporated the Java DB database. It was nothing but the
Apache Derby database, but Oracle offered support only for Java DB. With JDK 9, the Java DB
was no longer incorporated into the JDK, so to get a copy of this RDBMS, we need to download
it at: https://db.apache.org/derby. It is a database written completely in Java and is platform inde-
pendent. It can be used in two different ways:

 as an embedded database in our Java application (i.e. that can be incorporated directly
into our applications). Being written in Java, it can be used as part of the distributed ap-
plication, completely transparent to the user. In this mode, the database will be accessible
to only one client (the one that incorporates it);

 or it can be started in Server mode, like an ordinary database engine. In this case, the
database can be accessed from multiple clients.

At the time of writing, the most updated version of Apache Derby is 10.15.1.3.

K.1 Apache Derby Installation
Up to Version 8 of Java, Java DB was distributed along with the Java Development Kit, and was
therefore automatically installed on our machine. Now, we need to install Apache Derby inde-
pendently of the JDK by following the steps below.

3

E

E

Appendix K

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

K.1.1 Software Download
At the address https://db.apache.org/derby/derby_downloads.html click on the first link with the
version number. In our case, we have to click on the link “10.15.1.3” (see Figure K.1).

Figure K.1 - Choosing the version to download (the most updated).

On the next page, use the binary file link with the most convenient format. We have chosen the
.zip format, as we can see in Figure K.2.

On this page we can also download other file types such as the source
code of the project.

Figure K.2 - Choosing the file to download (the file that contains the binaries with the most
convenient format).

At this point, the download of the zip file will start.

Introduction to Apache Derby

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

K.1.2 Installation
The software does not need any particular type of installation, as it is written in Java. We simply
need to download the file and decompress it in an appropriate folder. For example, we have
decompressed it in the root folder: C:\db-derby-10.15.1.3-bin. Nothing prevents us from placing
the folder in any other location, and/or renaming the project folder. We can see the contents of
the Apache Derby folder in Figure K.3.

Figure K.3 - Apache Derby installation folder.

In particular, note the following subdirectories:

 bin: which contains the execution and configuration scripts.

 lib: which contains the JAR files that represent the application itself.

K.1.3 Configuration
To make the installation fully functional, we need to set the DERBY_HOME environment vari-
able with the Apache Derby installation directory, which in our case is C:\db-derby-10.15.1.3-bin.
The procedure for installing the environment variable is identical to that described for setting
the PATH variable in Appendix B. In Figure K.4, we can observe the setting of the DERBY_HOME
variable with the Apache Derby installation folder on Windows 10.
It is also advisable to add the C:\db-derby-10.15.1.3-bin\bin folder to the PATH variable to be able
to run Apache Derby from any location on the filesystem, without having to move to its instal-
lation folder. In Figure K.5, we can observe the setting of the PATH variable, adding the Apache
Derby bin folder on Windows 10.

E

E

Appendix K

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure K.4 - Configuration of the DERBY_HOME instance variable.

Introduction to Apache Derby

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure K.5 - Configuration of the PATH instance variable.

Appendix K

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

K.2 Execution and Use of Apache Derby
As we have already stated, Derby can be run in two modes: embedded and server.

K.2.1 Server Mode
To run Apache Derby in server mode, use the startNetworkServer.bat file located in the bin
folder. We can double-click on the file to run it directly from the bin folder (we can also create a
desktop shortcut to avoid browsing the various directories). By executing the file with a double
click, a command prompt will be opened automatically. The disadvantage is that, if something
goes wrong, that prompt will close immediately, without giving us time to read the problem.
But if we set the PATH variable as indicated in the previous section, we can also run the server
from the command line. Just open the command prompt, and run the command startNetwork-
Server.bat from any folder (remember that from a DOS prompt the commands are case insensi-
tive, and that we can also avoid specifying the .bat extensions):

startNetworkServer

The server will be started in a few seconds and will output the following information:

Security manager installed using the Basic server security policy.
 Apache Derby Network Server - 10.5.1.3 - (648739) started and ready
 to accept connections on port 1527 at 2019-05-28 22:17:17.921 GMT

At this point, as can be read from the RDBMS response, Apache Derby is ready to accept
connections on port 1527.

In order to stop the database server, in the same folder there is also
the stopNetworkServer.bat script.

In order for our application to be able to access the database, we must also set the CLASSPATH
variable (see Appendix E) by pointing to the file derbyclient.jar (and if needed also to derbytools.jar
and derbyoptionaltools.jar) found in the lib folder of the database installation. For example, if we
want to execute the JDBCApp file that we saw in the examples in Chapter 21, we will have to ex-
ecute the following instruction from the command line:

java -cp .;%DERBY_HOME%\lib\derbyclient.jar JDBCApp

Obviously, we must first create the database schema to which we want
to connect (see section K.2.3).

Introduction to Apache Derby

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

K.2.2 Embedded Mode
To use Apache Derby in embedded mode, no server can be started. The database resides in a
specific folder that is automatically created, and that can be installed with the application itself.
In order to run our application, we have to add to the CLASSPATH variable (see Appendix E) a
value that points to the derby.jar file (and derbytools.jar and derbyoptionaltools.jar if needed) that
we can find in the lib folder of the database installation.
For example, if we want to execute the JDBCApp file that we saw in the examples in Chapter 21,
we will have to execute the following instruction from the command line:

java -cp .;%DERBY_HOME%\lib\derby.jar JDBCApp

In this example, the database folder resides in the same folder as the JDBCApp file, and
therefore the CLASSPATH also points to it.

K.2.3 Interactive Console
To start an interactive console for running SQL scripts, run the interactive console using the
command:

ij.bat

which resides in the bin folder of the database installation. At this point, for example, we can
create and modify a database with the following commands:

CONNECT 'jdbc:derby:Music;create=true';
CREATE TABLE Album (AlbumId INT, Title VARCHAR(20),
 Artist VARCHAR(255), Release_Year INT, PRIMARY KEY (AlbumId));
INSERT INTO Album (AlbumId, Title, Artist, Release_Year)
 VALUES (1, 'Made In Japan', 'Deep Purple', 1972);
INSERT INTO Album (AlbumId, Title, Artist, Release_Year)
 VALUES (2, 'Be', 'Pain Of Salvation', 2004);
INSERT INTO Album (AlbumId, Title, Artist, Release_Year)
 VALUES (3, 'Images And Words', 'Dream Theater', 1992);
INSERT INTO Album (AlbumId, Title, Artist, Release_Year)
 VALUES (4, 'The Human Equation', 'Ayreon', 2004);

We created the database by populating a table we talk about in Chapter 21. Note that each in-
struction must be followed by a “;” for termination before pressing the ENTER key.
This should be enough to do some simple exercises.

If you want to learn more about the topic, you can read the documen-
tation at the link: https://db.apache.org/derby/quick_start.html.

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix L

JavaFX
Environment

Configuration

Goals:

At the end of this appendix, the reader should:

 Be able to configure the programming environment to use JavaFX technology on
Windows operating systems (Units L.1, L.2, L.3, L.4).

 In Chapter 24, JavaFX technology is introduced. From version 11 of
Java onwards it is necessary to configure the JavaFX programming
environment, in addition to the Java programming environment.
Before being able to configure the environment for JavaFX, it is ob-

viously necessary that the Java environment is already configured. In the unlikely
event you have not yet installed the Java environment, you can consult Appendix
B. Below you will find the steps to be taken to download and correctly configure the
environment to program with JavaFX on Windows 10 operating systems.

Java and JavaFX versions progress at the same time. This means that if
you have installed the Java version 13 environment, then you should
install the JavaFX 13 environment.

3

3

Appendix L

�0
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

L.1 JAVA_HOME Variable Setting
The first step is to configure the JAVA_HOME environment variable, so that it points to the JDK
installation folder.

At the time of writing, the most recent version is 12.0.1, but the same
processes that we’ll explain in this appendix, apply to later versions.
So, if you have downloaded a more recent JDK, where in the follow-
ing chapter we name paths or strings that contain the string 12.0.1, you
will need to update the version number with the one you are using.

For Windows 10 systems, perform the following steps:

open the Control Panel, then click on System, then on Advanced System Settings in the new
window;

in the new window that opens, select the Advanced tab and click on Environment Variables;

among the System Variables (or if you prefer among the User Variables) add the JAVA_HOME
variable, by clicking on the New... button;

Enter the string “JAVA_HOME” in the new window as a Variable name, and as a variable value
the string “C:\Program Files\Java\jdk-12.0.1”.

click OK on all the open windows, and the configuration of the variable is complete.

Figure L.8 - Setting JAVA_HOME variable on Windows 10 (Italian Version).

L.2 Download JavaFX SDK and Runtime
Go to http://gluonhq.com/products/javafx, and choose the version of the SDK (Standard Develop-
ment Kit) for JavaFX to download. In general, you should choose the most recent, which in the

1.

2.

3.

4.

5.

JavaFX Environment Configuration

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

image L.2 is the 12.0.1 version, but obviously the choice is yours, as long as it is compatible with
the version of the JDK you intend to use.

Figure L.2 - Screenshot of http://gluonhq.com/products/javafx. The arrow highlights the recom-
mended links to download.

Appendix L

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Furthermore, we can also download a JMOD files folder (see Figure L.2) which represents the
collection of modules needed at runtime for the applications we will create. These modules
must be distributed together with the application.
Once you have the zip files, unzip them both inside the C:\Program Files\Java folder (same
folder as the JDK).

Actually, it is possible to decompress the content of the zip file in any
position of your hard disk, but by convention we should prefer the
C:\Program Files\Java directory, because it is the same one used by the
Oracle JDK installer. In particular, the folder containing the JMOD
files will eventually be distributed along with the program itself.

L.3 PATH_TO FX Variable Setting
To use the compiler (javac), the interpreter (java) with the JavaFX technology, we need to set the
PATH_TO_FX environment variable, pointing it to the lib folder of the Java FX SDK. The pro-
cedure is identical to that seen in section L.1. For Windows 10 systems perform the following
steps:

open the Control panel, then click on System, then on Advanced System Settings in the new
window;

in the new window that opens, select the Advanced tab and click on Environment variables;

among the System Variables (or if you prefer among the User Variables) add the PATH_TO_FX
variable, by clicking on the New... button;

Enter the string “PATH_TO_FX “ in the new window as a variable name, and as a
variable value the string “ C:\Program Files\Java\javafx-sdk-12.0.1\lib”.

click OK on all the open windows, and the configuration of the variable is complete.

Optionally it is also possible to set the PATH_TO_FX_MODS variable (which we could use as the
value of the MODULEPATH variable at runtime), making it point to the JMODS file folder with
the usual process:

open the control panel, then click on System, then on Advanced System Settings in the new
window;

in the new window that opens, select the Advanced tab and click on Environment variables;

1.

2.

3.

4.

5.

1.

2.

JavaFX Environment Configuration

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

among the System Variables (or if you prefer among the User Variables) add the
PATH_TO_FX_MODS variable, by clicking on the New... button;

Enter the string “PATH_TO_FX_MODS “ in the new window as a variable name, and as a
variable value the string “C:\Program Files\Java\javafx-jmods-12.0.1”.

click OK on the open windows, and the configuration of the variable is complete.

Figure L.3 - PATH_TO_FX variable setting on Windows 10.

Figure L.4 - Setting the PATH_TO_FX_MODS variable on Windows 10 (Italian version).

L.4 Configuration Check
To verify that everything went well, try to compile this simple file (it is present in the download-
able code of the book if you don’t want to copy it by hand):

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.text.Font;
import javafx.stage.Stage;

public class HelloJavaFXWorld extends Application {

3.

4.

5.

Appendix L

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 @Override
 public void start(Stage stage) {
 Label label = new Label("Hello JavaFX World!");
 label.setFont(new Font("Book Antiqua", 120));
 stage.setScene(new Scene(label));
 stage.setTitle("HelloWorld with JavaFX version " +
 System.getProperty("javafx.version"));
 stage.sizeToScene();
 stage.show();
 }

 public static void main(String[] args) {
 launch();
 }
}

with the following command:

javac --module-path %PATH_TO_FX% --add-modules javafx.controls HelloJavaFXWorld.java

and then launch it with the following command:

java --module-path %PATH_TO_FX% --add-modules javafx.controls HelloJavaFXWorld

if everything is in place, the interface visible in figure L.5 should be launched.

Figure L.5 - Visualization of the HelloWorldJavaFX program.

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendice M

EJE (Everyone’s Java Editor)

Goals:

At the end of this appendix, the reader should:

 Be able to install EJE (Units M.1, M.2).

 Be able to use EJE (Units M.3, M.4).

 EJE (acronym for Everyone’s Java Editor) is a lightweight and user-friendly editor
for the Java programming language. It offers basic features that are perfectly suited to
those who must begin to take their first steps with Java programming.

 The EJE development started above all to gain experience on graphi-
cal user interfaces starting from 2001. Initially it was called “Color
Editor” and was written with AWT API. Then, together with the creation
of the first Java manual I wrote in 2002 (commissioned by an IT com-

pany) it was rewritten with the Swing library. Until 2008 EJE was developed only
by itself! Then the project evolved very slowly due to lack of time, just to support
new versions of Java. Meanwhile, since it is hosted on SourceForge at the address
http://sourceforge.net/projects/eje has been downloaded over 80000 times by users
from all continents. It is used as an educational editor in many universities around
the world. We certainly know that it was used in the universities of Bergen (Swe-
den), Adelaide (Australia), Beijing (China), Cape Town (South Africa), Buenos Aires
(Argentina) and even Carnegie Mellon University (university where James Gosling
graduated!), which also made a request for collaboration to improve EJE, which un-
fortunately did not come true.

3
3
3

3

Appendice M

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

M.1 System Requirements
EJE needs some system requirements to run. As for the hardware, the minimum choice must
be the following:

 RAM memory, minimum 512 MB (2 GB recommended)

 Hard disk space: approximately 888 KB

Software necessary to run EJE:

 Java platform: Java Development Kit Standard Edition (Open JDK), v1.8.x or higher. Refer
to Appendix B to install it.

 Operating system: independent of the operating system. Tested on Microsoft Windows
and Linux (different distributions). On Mac OS X the correct functioning was reported
by multiple users.

M.2 EJE Installation and Execution
EJE is a multi-platform program, but requires two different scripts to run on Windows or Linux
operating systems. Two different execution scripts were created:

 eje.bat for Windows systems

 eje.sh for Linux (and similar) systems.

M.2.1 For Windows Users
Once the eje.zip file is downloaded to your computer:

unzip the eje.zip file using a decompression utility such as WinRar or WinZip;

run the eje.bat file (eje_win9x.bat for Windows 95/98) with a double click.

M.2.2 For Unix-like Operating Systems (Linux, Solaris, etc.) Users
Once the eje.zip file is downloaded to your computer:

unzip, via gzip or other utility, the eje.zip file. A directory named EJE will be created;

change the permissions of the eje.sh file with the chmod command. From terminal type:

chmod a+x eje.sh

run the eje.sh file from the EJE directory or from terminal.

E

E

E

E

E

E

1.

2.

1.

2.

3.

EJE (Everyone’s Java Editor)

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

M.2.3 For Users Who Have Problems with These Scripts
(Windows 9x/NT/ME/2000/XP & Linux, Solaris)

From the command line (DOS prompt or Unix shell) type the following command:

java -classpath . com.cdsc.eje.gui.EJE

If the operating system does not recognize the command, it means
that you have not installed the Java Development Kit (1.8 or higher),
or you have not set the PATH environment variable with the bin direc-
tory of the JDK (see Appendix B or “installation notes” of the JDK).

M.3 User Manual
EJE is a lightweight and user-friendly editor for the Java programming language. Many oth-
ers tools exist that allow to write Java code, but they are often heavyweight IDE that need
a relatively long time to learn, for a good usage. Besides, those tools need large system
resources, that could be not necessary for your code or could not be present on your system.
EJE does not aspire to replace the aforementioned tools, but could help you to write code
quickly and in a profitable way. It’s been created for who wants to learn the Java language but
not a complex IDE, and is perfect as support for this book.
The main features of EJE are the following:

can compile and execute files (also with arguments) directly from the editor.

Java syntax highlighting.

File system fast explorer with a tree panel (this version supports a new enhanched version).

Fast file system browsing through directory tree-tree and possibility to organize
work-directory as a tree.

Full keyboard navigability of all features.

Allows to cancel and reconfirm the last action (undo & redo).

Search, replace and go-to-line utilities.

Dynamic code templates insertions life properties, loops, constructors, types, comments
and many others. You can also select some text and use these insertions, the construct will
surround the selected text.

1.

2.

3.

4.

5.

6.

7.

8.

Appendice M

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Look and feel customization.

 Support line numbering.

 You can set timers to be notified with specified time and messages.

 Automatic class introspection pop-up to display members of declared objects.

 You can open the standard API documentation in an external browser.

 You can generate documentation of your own Java source files automatically with the
javadoc utility.

 Automatic code formatting with C or Java style.

 Quick navigation between open files.

 You can set many options: font type, style and size, activate-deactivate introspection
pop-up, braces style, java version target and source compilation, enable-disable asser-
tions, enable-disable warnings, language, look & feel (Nimbus style included), enable-dis-
able line numbering, Java Development Kit, Documentation output directory, classpath,
etc...

 Source files can be printed.

 Internationalization (English, Italian, German and Spanish languages are actually sup-
ported).

 You can choose your preferred theme (Standard, Dark, Dusk, BrighterDusk).

 Supports for Java version 14!

The EJE user interface is very simple and user-friendly. Figure M.1 gives you a snapshot of an
older version of EJE in action. EJE will use by default the English language if executed on a non-
Italian, non-Spanish or non-German operating system.
The panel 1 shows the directory tree of your file system. The contents will not be visible if
there’s no Java source files. Just one click to open Java source file in panel 2. You can create your
work-directories in this tree as shortucuts.
The panel 2 shows the current open files.
The panel 3 shows the messages that your processes (as compilation or execution) will send
you.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

EJE (Everyone’s Java Editor)

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Figure M.1 - EJE in action.

M.4 Descriptive table of the main EJE commands

Command Icon Where Is Shortcut Synopsis

New...

File Menu,
Toolbar

CTRL-N Create a new file

Open… File Menu,
Toolbar

CTRL-O Open a file from file system

Recent Files... File Menu Open a recently opened file

Save
File Menu,
Toolbar, Text
Area Popup

CTRL-S Save current file

Save All File Menu,
Toolbar

CTRL-SHIFT-S Save all open files

Appendice M

�0
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Save As... File Menu
Save a file with a different name
from the original

Print... File Menu,
Toolbar

CTRL-P Print the current file

Options
File Menu F12 Opens the options dialog

Close File File Menu, Text
Area Popup

CTRL-W Close the current file

Quit File Menu CTRL-Q Quit EJE

Undo Edit Menu,
Toolbar

CTRL-Z Undo the last action

Redo Edit Menu,
Toolbar

CTRL-Y Redo the last action

Cut
Edit Menu,
Toolbar, Text
Area Popup

CTRL-X Move selection to the clip-
board

Copy
Edit Menu,
Toolbar, Text
Area Popup

CTRL-C Copy selection to clipboard

Paste
Edit Menu,
Toolbar, Text
Area Popup

CTRL-V Paste clipboard

Delete Edit Menu, Text
Area Popup

Delete selection

Select All Edit Menu, Text
Area Popup

CTRL-A Select all text

EJE (Everyone’s Java Editor)

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

To Upper Case Edit Menu, Text
Area Popup

CTRL-U Uppercase selection text

To Lower Case Edit Menu, Text
Area Popup

CTRL-L Lowercase selection text

Invert
Upper-Lower

Edit Menu, Text
Area Popup

CTRL-J Invert lower and upper case in
selected text

Find Search Menu,
Toolbar

CTRL-F Search for expressions in the
text

Find Next Search Menu F3 Search for the next expression
in the text

Replace Search Menu CTRL-H Search and replace expressions
in the text

Go To... Search Menu CTRL-G Move the cursor to the line

Class Insert Menu CTRL-0 Inserts (or surrounds selected
text with) a class template

Interface Insert Menu CTRL-1
Inserts (or surrounds selected
text with) an interface tem-
plate

Enumeration Insert Menu CTRL-2
Inserts (or surrounds select-
ed text with) an enumeration
template

Annotation Insert Menu CTRL-3
Inserts (or surrounds selected
text with) an annotation tem-
plate

Constructor Insert Menu CTRL-4
Inserts (or surrounds selected
text with) a constructor tem-
plate

Appendice M

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Constructor
With Args Insert Menu CTRL-5

Inserts (or surrounds selected
text with) a constructor with
arguments template (opens
a wizard for specifying argu-
ments)

Main Method Insert Menu CTRL-6
Inserts (or surrounds selected
text with) a main() method
template

JavaBean
Property Insert Menu CTRL-7 Opens a wizard to create a

JavaBean property

Constant Insert Menu CTRL-8 Opens a wizard to create a
constant

Singleton Insert Menu CTRL-9 Creates the structure for a
singleton class

If Insert Menu CTRL-F1
Inserts (or surround selected
text with) an if construct tem-
plate

Switch Insert Menu CTRL-F2
Inserts (or surround selected
text with) a switch construct
template

For Insert Menu CTRL-F3
Inserts (or surround selected
text with) a for construct tem-
plate

While Insert Menu CTRL-F4
Inserts (or surround selected
text with) a while construct
template

Do While Insert Menu CTRL-F5
Inserts (or surround selected
text with) a do while construct
template

EJE (Everyone’s Java Editor)

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

For-Each Insert Menu CTRL-F6
Inserts (or surround selected
text with) a for-each construct
template

Try/catch Insert Menu CTRL-F7
Inserts (or surround selected
text with) a try/catch con-
struct template

(...) Insert Menu CTRL-F8
Inserts (or surround the select-
ed text with) a pair of round
brackets

[...] Insert Menu CTRL-F9
Inserts (or surrounds the se-
lected text with) a pair of square
brackets

{...} Insert Menu CTRL-F10 Inserts (or surrounds the select-
ed text with) a pair of braces

System.out.
println() Insert Menu CTRL-F11

Insert (or surround selected text
with) a System.out.println()
template

Comment-Out
Selection Insert Menu CTRL-F12 Insert (or surround selected

text with) a comment template

Next File View Menu,
Toolbar

F5 Select the next file

Previous File View Menu,
Toolbar

F4 Select the previous file

Toolbar View Menu Hide/show toolbar

Status bar View Menu Hide/show status bar

Choose Work
Directory Tools Menu

Allows you to choose a work-
directory that will be opened
in the panel 1 tree

Appendice M

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Build
Build Menu,
Toolbar, Text
Area Popup

F7 Compile the current file

Build Project Build Menu,
Toolbar

SHIFT-F7 Compile all open files

Execute
Build Menu,
Toolbar, Text
Area Popup

F9 Runs the current file

Execute
With Args Build Menu SHIFT-F9 Runs the current file using the

specified arguments

Stop
Processing...

Build Menu,
Toolbar

ESC Stop the current process

Alarm Clock Tools Menu
Allows you to set a timeout to
show you a message

Show Memory Tools Menu
Shows the allocated and used
memory by EJE

Generate
Documentation Tools Menu

Generates the javadoc docu-
mentation of the current file

Format Code
Tools Menu,
Toolbar, Text
Area Popup

CTRL-SHIFT-F Format the code

Application
Help Contents Help Menu F1 Show this user manual

Java
Documentation Help Menu F2 Shows the documentation of

the standard Java library

About... Help Menu F11 View information about EJE

EJE (Everyone’s Java Editor)

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Open all Java
Files

Tree popup
Menu

Open all Java files in the select-
ed directory

Open Window Tree popup
Menu

Open a window in the selected
directory

Close Folder Tree popup
Menu

Close the selected directory

Command Line
Build menu,
tools menu,
tool bar

F8 Open a command line session
(only on Windows platforms)

JShell Tools menu,
tool bar

SHIFT-F8
Open a JShell session (only on
Windows platforms with JDK
version 9 or higher platform)

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix N

Easter Eggs, References and Quotes

Goals:

At the end of this appendix the reader should:

 Understand some quotes, references and Easter eggs included in this text (Unit N.1).

N.1 Creativity
Despite having had a predominantly scientific education, actually I have always been a fan of
humanistic arts such as literature, painting, cinema and above all music. In general, I am a cre-
ative person, and I get excited about creations in any field, from a top made by crochet, to the
realization of a complex enterprise application, from a pencil drawing on a paper-sheet, to the
score of a symphony, from the collecting of stamps, to the structure of a literary, theatrical or
cinematographic work.
When I combine programming with analysis, design and architecture, I can also create. I think
it’s the same for any programmer, we like this job because we are creatives. Even when I write a
book I apply, sometimes unconsciously, analysis, design and architecture techniques, and that’s
how I finally succeed into completing the work. In my spare time I also write fictional stories,
novels, and above all I write and record songs. I try to create something every day, a little piece
that one day will perhaps be part of something bigger, and that will somehow survive me. Cre-
ativity is an important part of my life, I think many people are not aware of how important it
is to be creative.
Within this text, I celebrate creativity (especially of the works, authors and characters that
move me) as I have always done in the past, through quotations, hidden meanings, referenc-
es and Easter eggs. For example, years ago I wrote a free book and called it “OO && Java 5”

3

Appendix N

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

(http://www.claudiodesio.com). The name of the book, which represents a Java expression, con-
tained a hidden meaning. The term “OO” is the acronym of Object Orientation, and the short-
circuit operator && (see Chapter 3) implied that in some way Java 5 should always be used in an
object-oriented manner. In practice, we could read the title like this: “if Object Orientation is not
true, then it is useless to check whether Java 5 is true”. This book has been downloaded nearly
half a million times, but I don’t know how many people caught the message...
Another example is the EJE logo, which can be considered an Easter egg. We can note that the
name “EJE” differs from the word “eye” for a single character. The EJE logo in fact, is nothing
but an eye, but not just any one, but that of Homer Simpson! It’s just the result of a screenshot
of an image of Homer, to which I changed the color of the outline of Homer’s eye from yellow
to blue. For me it was a way to honour the genius of what was at the time one of my favourite
television programs.
Figure 1 shows the EJE splash screen, at the center of which, the logo can be seen.

Figure N.1 – EJE Splash screen.

A quote is also hidden in the splash screen. The phrase “take the time” is very suitable for the
Java programming context, also because EJE is designed for those who want to start learning
the language. Actually, “Take the Time” is also the title of a song by Dream Theater, one of my
favourite bands. It’s not an easy song to listen to, but I don’t like simple things very much. The
“refrain” of the song says “you ‘ll find all you need in your mind, if you take the time”, which is
like my philosophy for life.
In other words, in the next section, if you are interested, you can find out more about my
passions.

http://www.claudiodesio.com/
https://sourceforge.net/projects/eje/
https://en.wikipedia.org/wiki/Homer_Simpson
https://www.youtube.com/watch?v=XvUzTheN-J0
https://en.wikipedia.org/wiki/Dream_Theater

Easter Eggs, References and Quotes

��
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

N.1.1 References, Easter Eggs and Quotes

I will avoid mentioning all the names, dates, and references
to personal items, friends and relatives...

N.1.1.1 Volume 1

 In section 3.3.5, the examples show two sentences in Latin. The first “Java melius semper
quam latinam linguam est”, should mean (if I am correct) “Java is always better than the
Latin language”, in the sense that it is always better to study Java than Latin. The second
sentence “Meum filium maxime amo, sed ille me latinam linguam studere compellit”,
means “I love my son very much, but he forces me to study Latin”.

 In section 3.3.5.3 on escape characters, there are examples that print the string “IQ”.
Again, this is the name of another amazing progressive music band. As usual it is not com-
mercial music, but not as extreme as that of Dream Theater’s “Take the time”.

 In section 3.5.2, the great poet Salvatore Quasimodo, one of the most important figures of
Italian Hermeticism, and winner of the Nobel Prize for Literature in 1959 is quoted in a
code example. At first, instead of the name of the poet I wanted to insert the last verse of
the wonderful poem “To the branches of the willows” (“Alle fronde dei salici”), but then I
realized that it was not suitable for the purpose of the example.

 In section 3.7.2, the string “Foqus” is named in the first example code box. This is the
name of the building of the “Quartieri Spagnoli Foundation” (http://www.foqusnapoli.it),
a beautiful reality in a difficult neighborhood in Naples, where I had the opportunity to
deliver some training courses at the end of 2018 for Oracle, which gave me a lot from a
personal point of view. I learned a lot from that experience, and so I wanted somehow to
make this memory of mine even more persistent.

 In section 4.1.6, I quote James Gosling, the main architect of Java creation ... a person I
owe a lot to!

 In one of the examples in section 4.3.1, an array of strings is created with the names
of four of my favourite classical composers: Antonio Vivaldi, Ludwig van Beethoven,
Johann Sebastian Bach, Piotr Tchaikovsky. In the example VarForTest.java you find online, the
array is enriched by other names like Fryderyk Chopin, Frank Joseph Haydn, Claude Debussy,
Giacomo Puccini and Maurice Ravel.

E

E

E

E

E

E

https://en.wikipedia.org/wiki/IQ_(band)
https://en.wikipedia.org/wiki/Salvatore_Quasimodo
http://www.foqusnapoli.it/
https://en.wikipedia.org/wiki/Antonio_Vivaldi
https://en.wikipedia.org/wiki/Ludwig_van_Beethoven
https://en.wikipedia.org/wiki/Johann_Sebastian_Bach
https://en.wikipedia.org/wiki/Pyotr_Ilyich_Tchaikovsky
https://en.wikipedia.org/wiki/Fr�d�ric_Chopin
https://en.wikipedia.org/wiki/Joseph_Haydn
https://en.wikipedia.org/wiki/Claude_Debussy
https://en.wikipedia.org/wiki/Giacomo_Puccini
https://en.wikipedia.org/wiki/Maurice_Ravel

Appendix N

�00
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 In section 5.1, in the example GreetingsFromAliens.java, there is an Easter egg. By default,
the program prints the string “Greetings humans!”. This is a quote taken from the open-
ing track of the album “Ziltoid The Omniscient” by Devin Townsend (another artist close to
extreme progressive music). In fact, at the end of the exercise the output is changed to
“Greetings from Ziltoid!”

 In the output of the example in section 6.8.1, there’s the quote of one of the greatest lyric
poems ever written: “L’infinito” by Giacomo Leopardi.

 In section 8.3.7, in the last box of code, the ControlTower class declares two methods
whose parameter is Flying v. Actually, even here there is an Easter egg. In fact, “Flying v”,
is also the name of an electric guitar made by the famous brand Gibson, which I dreamed
of having as a boy (today I have several guitars, but still no Gibson guitars).

 Towards the end of section 8.3.3 there is another Easter egg. In fact, in a complex section
(for aliens), the string “reH Dunmo ‘law’ tlhIngan” is defined. This is the Klingon language
translation (an alien language invented in the Star Trek series) of the phrase “always bet-
ter than the Klingon” ... implying that Java, although difficult to learn, is still preferable to
Klingon!

N.1.1.2 Volume 2

 In section 10.2.3 two songs are named: “The Road of Bones” by the aforementioned IQ,
and “In the Passing Light Of Day” by the awesome band Pain of Salvation.

 In the example in section 13.5.1, the “KK” string is used. It is a tribute to one of my sport-
ing idols, the footballer (and above all the man) Kalidou Koulibali.

 In the example in section 13.5.3.1, the sentence “It is not logical, but it is often true.”, rep-
resents a tribute to the legendary Dr. Spock character of the Star Trek series, who utters it
in the first episode of the second season.

 In the same section the name “Ligeia” is used twice. It is the name of a short story that you
can find in various collections of another of my favourite authors: Edgar Allan Poe. The
story struck me so much that so many years (and lots of hair) ago, I sang in a hard rock
band that I called “Lady Ligeia”.

 In section 13.5.3.3 the word “McGuffin” appears, and this time it is a tribute to the ge-
nius of one of my favourite directors: Alfred Hitchcock. You can find the definition of a
McGuffin’s on Wikipedia.

 In the same section the string “Aomame” is used. This is the unforgettable protagonist of
the trilogy novel “1Q84” by Haruki Murakami, another author that I love.

E

E

E

E

E

E

E

E

E

E

https://en.wikipedia.org/wiki/Ziltoid_the_Omniscient
https://en.wikipedia.org/wiki/Devin_Townsend
https://en.wikipedia.org/wiki/L'infinito
https://en.wikipedia.org/wiki/Giacomo_Leopardi
https://en.wikipedia.org/wiki/Gibson_Flying_V
https://en.wikipedia.org/wiki/Gibson
https://en.wikipedia.org/wiki/Klingon_language
https://en.wikipedia.org/wiki/Star_Trek
https://en.wikipedia.org/wiki/The_Road_of_Bones_(album)
https://en.wikipedia.org/wiki/In_the_Passing_Light_of_Day
https://en.wikipedia.org/wiki/Pain_of_Salvation
https://en.wikipedia.org/wiki/Kalidou_Koulibaly
https://www.youtube.com/watch?v=-wtYGZt7aI4
https://en.wikipedia.org/wiki/Spock
https://en.wikipedia.org/wiki/Ligeia
https://en.wikipedia.org/wiki/Edgar_Allan_Poe
https://en.wikipedia.org/wiki/Alfred_Hitchcock
https://en.wikipedia.org/wiki/MacGuffin
https://en.wikipedia.org/wiki/1Q84
https://en.wikipedia.org/wiki/Haruki_Murakami

Easter Eggs, References and Quotes

�0�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 In section 13.5.3.4 there is a clear reference to one of the most important bands in the
history of rock, and one which has greatly influenced my musical culture: Deep Purple.
Also reported are the surnames of the golden age musicians of the Deep Purple, that
played on what is considered by many to be, the best live album in the history of rock:
Made in Japan. You have probably already heard the “Smoke on the water” guitar riff.

 It is also difficult not to recognize the first verse of the first canto of the Divine Comedy by
Dante Alighieri in the same section. Apart from the value of a such work of art, I also find
the symbolism of the numbers with which it has been structured, irresistible... an abso-
lute masterpiece even from this point of view.

 In the last example of the section, the name Salvo D’Acquisto is used, a real great hero
(read his history).

 In section 17.4.1, there is another tribute to a great author Michail Bulgàkov, and to his
masterpiece novel “The Master and Margarita”.

 In section 18.2.2, a HashSet is instantiated containing the names of my three favourite
progressive groups: Dream Theater, Ayreon and Pain of Salvation.

 The famous band that is described in the example in section 18.5.3 is that of The Ramones,
while in section 18.9 the song “Take the Time” by Dream Theater is quoted again.

 The “Divine Comedy” is mentioned again in section 18.9.4.

 The example “Music” database schema explained in section 21.2.4, contains a single table
that defines music albums. In addition to the already mentioned “Made in Japan” by
Deep Purple, there are three other masterpiece albums of the progressive rock genre:
“Images and Words” by Dream Theater, “The Human Equation” by Ayreon, and “Be” by Pain
of Salvation.

 In section 21.4.4, a show called “JCS” is mentioned, which is obviously the acronym for
“Jesus Christ Superstar”. It is a rock opera written by Andrew Lloyd Webber with lyrics by
Tim Rice, which since 1970, has continued to be successful in theatres around the world.
The 1973 movie is a true masterpiece, as is, obviously, the soundtrack.

 In section 21.5, other albums that are important to me are added to the “Music” data-
base: “The Real Thing” by Faith No More, “Mack the Knife: Ella in Berlin” by Ella Fitzgerald and
“OK Computer” by Radiohead. Following that, in section 21.5.2, other albums are named as
“I Am the Blues” by Willie Dixon and “Tapestry” by Carole King. Then in section 21.6.2.1 the
Steve Vai album “Passion and Warfare” is added and in section 21.6.2.2 “London Calling” by
The Clash.

E

E

E

E

E

E

E

E

E

E

https://en.wikipedia.org/wiki/Deep_Purple
https://en.wikipedia.org/wiki/Made_in_Japan_(Deep_Purple_album)
https://www.youtube.com/watch?v=sx9-lUT66IM
https://en.wikipedia.org/wiki/Divine_Comedy
https://en.wikipedia.org/wiki/Dante_Alighieri
https://en.wikipedia.org/wiki/Salvo_D'Acquisto
https://en.wikipedia.org/wiki/Mikhail_Bulgakov
https://en.wikipedia.org/wiki/The_Master_and_Margarita
https://en.wikipedia.org/wiki/Dream_Theater
https://en.wikipedia.org/wiki/Ayreon
https://en.wikipedia.org/wiki/Pain_of_Salvation
https://en.wikipedia.org/wiki/Ramones
https://en.wikipedia.org/wiki/Images_and_Words
https://en.wikipedia.org/wiki/The_Human_Equation
https://en.wikipedia.org/wiki/BE_(Pain_of_Salvation_album)
https://en.wikipedia.org/wiki/Jesus_Christ_Superstar_(film)
https://en.wikipedia.org/wiki/Andrew_Lloyd_Webber
https://en.wikipedia.org/wiki/Tim_Rice
https://en.wikipedia.org/wiki/Jesus_Christ_Superstar_(film)
https://en.wikipedia.org/wiki/The_Real_Thing_(Faith_No_More_album)
https://en.wikipedia.org/wiki/Faith_No_More
https://en.wikipedia.org/wiki/Ella_in_Berlin:_Mack_the_Knife
https://en.wikipedia.org/wiki/Ella_Fitzgerald
https://en.wikipedia.org/wiki/OK_Computer
https://en.wikipedia.org/wiki/Radiohead
https://en.wikipedia.org/wiki/I_Am_the_Blues
https://en.wikipedia.org/wiki/Willie_Dixon
https://en.wikipedia.org/wiki/Tapestry_(Carole_King_album)
https://en.wikipedia.org/wiki/Carole_King
https://en.wikipedia.org/wiki/Steve_Vai
https://en.wikipedia.org/wiki/Passion_and_Warfare
https://en.wikipedia.org/wiki/London_Calling
https://en.wikipedia.org/wiki/The_Clash

Appendix N

�0�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 In section 23.5.3, Dream Theater’s “Take the Time” is mentioned for the third time.

 The example in section 23.5.6.5, is entirely dedicated to the brilliant sitcom
“The Big Bang Theory”, of which I am a big fan.

 In the example in section 23.6.2, a very famous sentence from the novel “The Leopard”
(“Il Gattopardo”) by Giuseppe Tomasi di Lampedusa is cited: “ If we want everything to re-
main as it is, everything must change.”. In the book the sentence is about politics, but all
in all it is also valid if we talk about refactoring...

N.1.2 Exercises References
Also among the exercises there are references:

 In the solution of exercise 1.w, the great musician and my idol Stevie Wonder are
mentioned, and the very young unfortunate icon of the resistance of the four days of Naples
Gennarino Capuozzo.

 In exercise 1.z, you are asked to create a class called SayMyName. This is a quote from the
TV series Breaking Bad. For me, as for millions of other people, it is a true masterpiece.

 In exercise 2.q, the string “Quelo” is used. In this case it is a tribute to one of the best and
most appreciated Italian actors and comedians: Corrado Guzzanti. “Quelo” was the name
of a divinity to which one of the most famous characters played by him was devoted (an
improbable holy man who sought followers for a new religion).

 In exercise 14.f a string is used that corresponds to the first verse of the song “Metropolis Part I”
by Dream Theater (from the album “Images and Words”).

 In exercise 18.t, the beautiful poem by Jacques Prévert “Les enfants qui s’aiment” is
reported, and in the solution of exercise 18.z its translation into Italian.

 Exercises 17.b and 17.o show the names of some of my early musical instruments (the
family has recently expanded).

 The most famous components of the Ramones are also mentioned in exercise 6.b.

 In exercise 7.x, Mario Ruoppolo, a character played in his latest film “Il Postino”
(“The Postman”) by the great Massimo Troisi (nominated for an Oscar after his untime-
ly death), Vincenzo Malinconico, mythical character of a series of novels (including
“I hadn’t understood”) by Diego De Silva, and the real name of the Marvel Wolverine super-
hero, are mentioned.

E

E

E

E

E

E

E

E

E

E

E

https://en.wikipedia.org/wiki/The_Big_Bang_Theory
https://en.wikipedia.org/wiki/The_Leopard
https://en.wikipedia.org/wiki/Giuseppe_Tomasi_di_Lampedusa
https://en.wikipedia.org/wiki/Stevie_Wonder
https://en.wikipedia.org/wiki/Four_days_of_Naples
https://it.wikipedia.org/wiki/Gennaro_Capuozzo
https://en.wikipedia.org/wiki/Breaking_Bad
https://en.wikipedia.org/wiki/Corrado_Guzzanti
https://www.youtube.com/watch?v=DP4zXjZC1gI
https://en.wikipedia.org/wiki/Jacques_Pr�vert
https://en.wikipedia.org/wiki/Ramones
https://en.wikipedia.org/wiki/Il_Postino:_The_Postman
https://en.wikipedia.org/wiki/Massimo_Troisi
https://www.amazon.com/I-Hadnt-Understood-Diego-Silva-ebook/dp/B079MGTCVC/ref=sr_1_1?dchild=1&keywords=I+Hadn ft+Understood&qid=1588513396&sr=8-1
https://www.amazon.com/Diego-De-Silva/e/B001JOOVHY/ref=dp_byline_cont_ebooks_1
https://en.wikipedia.org/wiki/Wolverine_(character)

Easter Eggs, References and Quotes

�0�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 In the solution of exercise 8.z, there are two musical references: Molly Malone, the leg-
endary song by The Dubliners, and Phil Lynott, the late leader of Thin Lizzy. For both these
quotes there are two sculptures in the city of Dublin (in Ireland) that I visited in the sum-
mer of 2019.

 In the solution of exercise 10.n there is a small easter egg that recalls the novel of
“Fahrenheit 451” by Ray Bradbury.

 In the track of exercise 20.f the names Ross and Phoebe Buffay are used. It is a reference
to the cult TV series “Friends” broadcast from 1994 to 2004.

N.1.3 Cover References
The cover was created by some collaborators, starting from some of my ideas. It’s not the typi-
cal IT book cover, it was conceived and designed for months! You can see “among the stars”
various references and easter eggs.

N.1.3.1 Volume 1

 On the front cover, at the top left above the “J” of the title, you can see an oak leaf, this
is an Easter egg. If you read Appendix A on the history of Java, you already know that the
first name given to the Java language was “Oak”.

 Three constellations can be seen: the “W” of Cassiopeia near the subtitle, and near the
left arm of the model there is the constellation of Leo, while near the right arm there is
the constellation of Ursa Major. These three constellations have meanings that only people
close to me can understand.

 Below the right elbow of the model is the Lambda symbol, which recalls the Java lambda
expressions.

 Next to the right elbow, however, there is a “bug” with a “J” of Java on the back.

 There is another reference to the Java language on the near the head of the model. The
word “CAFEBABE”, is present at the beginning of each compiled Java file (in the byte-
code). Just open any .class file, with a hex editor to check. It is in fact a hexadecimal num-
ber, which identifies the .class format. You can get more information at this address on
Wikipedia. In effect, the writing on the cover is an Easter egg of an Easter egg!

 Finally, the binary number “01011001” (which is equivalent to the letter “Y” in Unicode
decoding), is an Easter egg for another fantastic Ayreon album, whose title is “01011001”.

E

E

E

E

E

E

E

E

E

https://en.wikipedia.org/wiki/Molly_Malone
https://en.wikipedia.org/wiki/The_Dubliners
https://en.wikipedia.org/wiki/Phil_Lynott
https://en.wikipedia.org/wiki/Thin_Lizzy
https://www.amazon.com/Fahrenheit-451-Ray-Bradbury/dp/1451673310/ref=sr_1_1?dchild=1&keywords=Fahrenheit+451&qid=1588516237&s=books&sr=1-1
https://en.wikipedia.org/wiki/Ray_Bradbury
https://en.wikipedia.org/wiki/Friends
https://en.wikipedia.org/wiki/Cassiopeia_(constellation)
https://en.wikipedia.org/wiki/Leo_(constellation)
https://en.wikipedia.org/wiki/Ursa_Major
https://en.wikipedia.org/wiki/Java_class_file
https://en.wikipedia.org/wiki/01011001

Appendix N

�0�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 On the back of the cover, at the top left there is another reference to my passion for mu-
sic: the treble clef.

 At the top right there are the icon of two gears, which symbolize complexity (it is the
same icon used in the book that characterizes complex topics).

 In the lower left corner, you can recognize the Millennium Falcon, the famous
spaceship from the Star Wars saga. Even the description of the book recalls the
titles that introduce the films of the saga, being inclined they should give the idea of sliding
downwards.

 At the bottom right there is a moon, and also this symbol has a meaning that only a per-
son close to me can understand.

 Finally, under the description there is an icon that should symbolize the Factory design
pattern.

 Curiosity: the “alien” model on the cover of Volume I is my second son Simone.

N.1.3.2 Volume 2

 On the front cover at the top left above the “J” of the title, the atom symbol can be seen.
It is another tribute to one of my favorite TV series: The Big Bang Theory.

 Under the title on the right, there is a sun, which represents a double easter egg: it recalls
the logo of an album special for me like “The passing light of day” by Pain of Salvation, and
recalls the Sun Microsystems, the company that created Java, and for which I worked many
years at the beginning of my career.

 To the left of the model’s head, there is a word written with the octal system, which can
only understand who is near me.

 On the right of the model’s head, on the other hand, there is the name of the Dream The-
ater album “Images and Words” (see section N.1.1), written with the base64 encoding!

 Near the left shoulder of the model there is the constellation of the Cygnus, while near
the right arm there is the constellation of the Canis Mayor, also in this case, the meaning is
understandable only by people close to me.

 Under the model right elbow there is the short circuit operator “&&”. This is an Easter
egg that refers to the book that many years ago I wrote and uploaded on my website
www.claudiodesio.com: “Object Oriented && Java 5” (which I have already mentioned in
paragraph N.1).

E

E

E

E

E

E

E

E

E

E

E

E

https://en.wikipedia.org/wiki/Millennium_Falcon
https://en.wikipedia.org/wiki/Star_Wars
https://www.youtube.com/watch?v=tGsKzZtRwxw
https://en.wikipedia.org/wiki/The_Big_Bang_Theory
https://en.wikipedia.org/wiki/In_the_Passing_Light_of_Day
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Cygnus_(constellation)
https://en.wikipedia.org/wiki/Canis_Major
file:///D:/utenti/emanu/dev/liberipensieri.com/Claudio%20De%20Sio%20Cesari/Java%2013/testi/02%20-%20pronti%20per%20l%27impaginazione/appendici/www.claudiodesio.com

Easter Eggs, References and Quotes

�0�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 In the lower right corner, there is a padlock with a Java “J”, which should represent the
encapsulation paradigm.

 On the back of the cover, at the top left, there is a key that should represent the key to
open the encapsulation padlock.

 At the top right, there is the stylized little man who represents an actor in the UML use
case diagram.

 On the bottom left and right of the description there are two icons used in the book to
label the very complex parts (alien icon), and the rarely used topics (the dinosaur).

 Below the description, it says Java for Aliens using the hexadecimal system!

 Curiosity: the “alien” model on the cover of Volume II is my firstborn Andrea.

N.1.4 References in the analytical index

There is a single Easter egg under “recursion” of the Volume 2 index.

E

E

E

E

E

E

E

�0�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

Appendix O

Bibliography

Goals:

At the end of this appendix, the reader should:

 Be able to consult a list of books, sites and articles that the author deemed useful for
writing this book (Unit O.1).

 Be able to consult a list of books, sites and articles that the author recommends read-
ing, in order to continue training in Java with a view to specializing in Java technolo-
gies (Unit O.2).

 Be able to consult a list of books, sites and articles that the author recommends read-
ing in order to continue training in Java with a view to specializing in topics relating
to Object Orientation (Unit O.3).

Below is a list of books, sites or articles that may interest the reader who wants to continue his
training. We have divided the bibliography into three sections.

Section O.1 lists all the books that were used to write this book.

In section O.2, on the other hand, some resources are recommended with a view to
supporting further training aimed at the specialization of the most requested Java
technologies.

Finally, in section O.3, several books on Object Orientation are listed in order to support
further training aimed at the specialization of Java technologies.

Almost all references are in English.

3

3

3

1.

2.

3.

Appendix O

�0�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

O.1 Resources for Java
Below is a series of books and links, which were useful for the preparation of this book:

O.1.1 Books

 Cay S. Horstman, “Core Java Eleventh Edition Volume I & II”, Pearson (2019): is a book
now in its eleventh edition which has been a best seller for many years, and has sold
millions of copies. Horstman is a very famous and highly respected author.

 Paul Deitel, Harvey Deitel “Java 9 for Programmers”, Prentice Hall (2017): A complete
book on Java 9. One of the best books ever. Deitel & Deitel are always very clear and
precise.

 Sander Mak, Paul Bakker “Java 9 Modularity”, O’Reilly (2017): Very well done, impeccably
explains all the aspects of modularization in over three hundred pages.

 Josh Juneau “Java 9 Recipes”, APress (2017): An introduction to Java 9 based on examples.
Great for people who already know Java.

 Kishori Sharan “Beginning Java 9 Fundamentals”, APress (2017): An excellent introduc-
tory book on Java 9.

 Kishori Sharan “Java 9 Revealed, for Early Adoption and Migration”, APress (2017): A
great book but only for the latest Java 9.

 Joshua Bloch, “Effective Java, Third Edition”, Addison-Wesley (2018): One of the best
books on Java advanced by one of the historical Java developers. A highly anticipated new
edition after ten years.

 Cay S. Horstman, “Java SE 8 for the Really Impatient”, Addison-Wesley (2014): An ad-
vanced and synthetic book, which only features news on Java 8. This book was published
a few months before the official release of the Java 8 release.

 Jeanne Boyarsky and Scott Selikoff, “OCA, Oracle Certified Associate Java SE 8
programmer I”, Sybex (2015): a text with excellent explanations on the most complex
situations to manage, that can occur when developing in Java. Very good for passing the
OCA certification exam on Java 8.

 Jeanne Boyarsky and Scott Selikoff, “OCP, Oracle Certified Professional Java SE 8
programmer II”, Sybex (2016): still a great text to pass the OCP certification exam on Java
8, where more advanced topics and libraries are addressed.

E

E

E

E

E

E

E

E

E

E

Bibliography

�0�
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Khalid A. Mughal and Rolf W. Rasmussen, “A Programmer’s Guide to Java SE 8 Oracle
Certified Associate (OCA)”, Addison Wesley (2017): I didn’t need to read the whole book,
but for what little I read, I found it very well done. Some of the most complex parts of
this book inspired me.

 Mala Gupta, “OCA, Java SE 7 Programmer I Certification Guide”, Manning (2013): A good
book to prepare for the Oracle Java 7 Programmer I certification.

 S. G. Ganesh and Tushar Sharma, “Oracle Certified Professional Java SE 7 Program-
mer Exams 1z0-804 and 1z0-805”, APress (2013): Another good book on Java certification,
which also covers the Programmer II exam.

 Katie Sierra and Bert Bates, “OCP Java SE 7 Programmer Study Guide”, Oracle Press
(2013): like the previous one, it covers both exams Programmer I & II (OCA & OCP). By
studying this book (and especially by practicing their tests) you have an excellent chance
to pass the exams.

 Philip Heller and Simon Roberts, “The Complete Java Certification guide”, Sybex (2006):
This book is very dated, but it was very important for understanding some basic features
of Java.

 Robert C. Martin, “Clean Code: A Handbook of Agile Software Craftsmanship”, Prentice
Hall (2009): Known as “Uncle Bob”, the author, Robert C. Martin, is an important expo-
nent of the Agile movement and, in this book, he explains the “Clean Code” technique
for optimal programming.

 Doug Lea, “Concurrent Programming in Java: Design Principles and Pattern (2nd Edi-
tion)”, Addison Wesley Publishing (1999): This book is very old, but the author was the
main architect of the original competition architecture in Java. Recommended for those
who are fond of concurrent programming.

 Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, Doug Lea “Java
Concurrency in Practice”, Addison Wesley Publishing (2006): A practical guide on threads
accessible even to newbies, but without the latest news from the library.

 Claudio De Sio Cesari, “Manuale di Java 8”, Hoepli Editore (2014) [Italian language]:
Compared to “Java 9 Manual”, the appendices on JDBC and Java FX were the last two
chapters of the book. It is currently the most reviewed programming book on Amazon.it,
and certainly one of the best sellers in Italy.

E

E

E

E

E

E

E

E

E

Appendix O

��0
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Claudio De Sio Cesari, “Manuale di Java 7”, Hoepli Editore (2011) [Italian language]:
Organized differently than “Java 8 Manual”. The final part was dedicated to investigat-
ing some topics. This allowed the neophytes to approach the language more gradually.
This structure was also used with “Java 6 Manual”. With Java 8, a structure with a steeper
learning curve was chosen, as the language has been enriched with many new features.

 Claudio De Sio Cesari, “Manuale di Java 6”, Hoepli Editore (2006) [Italian language]: The
first book in the series. The last book has the same structure as the first four chapters.

 Claudio De Sio Cesari, “Object Oriented & Java 5” (2005) [Italian language]: You can
download this book for free from the author’s personal website: http://www.claudiodesio.com.
It has been downloaded over 450,000 times, and consists of 721 pages, and is also the
basis of all the manuals published later. It is a complete manual, but updated for
Version 5.

O.1.2 Online Resources

 http://openjdk.java.net: Every new study started from this address. Version by version I
studied all the news that are discussed there.

 http://www.azul.com: as for the previous link, the Azul site contains many new features of
each version, and has been very valuable.

 http://docs.oracle.com/javase/specs/: The official specifications of the language, to remove
any doubt.

 http://docs.oracle.com/javase/9/docs/api/overview-summary.html: The official documenta-
tion for Java 9.

 http://docs.oracle.com/javase/tutorial/: The fundamental Oracle tutorials.

 http://docs.oracle.com/javase/8/javase-clienttechnologies.htm: Tutorials on JavaFX, simple
and full of information.

 http://www.claudiodesio.com: The author’s personal website. Unfortunately, it is not up-
dated often ... but sooner or later, it will feature some surprises. From it I have extracted
some appendices of this book.

 javarevisited.blogspot.com: blog full of interesting posts, short and with excellent examples.

 http://www.javacodegeeks.com: so many interesting articles on Java.

 https://blog.codefx.org: Nicolai Parlog’s blog is always very updated to the latest news,
precious.

E

E

E

E

E

E

E

E

E

E

E

E

E

Bibliography

���
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

O.2 Resources for Java Technologies
Now that we know the Java language, it’s time to start exploring the technologies that populate
the Java universe. Today, the most important Java-based technologies are certainly Java Enter-
prise Edition and the development on Google Android platform which, even though it’s not an
official Oracle technology, still uses Java as a programming language (although it is possible to
use other languages to program on this platform). Here is a list of interesting resources:

O.2.1 Resources for Java EE

 Antonio Goncalves, “Beginning Java EE, Third Edition”, Apress (2013): a great introduc-
tion to Java Enterprise Edition version 7. Although the version is not the last one, I think
it’s the best book to start with.

 Arun Gupta, “Java EE 7 Essentials”, O’Reilly (2013): an excellent alternative to the book by
Antonio Goncalves, by a great developer like Arun Gupta.

 Ram Kulkarni, “Java EE 8 Development with Eclipse”, Packt (2018): a short and practical
book on Java Enterprise Edition version 8.

 David Heffelfinger, “Java EE 8 Application Development”, Packt (2017): a quick overview
of Java Enterprise Edition version 8. It already requires knowledge of the platform, not
recommended for inexperienced developers.

 Kamalmeet Singh, Mert Caliskan, “Java EE 8 Microservices”, Packt (2018): covers interest-
ing topics such as microservices, Docker and the cloud in general, with introduction to
the latest version of Java Enterprise Edition.

 Craig Walls, Ryan Breidenbach, “Spring in Action”, Manning (2014): One of the best-sell-
ing books for learning the Spring framework.

 Don Brown, Chad Michael Davis, Scott Stanlick, “Struts 2 in action”, Manning (2008):
One of the best-selling books for learning Struts 2.

 http://spring.io/docs: Official documentation for the Spring framework.

 http://www.javaworld.com: Many interesting articles for all technologies.

 http://www.theserverside.com: Many interesting articles for enterprise technologies.

O.2.2 Resources for Android programming

 Dawn Griffiths, “Head First Android Development”, APress (2017): the prefect book to
start studying programming for Android.

E

E

E

E

E

E

E

E

E

E

E

Appendix O

���
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Grant Allen, “Beginning Android”, APress (2014): Great introductory book on Java
programming for Android.

 Dave MacLean, Satya Komatineni “Pro Android”, APress (2014): Book on Android,
well-enough written but not always impeccable.

 Vladimir Silva “Pro Android Games”, APress (2014): Explains how to create games with
Android.

O.3 Resources for Object Orientation

 These books are not for programming but talk about Object-Oriented or UML
methodologies. Some of them focus on areas of pure philosophy, so we are talking about
very demanding subjects, and relatively far from programming.

 Martin Fowler, “UML Distilled”, Addison-Wesley (2010): An indispensable, concise,
practical book full of references and very direct.

 Ivar Jacobson, Grady Booch, James Rumbaugh “The Unified Software Development Pro-
cess” Addison-Wesley Publishing (1999): How UP works, an illuminating but also disper-
sive book.

 Ivar Jacobson, Grady Booch, James Rumbaugh “The Unified Modeling Language Refer-
ence Manual” Addison-Wesley Publishing (2010): UML from the source.

 Ivar Jacobson, Grady Booch, James Rumbaugh “The Unified Modeling Language User
Guide” Addison-Wesley Publishing (1999): As above.

 Simon Bennet, John Skelton, Ken Lunn “Introduction to UML” McGraw-Hill - Schaum’s
(2010): Good book with a meaningful case study.

 Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design Patterns” Addison-
Wesley Publishing (2002): A classic, but interesting, above all from the historical point of
view. For collectors.

 Mark Grand, “Patterns in Java”, Wiley & Sons (2002): Essential for those who are fond of
patterns.

 Robert C. Martin, “Clean Architecture: A Craftsman’s Guide To Software Structure and
Design”, Prentice Hall (2018): Uncle Bob’s last spectacular book, always original and
interesting.

 http://hillside.net/patterns: Official portal of the pattern community.

E

E

E

E

E

E

E

E

E

E

E

E

E

Bibliography

���
Java for Aliens - Claudio De Sio Cesari (www.javaforaliens.com)

 Meyer Bertrand, “Object-Oriented Software Construction” Prentice Hall (1997): A little
dated, but absolutely enlightening.

 Alistair Cockburn, “Responsibility Based Model”, (RBM) http://alistair.cockburn.us.

 Kent Beck, “Extreme Programming, an introduction” http://www.extremeprogramming.org:
An innovative and original methodology. Kent Beck, is one of the founders of the Agile
movement.

 Jeff Sutherland, “Scrum: The Art of Doing Twice the Work in Half the Time” Random
House Business (2015): a good compendium on the most famous agile methodology by
one of its authors.

 Martin Fowler, “Refactoring”, Addison-Wesley (1999): A very useful book on refactoring.

 Craig Larman, “Applying UML and Patterns”, Prentice Hall (2008): The best book ever
read!

E

E

E

E

E

E

	A.5 Licenses and Oracle Support
	A.4 Java... Run Everywhere
	A.2 Java = Internet
	A.1 Oak, Gosling and the Green Team
	A.3 The Reasons for Success
	B.5 Verify the Installation
	B.4 PATH Environment Variable Setting
	B.4.1 Windows 10
	B.4.2 Windows 8
	B.4.3 Windows 7

	B.3 Download API Documentation
	B.2 Oracle JDK Standard Edition Download
	B.1 OpenJDK Download
	C.3 More Information on the Command Prompt
	C.2 Most Used DOS Commands Table
	C.1 Introduction
	D.3 Examples of Patterns in the Book
	D.2 GoF Book: Formalization and Classification
	D.1 Design Pattern Definition
	E.3 CLASSPATH and JAR File
	E.2 JAR File
	E.1 CLASSPATH
	F.4 Who Created UML (Who)?
	F.3 Why UML Was Born (Why)
	F.2 When and Where It Was Born
	F.1 What is UML?
	G.1 UML 1.3 Syntax Reference
	G.1.1 Use Case Diagram
	G.1.2 Class Diagram
	G.1.3 Component & deployment diagram
	G.1.4 Interaction diagram
	G.1.5 State Diagram
	G.1.6 Activity diagram
	G.1.7 General Purpose Elements

	H.2 The eXtensible Markup Language
	H.2.1 XML Documents
	H.2.2 Structure of an XML Document
	H.2.2.1 Prologue Structure
	H.2.2.2 Document Structure

	H.2.3 Characteristics of an XML Document
	H.2.3.1 Well Formed XML Document
	H.2.3.2 Valid XML Document

	H.1 Markup Languages
	I.3 Installing Applet
	I.2 Introduction to HTML
	I.1 Definition of Applet
	J.4 The target Option
	J.3 Current Syntax vs Previous Syntax
	J.2 Keywords Used as Identifiers
	J.1 Warning
	K.2 Execution and Use of Apache Derby
	K.2.1 Server Mode
	K.2.2 Embedded Mode
	K.2.3 Interactive Console

	K.1 Apache Derby Installation
	K.1.1 Software Download
	K.1.2 Installation
	K.1.3 Configuration

	L.4 Configuration Check
	L.3 PATH_TO FX Variable Setting
	L.2 Download JavaFX SDK and Runtime
	L.1 JAVA_HOME Variable Setting
	M.4 Descriptive table of the main EJE commands
	M.3 User Manual
	M.2 EJE Installation and Execution
	M.2.1 For Windows Users
	M.2.2 For Unix-like Operating Systems (Linux, Solaris, etc.) Users
	M.2.3 For Users Who Have Problems with These Scripts (Windows 9x/NT/ME/2000/XP & Linux, Solaris)

	M.1 System Requirements
	N.1 Creativity
	N.1.1 References, Easter Eggs and Quotes
	N.1.1.1 Volume 1
	N.1.1.2 Volume 2

	N.1.2 Exercises References
	N.1.3 Cover References
	N.1.3.1 Volume 1
	N.1.3.2 Volume 2

	N.1.4 References in the analytical index

	O.3 Resources for Object Orientation
	O.2 Resources for Java Technologies
	O.2.1 Resources for Java EE
	O.2.2 Resources for Android programming

	O.1 Resources for Java
	O.1.1 Books
	O.1.2 Online Resources

